JPH06256840A - Vacuum degassing refining method - Google Patents

Vacuum degassing refining method

Info

Publication number
JPH06256840A
JPH06256840A JP29566793A JP29566793A JPH06256840A JP H06256840 A JPH06256840 A JP H06256840A JP 29566793 A JP29566793 A JP 29566793A JP 29566793 A JP29566793 A JP 29566793A JP H06256840 A JPH06256840 A JP H06256840A
Authority
JP
Japan
Prior art keywords
refining
decarburization
vacuum
vacuum degassing
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29566793A
Other languages
Japanese (ja)
Inventor
Tsukasa Kashiwabara
司 柏原
Junichi Nakagawa
中川淳一
Yasuo Obana
尾花保雄
Makoto Moriguchi
誠 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29566793A priority Critical patent/JPH06256840A/en
Publication of JPH06256840A publication Critical patent/JPH06256840A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the treating time of vacuum degassing refining, to reduce the refining cost and to rise the hitting ratio of components in a product by beforehand planning an operational pattern with model formulas precisely hit and executing the treatment. CONSTITUTION:In the vacuum degassing refining for molten steel, the variation of carbon before refining or during refining is estimated by the following formulas to execute the refining. dC/dt=-Kc1''*(C-C*')-Kc2''*(C-C*)...(1), C*'=(P+P ')/(K*O)...(2), C*=P/(K*O)...(3), (wherein, in the case of C<C*', Kc1''=0) C: C in a ladle, P: pressure in a vacuum vessel, K: equilibrium constants of C and O, Kc1', Kc2': decarburizing velocity constant obtd. with fitting, P': bubble generating pressure, t: time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶融金属の真空脱ガス精
錬方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum degassing refining method for molten metal.

【0002】[0002]

【従来の技術】従来の真空脱ガス精錬方法は、特開昭5
1−81722号公報で紹介のように脱炭を目的とし
て、精錬前に予め定めた適切な真空パターン、精錬時間
に基づき求めた目標脱炭推移パターンを設定して真空脱
ガス精錬を開始し、その途上任意の時点で溶鋼中の
〔C〕量を実測又は排ガス中成分分析値から計測して、
その実測値とその時点での目標脱炭推移値との差から酸
素供給量、真空度、環流量を操作し、既目標推移値に一
致する様脱炭速度を制御している。
2. Description of the Related Art A conventional vacuum degassing refining method is disclosed in Japanese Patent Application Laid-Open No.
For the purpose of decarburization, as introduced in 1-81722, the vacuum degassing refining is started by setting an appropriate vacuum pattern predetermined before refining and a target decarburization transition pattern obtained based on the refining time, At any point along the way, the amount of [C] in the molten steel is measured or measured from the component analysis value in the exhaust gas,
From the difference between the measured value and the target decarburization transition value at that time, the oxygen supply amount, the degree of vacuum, and the recirculation flow rate are manipulated to control the decarburization rate so as to match the existing target transition value.

【0003】[0003]

【発明が解決しようとする課題】前述のような脱炭の制
御は、脱炭の推移を予想するモデル式を利用している。
このモデル式の精度が高いほど、処理時間を短縮でき、
精錬コストを低下させるとともに、成品の成分の的中率
を上げることができる。
The control of decarburization as described above utilizes a model formula for predicting the transition of decarburization.
The higher the accuracy of this model formula, the shorter the processing time,
The refining cost can be reduced and the accuracy of the ingredients of the product can be increased.

【0004】従来の脱炭推移を予測する方法は、特開昭
61−19726号公報に記載されているようにC,O
の反応速度式で構成されたモデル式((4)式)があ
る。しかしながら最近の極低炭鋼の製造においての特
に、Cが20ppm以下の極低炭域では脱炭速度が急激
に低下し、脱炭推移値が実績と合わなかった。
A conventional method for predicting the transition of decarburization is C, O as described in JP-A-61-19726.
There is a model formula (equation (4)) configured by the reaction rate formula of. However, in the recent production of ultra-low carbon steel, especially in the ultra-low carbon region where C is 20 ppm or less, the decarburization rate sharply decreased, and the decarburization transition value did not match the actual performance.

【0005】 1n((Ct −C* )/(C0 −C* ))=−Kt …(4) Ct ;t時間におけるC値 C* ;平衡到達C C0 ;t=0におけるC K ;脱炭速度定数 この極低炭域での脱炭速度低下現象に対し、推定したメ
カニズムにのっとり、数学的にモデル式化したものがあ
る(例えば渡辺ら CAMP−ISLJ Vol.1
(1988)−234)。しかしながら(5),(6)
式は微分式であり、さらにこれらを連立して解く必要が
あることから、ルンゲクッタのような数学的に特別な解
法で式を解く必要がある。これを実操業の脱炭推定に利
用するには、かなりのメモリー量が必要であるととも
に、一般の計算より多大な計算時間を必要とするため、
現場のプロコンには負荷が大きく、採用されていなかっ
た。
1n ((C t −C * ) / (C 0 −C * )) = − Kt (4) C t ; C value at time t C * ; equilibrium arrival C C 0 ; C at t = 0 K; Decarburization rate constant For the phenomenon of decarburization rate decrease in this extremely low coal area, there is a mathematical model based on the estimated mechanism (for example, Watanabe et al. CAMP-ISLJ Vol. 1).
(1988) -234). However, (5), (6)
The equations are differential equations, and since it is necessary to solve these equations simultaneously, it is necessary to solve the equations with a mathematically special solution method such as Runge-Kutta. To use this for estimation of decarburization in actual operation requires a considerable amount of memory and requires much more calculation time than general calculation,
It was not adopted because it put a heavy load on the process computer on site.

【0006】 Wd〔C〕IN/dt=Q(〔C〕IN−〔C〕OUT ) …(5) Wd〔C〕OUT /dt=−Q(〔C〕IN−〔C〕OUT ) +ρAK’ (〔C〕OUT −C* ) −ρAKa0 Hm (〔C〕OUT −C* (h))dh …(6) Hm=1.48*(K*C*O−P’ ) …(7) W;鍋内溶鋼量,W;真空槽内溶鋼量,Q;環流量 〔C〕IN;鍋内C,〔C〕OUT ;真空槽内C[0006] Wd (C) IN / dt = Q ([C] IN - [C] OUT) ... (5) Wd [C] OUT / dt = -Q ([C] IN - [C] OUT) + ρAK ' ([C] OUT −C * ) −ρAK a0 Hm ([C] OUT −C * (h)) dh (6) Hm = 1.48 * (K * C * OP ′)… ( 7) W; amount of molten steel in pot, W; amount of molten steel in vacuum chamber, Q; recirculation flow rate [C] IN ; C in pot, [C] OUT ; C in vacuum chamber

【0007】[0007]

【課題を解決するための手段】本発明の特徴は、溶鋼の
真空脱ガス精錬ににおいて、精錬前における又は精錬中
における炭素推移を次式により推定して、精錬を行うこ
とを特徴とする真空脱ガス精錬方法である。
A feature of the present invention is that in vacuum degassing refining of molten steel, a carbon transition before refining or during refining is estimated by the following equation, and refining is performed. It is a degassing refining method.

【0008】 dC/dt=−KC1”*(C−C* ' )−KC2"*(C−C* ) …(1) C* ' =(P+P’ )/(K*O) …(2) C* =P/(K*O) …(3) (ただしC<C* 'のときはKC1"=0) C;鍋内C,P;真空槽内圧力,K;C,Oの平衡定
数,kc1",KC2”;フィッティングで求まる脱炭速度
定数,P';気泡生成圧力,t;時間
DC / dt = −K C1 ″ * (C−C * ) − K C2 ″ * (C−C * ) (1) C * = (P + P ′) / (K * O) ... ( 2) C * = P / (K * O) (3) (K C1 "= 0 when C <C * ' ) C; C in pan, P; vacuum chamber pressure, K; C, O Equilibrium constant, k c1 ", K C2 "; decarburization rate constant obtained by fitting, P '; bubble generation pressure, t; time

【0009】[0009]

【作用】溶鋼の真空脱ガス精錬の脱炭反応と反応機構と
その反応サイトについては、多くの説がある(例えば渡
辺ら CAMP−ISLJ Vol,1(1988)−
234)。我々は、気液界面をかいさずに進行するCと
Oの脱炭で溶鋼内部から発生するCOガスとして観察で
きる現象の脱炭と、気液界面(真空槽内自由表面と溶鋼
中内のガス表面)でおこる脱炭を考え(1)式を構築し
た。
[Function] There are many theories about the decarburization reaction, the reaction mechanism and the reaction site of the vacuum degassing refining of molten steel (for example, Watanabe et al. CAMP-ISLJ Vol, 1 (1988)-
234). We have observed decarburization, which is a phenomenon that can be observed as CO gas generated from the inside of molten steel by decarburization of C and O that progresses without interfering with the gas-liquid interface, and the gas-liquid interface (the free surface in the vacuum chamber and the gas in the molten steel). Formula (1) was constructed considering decarburization that occurs on the surface.

【0010】ここで(1)式の右辺第1項は、気液界面
をかいさず進行するCとOの脱炭の速度を表しており、
その右辺第2項は、気液界面でおこる脱炭速度を表して
いる。ここでKC1”,KC2"は、フィッティングで求ま
る定数であり、反応速度,物質移動速度,環流速度,界
面積といった要素が集まり構成されている定数であるた
め、各プロセスで特有の値をもつものである。
Here, the first term on the right side of the equation (1) expresses the decarburization rate of C and O which advances without interfering with the gas-liquid interface,
The second term on the right side represents the decarburization rate that occurs at the gas-liquid interface. Here, K C1 ”and K C2 “ are constants obtained by fitting, and are constants that are composed of elements such as reaction rate, mass transfer rate, reflux rate, and interfacial area. It has.

【0011】以下特開昭61−19726号公報で開示
している真空脱ガス精錬法に準じて、その式の利用方法
を記す。
The method of using the formula will be described below in accordance with the vacuum degassing refining method disclosed in Japanese Patent Laid-Open No. 61-19726.

【0012】本発明においては、大きく1)処理前の操
作と2)処理中の操作とに利用できる。その詳細説明を
述べる。
In the present invention, it can be used for 1) operation before processing and 2) operation during processing. A detailed description will be given.

【0013】1)処理前の操作 処理前の予め処理時間、合金添加タイミング、真空度
パターンを設定するのは、各処理毎の処理方法の変化に
よる処理時間のバラツキ、成分のバラツキなどを最小限
にし、所定の時間内に再現性のある成品を大量に生産す
るために行う。又、最終成分値を推定する上で予測され
る処理方法を予めそれに基づいて計算を行う必要があ
る。〔C〕以外の合金添加量を予め計算しておくの
は、合金の〔C〕含有量より〔C〕の変動を計算するた
め、又は鋼中酸素との反応による脱酸量を計算しそれを
脱炭反応計算に結びつけるためである。これは予め定
めた目標値と比較し加炭量及び脱炭量を決めるためであ
る。
1) Operation before treatment The treatment time, alloy addition timing, and vacuum degree pattern before treatment are set in advance to minimize variations in treatment time due to changes in the treatment method for each treatment and variations in components. In order to mass-produce reproducible products within a predetermined time. In addition, it is necessary to calculate in advance the processing method predicted for estimating the final component value. The amount of alloy added other than [C] is calculated in advance in order to calculate the variation of [C] from the [C] content of the alloy, or by calculating the deoxidation amount due to the reaction with oxygen in steel. This is for connecting to the decarburization reaction calculation. This is to determine the amount of carburization and the amount of decarburization by comparing with a predetermined target value.

【0014】これらの操作を行うとき、この(1)式で
表せるモデル式で精度よく脱炭の推移を見積もることが
できる。(1)式は微分式となっているが、これは数学
的に差分化することでプログラムをくみ簡単に利用でき
る(フローチャートで記した図1参照)。ここでC* '
は渡辺らが報告した(CAMP−ISLJ Vol.1
((1988)−234)気泡生成圧力でP’ =20
torrを用いて(2)式で計算すればよい。また酸素
は、スラグから溶鋼への酸素流入がおこるために計算で
はもとめられない。よって実績より処理中の酸素変化パ
ターンを、プログラムにいれて用いればよい。
When performing these operations, the transition of decarburization can be accurately estimated by the model formula represented by the formula (1). Equation (1) is a differential equation, which can be used easily by mathematically differentiating the program (see FIG. 1 described in the flowchart). Where C * '
Reported by Watanabe et al. (CAMP-ISLJ Vol. 1).
((1988) -234) P '= 20 at bubble generation pressure
It suffices to calculate using equation (2) using torr. Oxygen cannot be found in the calculation because oxygen flows from the slag into the molten steel. Therefore, based on the actual results, the oxygen change pattern during processing may be used by entering it in the program.

【0015】2)処理中の操作 〜については、前述した1)の〜における処理
中の修正を目的とした手段である。経過パターンの修
正は、その時点での終了〔C〕推定値が予め定めた目標
値に対して高い場合、自然脱炭時間を終了〔C〕推定値
と予め定めた目標値が一致するまで延長するものであ
り、終了〔C〕推定値が予め定めた目標値に対して低い
場合は、存在パターンの加炭量に修正を加えるものであ
る。
2) Operation during processing is a means for correcting during processing in 1) to 1) described above. If the end [C] estimated value at that time is higher than the predetermined target value, the natural decarburization time is extended until the end [C] estimated value matches the predetermined target value. If the end [C] estimated value is lower than a predetermined target value, the amount of carburization of the existing pattern is corrected.

【0016】これらの操作を行うとき、この(1)式で
表せるモデル式で精度よく脱炭の推移を見積もることが
できる。(1)式は微分式となっているが、これは数学
的に差分化することでプログラムをくみ簡単に利用でき
る(フローチャートで記した図2参照)。ここでC* '
は渡辺らが報告した(CAMP−ISLK Vol.1
(1988)−234)気泡生成圧力でP' =20to
rrを用いて(2)式で計算すればよい。また酸素は、
スラグから溶鋼への酸素流入がおこるために計算ではも
とめられない。よって実績より処理中の酸素変化パター
ンを、プログラムにいれて用いればよい。
When performing these operations, the transition of decarburization can be accurately estimated by the model formula represented by the formula (1). Equation (1) is a differential equation, which can be used easily by mathematically differentiating the program (see FIG. 2 described in the flowchart). Where C * '
Reported by Watanabe et al. (CAMP-ISLK Vol.
(1988) -234) P ' = 20to at bubble generation pressure.
It may be calculated by the formula (2) using rr. Also, oxygen is
Oxygen inflow from the slag to the molten steel occurs, so it cannot be calculated. Therefore, based on the actual results, the oxygen change pattern during processing may be used by entering it in the program.

【0017】例えば、プログラムをフローチャートで表
せば図2のごとくである。
For example, the flow chart of the program is as shown in FIG.

【0018】[0018]

【実施例】【Example】

実施例1 表1に記載した精錬条件で二次精錬を行うにあたり、真
空パターン(図3)を定めて処理をおこなった。ここで
C1",KC2"は実績のフィッティングにより、それぞれ
0.60,0.062を決定し採用した。
Example 1 When performing secondary refining under the refining conditions described in Table 1, a vacuum pattern (FIG. 3) was determined and treatment was performed. Here, K C1 "and K C2 " were determined to be 0.60 and 0.062, respectively, by the actual fitting, and adopted.

【0019】また比較として同じ真空パターン(図3)
で、従来法(特開昭61−19726号公報に記載され
ているC,Oの推定モデルを利用した方法)で処理をお
こなった。その結果を表1に記す。本発明で得られた真
空パターンがより目標に近い値を得ることができた。
For comparison, the same vacuum pattern (FIG. 3)
Then, the processing was carried out by the conventional method (method utilizing an estimated model of C and O described in JP-A-61-19726). The results are shown in Table 1. The vacuum pattern obtained by the present invention was able to obtain a value closer to the target.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例2 表2に記載した精錬条件で二次精錬を行うにあたり、実
施例1で記載した方法にて推定し精錬処理をおこなっ
た。しかし処理中サンプリングを行った〔C〕の値が当
初予測した〔C〕の推移と異なるため、処理中に実施例
2のように(1)式で構成したプログラムの計算値を、
そのサンプリング時間での分析〔C〕に修正してやり、
再度その時間から計算をおこない、目標値に合うように
精錬時間を延長してやった。ここでKc1”,KC2"は実
施例1と同様に実績のフィッティングにより、それぞれ
0.60,0.062を決定し、採用した。結果を図4
に示す。また比較として同じ真空パターン(図3)で、
従来法(特開昭61−19726号公報に記載されてい
るC,Oの推定モデルを利用した方法)で推定した脱炭
推移を併記した。本発明の推定式で得られる脱炭の推移
の方が、実操業のCの推移を良く表すことがわかった。
Example 2 In carrying out the secondary refining under the refining conditions shown in Table 2, the refining treatment was performed by estimating it by the method described in Example 1. However, since the value of [C] sampled during the process is different from the originally predicted transition of [C], the calculated value of the program configured by the equation (1) as in the second embodiment during the process is
Correct the analysis [C] at the sampling time,
I calculated again from that time and extended the refining time to meet the target value. Here, K c1 ″ and K C2 ″ were determined to be 0.60 and 0.062, respectively, by the actual fitting as in Example 1, and adopted. The result is shown in Figure 4.
Shown in. For comparison, the same vacuum pattern (Fig. 3)
The decarburization transition estimated by the conventional method (method utilizing the C and O estimation model described in JP-A-61-19726) is also shown. It was found that the transition of decarburization obtained by the estimation formula of the present invention better represents the transition of C in actual operation.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】本発明は、予め精度よく的中するモデル
式で操業パターンを計画し処理を実施するため、真空脱
ガス精錬の処理時間を短縮でき、精錬コストを低下させ
るとともに、製品の成分の的中率を上げることができ
る。
Industrial Applicability According to the present invention, since the operation pattern is planned and the treatment is carried out in advance with a model formula that accurately hits, the processing time of vacuum degassing refining can be shortened, the refining cost can be reduced, and the composition of the product can be reduced. You can increase the hit rate.

【0024】また実操業では、真空槽内についた地金の
落下等で、処理中予想できない成分の変化が生じる場合
がある。このようなときでも、処理中サンプリングによ
り得られたC,Oの値により本モデルの修正をおこなう
ことで、従来のモデル式を用いる場合より、処理時間を
短縮でき、精錬コストを低下させるとともに、製品の成
分の的中率を上げることができる。
Further, in actual operation, there is a case where a change in the components that cannot be predicted during the processing occurs due to the dropping of the metal in the vacuum chamber. Even in such a case, by correcting this model with the values of C and O obtained by sampling during processing, the processing time can be shortened and the refining cost can be reduced as compared with the case of using the conventional model formula. The accuracy of the ingredients of the product can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における処理中の操作のフローチャー
ト。
FIG. 1 is a flowchart of an operation during processing according to the present invention.

【図2】本発明における処理中の操作のフローチャー
ト。
FIG. 2 is a flowchart of an operation during processing according to the present invention.

【図3】実施例における真空パターン図。FIG. 3 is a vacuum pattern diagram in the example.

【図4】本発明実施例結果の時間とC量関係図。FIG. 4 is a graph showing the relationship between time and C amount as a result of an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森口 誠 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Moriguchi 1 Nishinosu, Oita-shi Oita-shi Nippon Steel Corporation Oita Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼の真空脱ガス精錬において、精錬前
における又は精錬中における炭素推移を次式により推定
して精錬を行うことを特徴とする真空税ガス精錬方法 dC/dt=−KC1”*(C−C* ' )−KC2"*(C−C* ) …(1) C* ' =(P+P’ )/(K*O) …(2) C* =P/(K*O) …(3) (ただしC<C* 'のときはKC1"=0) C;鍋内C,P;真空槽内圧力,K;C,Oの平衡定
数,KC1'',KC2'';フィッティングで求まる脱炭速度
定数,P’ ;気泡生成圧力,t;時間
1. A vacuum tax gas refining method characterized in that, in the vacuum degassing refining of molten steel, the carbon transition before refining or during refining is estimated by the following equation to perform refining: dC / dt = -K C1 " * (C-C * ' )-K C2 "* (C-C * ) ... (1) C * ' = (P + P ') / (K * O) ... (2) C * = P / (K * O ) ... (3) (where C <C * 'K C1 when the "= 0) C; pot in C, P; vacuum chamber pressure, K; C, O equilibrium constant, K C1' ', K C2 ''; Decarburization rate constant obtained by fitting, P '; Bubble generation pressure, t; Time
JP29566793A 1993-01-07 1993-11-25 Vacuum degassing refining method Withdrawn JPH06256840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29566793A JPH06256840A (en) 1993-01-07 1993-11-25 Vacuum degassing refining method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP128993 1993-01-07
JP5-1289 1993-01-07
JP29566793A JPH06256840A (en) 1993-01-07 1993-11-25 Vacuum degassing refining method

Publications (1)

Publication Number Publication Date
JPH06256840A true JPH06256840A (en) 1994-09-13

Family

ID=26334489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29566793A Withdrawn JPH06256840A (en) 1993-01-07 1993-11-25 Vacuum degassing refining method

Country Status (1)

Country Link
JP (1) JPH06256840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291414A (en) * 2006-04-20 2007-11-08 Sumitomo Metal Ind Ltd Method for detecting abnormality in vacuum degassing apparatus, abnormality detection system and abnormality detection device
JP2010209385A (en) * 2009-03-09 2010-09-24 Sumitomo Metal Ind Ltd Method and apparatus for vacuum-degassing molten steel and method for producing molten steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291414A (en) * 2006-04-20 2007-11-08 Sumitomo Metal Ind Ltd Method for detecting abnormality in vacuum degassing apparatus, abnormality detection system and abnormality detection device
JP4715617B2 (en) * 2006-04-20 2011-07-06 住友金属工業株式会社 Abnormality detection method, abnormality detection system, and abnormality detection device for detecting abnormality of vacuum degassing device
JP2010209385A (en) * 2009-03-09 2010-09-24 Sumitomo Metal Ind Ltd Method and apparatus for vacuum-degassing molten steel and method for producing molten steel

Similar Documents

Publication Publication Date Title
CN106834593A (en) A kind of method that RH refining furnace decarbonization process data are determined with reference heats method
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JPH06256840A (en) Vacuum degassing refining method
JP4353054B2 (en) Method for decarburizing molten steel in RH vacuum degassing equipment
JP3231555B2 (en) Vacuum degassing refining method
JP6943300B2 (en) Control device and control method for vacuum degassing equipment
JP3415997B2 (en) Guidance method for vacuum decarburization treatment of melting
WO2023218915A1 (en) State estimation method for vacuum degasification process, operation method, molten steel manufacturing method, and state estimation device for vacuum degasification process
JP3126374B2 (en) Vacuum decarburization control method for molten steel
KR100554143B1 (en) Method for AOD working of controlling of crom oxidation
JPH05239540A (en) Method for estimating carbon concentration in molten steel in vacuum degassing apparatus
JP2985643B2 (en) Method of estimating carbon concentration in molten steel using RH type vacuum chamber
JP7376795B2 (en) Molten steel decarburization method in RH vacuum degassing equipment
JPH0312127B2 (en)
JP3827852B2 (en) Denitrification method for chromium-containing molten steel
JP2730339B2 (en) How to decarburize stainless steel
TW202407108A (en) Control device for vacuum degassing equipment, control method for vacuum degassing equipment, operation method, and manufacturing method for molten steel
JPWO2023095647A5 (en)
JPH0310014A (en) Method for controlling end point in secondary refining
JPH0428813A (en) Production of dead-soft carbon steel
JPS59185720A (en) Decarburization refining method of molten steel under reduced pressure
JPH07166228A (en) Method for controlling ultimate carbon concentration of molten steel by rg degassing
JPH07118730A (en) Method for controlling end point of vacuum decarburization for molten steel
JPH06330133A (en) Converter steel making process
KR960023115A (en) Carbon concentration control method of ultra low carbon steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130