JPH0428813A - Production of dead-soft carbon steel - Google Patents

Production of dead-soft carbon steel

Info

Publication number
JPH0428813A
JPH0428813A JP13429890A JP13429890A JPH0428813A JP H0428813 A JPH0428813 A JP H0428813A JP 13429890 A JP13429890 A JP 13429890A JP 13429890 A JP13429890 A JP 13429890A JP H0428813 A JPH0428813 A JP H0428813A
Authority
JP
Japan
Prior art keywords
decarburization
exhaust gas
concentration
time
carbon content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13429890A
Other languages
Japanese (ja)
Inventor
Tomoyuki Obana
尾花 友之
Norihide Kubo
久保 憲英
Shohei Korogi
興梠 昌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13429890A priority Critical patent/JPH0428813A/en
Publication of JPH0428813A publication Critical patent/JPH0428813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To securely obtain the desired carbon content by previously determining the computed values of CO concentration in exhaust gas in the case where the desired carbon content is presumed to be obtained and finishing decarburization at the time when the measured values of CO concentration in exhaust gas with respect to respective decarburization treatment times reach the computed values or below, respectively. CONSTITUTION:A dead-soft carbon steel is produced by using vacuum degassing equipment. At the time of carrying out decarburizing refining, the computed values of CO concentration in exhaust gas in the case where the desired carbon content is presumed to be obtained are previously determined with respect to respective decarburization treatment times. Decarburization is finished at the time when the measured values of CO concentration in exhaust gas with respect to respective decarburization treatment times reach the computed values or below, respectively. By this method, decarburization treatment time can be shortened, and this method can greatly contribute to the reduction in manufacturing costs.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、極低炭素鋼の製造方法に関する。さらに詳し
くは、本発明は、真空脱ガス設備を用いて炭素含有量が
例えば0.01重量%以下の極低炭素鋼を製造する場合
の脱炭精錬に際し、不要な処理時間の増加を伴うことな
く、溶鋼中の炭素含有量を目標値に連中させることが可
能な極低炭素鋼の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing ultra-low carbon steel. More specifically, the present invention eliminates the need for an unnecessary increase in processing time during decarburization refining when producing ultra-low carbon steel with a carbon content of, for example, 0.01% by weight or less using vacuum degassing equipment. The present invention relates to a method for producing ultra-low carbon steel that allows the carbon content in molten steel to reach a target value.

(従来の技術) DH真空脱ガス法、RH真真空脱ガス環の真空脱ガス処
理法にあっては、脱ガスばかりでなく脱炭処理をも併せ
て行っている。
(Prior Art) In the DH vacuum degassing method and the vacuum degassing treatment method of the RH vacuum degassing ring, not only degassing but also decarburization treatment is performed.

そして、近年では、このように脱ガスと脱炭とを目的と
する真空脱ガス処理の精度・効率を向上させる提案が種
々なされている。
In recent years, various proposals have been made to improve the accuracy and efficiency of vacuum degassing treatment for the purpose of degassing and decarburization.

■特開昭59−116315号公報には、「真空脱ガス
精錬方法Jとして、また特開昭61−19726号公報
には、「溶鋼の真空脱ガス精錬方法」として、脱炭処理
途中で溶銅組成のサンプリングを行い、(C)債を把握
してその後の必要な脱炭時間を推測することにより、目
標とする炭素含有量に連中させる技術が開示されている
■Unexamined Japanese Patent Publication No. 59-116315 describes ``Vacuum degassing refining method J'', and JP-A No. 61-19726 describes ``Vacuum degassing refining method for molten steel''. A technique is disclosed for achieving a target carbon content by sampling the copper composition, understanding the (C) bond, and estimating the subsequent required decarburization time.

■特開昭62−174317号公報には、「溶鋼の真空
脱炭制御方法」として、酸素センサーを用いて溶鋼中の
酸素量を測定し、この測定値に基づいて脱炭反応を制御
して、目標の炭素含有量に連中させる技術が提案されて
いる。
■Unexamined Japanese Patent Publication No. 62-174317 describes a method for controlling vacuum decarburization of molten steel, in which the amount of oxygen in molten steel is measured using an oxygen sensor, and the decarburization reaction is controlled based on this measured value. , techniques have been proposed to achieve targeted carbon content.

■本出願人は、脱炭処理途中の排ガスの成分のみを用い
て溶鋼中の炭素量を目標値に途中させる方法を実施して
いた。
■The applicant had implemented a method in which the amount of carbon in molten steel was brought to a target value halfway by using only the components of the exhaust gas during the decarburization process.

(発明が解決しようとする課題) しかし、このような従来技術には、下記に示すような問
題点があった。
(Problems to be Solved by the Invention) However, such conventional techniques have the following problems.

前記の■に示した提案、すなわち脱炭処理の途中で溶鋼
のサンプリングを行う方法は、サンプリング→試料加工
−分析の工程に3〜5分の時間を要し、現在のような高
能率の脱炭処理ではサンプリング後の対応が間にあわな
いため、脱炭処理時間の不要な増加を招きやすい。また
、脱炭精練の途中におけるサンプリングといった余分な
作業を伴うため、要員増にもつながり、コスト増となっ
てしまうという問題も有している。
The proposal shown in (2) above, that is, the method of sampling molten steel during the decarburization process, requires 3 to 5 minutes for the process of sampling → sample processing and analysis, and is not suitable for the current high-efficiency decarburization process. In charcoal processing, it is not possible to respond in time after sampling, which tends to lead to an unnecessary increase in decarburization processing time. Furthermore, since it involves extra work such as sampling during decarburization and scouring, it also leads to an increase in the number of personnel, resulting in an increase in costs.

また、前記■に示した提案、すなわち酸素センサーを用
いる方法は、その実施例に終点炭素量制御例が示されて
いるが、本発明者らのその後の検討によれば、酸素含有
量によっては、脱炭速度には大きな差が得られないこと
があり、実操業に適用することは容易ではない。
In addition, the proposal shown in (2) above, that is, the method using an oxygen sensor, shows an example of end-point carbon content control in the example, but according to subsequent studies by the present inventors, depending on the oxygen content, , it may not be possible to obtain a large difference in the decarburization rate, and it is not easy to apply it to actual operations.

さらに、本出願人が実施している排ガス成分のみを用い
る方法(以下、「従来方法」という)も、不要な処理時
間延長を招きやすい。この理由を、従来方法を実施した
際の、極低炭素鋼の製造工程における排ガス中のCO濃
度と脱炭時間との関係を示すグラフである第4図を参照
しながら説明する。
Furthermore, the method of using only exhaust gas components (hereinafter referred to as "conventional method") implemented by the present applicant also tends to lead to unnecessary extension of processing time. The reason for this will be explained with reference to FIG. 4, which is a graph showing the relationship between the CO concentration in the exhaust gas and the decarburization time in the manufacturing process of ultra-low carbon steel when the conventional method is implemented.

第4図において、従来方法における脱炭終了の判定は、
排ガス中のCO濃度がある決められた値(例えば、5体
積%)に到達した時、すなわち第4図中のA点に達した
時に脱炭終了としていた。
In Fig. 4, the determination of completion of decarburization in the conventional method is as follows:
Decarburization was considered to have ended when the CO concentration in the exhaust gas reached a certain predetermined value (for example, 5% by volume), that is, when the point A in FIG. 4 was reached.

これは実操業では脱炭速度が一定ではないため、成分外
れ防止の観点から、脱炭終了判定の排ガス中のCO濃度
を低い値に設定したものであり、例えば第4図中に破線
で示すように脱炭速度が速い場合には、COガス発生量
/単位時間も増加するため、同じ到達(C)レベルでも
排ガス中のCO濃度は増加するため、不要な処理時間延
長を引き起こしていた。
This is because the decarburization rate is not constant in actual operation, so the CO concentration in the exhaust gas for determining the completion of decarburization is set to a low value from the perspective of preventing components from falling out. For example, this is shown by the broken line in Figure 4. When the decarburization rate is fast, the amount of CO gas generated/unit time also increases, so the CO concentration in the exhaust gas increases even at the same achieved (C) level, causing an unnecessary extension of treatment time.

すなわち、従来の方法では、いずれの方法によっても、
極低炭素鋼、例えば炭素含有量が0.01重量%以下の
極低炭素鋼を製造する場合の脱炭精練に際し、不要な処
理時間の延長をせずに、目標の炭素含有量に的中させる
ことは容易ではなかった。
In other words, in any conventional method,
When producing ultra-low carbon steel, for example, ultra-low carbon steel with a carbon content of 0.01% by weight or less, the target carbon content can be achieved without unnecessary extension of processing time during decarburization scouring. It was not easy to do so.

ここに、本発明の目的は、以上の問題点を全て解決でき
る方法、すなわち脱炭処理の途中におけるサンプリング
を行うことなく、目標の炭素含有量への到達時刻を的確
に把握することにより不要な処理時間延長を伴わずに、
目標の炭素含有量を得ることができる極低炭素鋼の製造
方法を提供することにある。
The purpose of the present invention is to provide a method that can solve all of the above problems, that is, to accurately grasp the time when the target carbon content is reached, without sampling during the decarburization process. without extending processing time.
The object of the present invention is to provide a method for producing ultra-low carbon steel that can obtain a target carbon content.

(課題を解決するための手段) 本発明者らは、上記課題を解決するため種々検討を重ね
た。まず、脱炭反応および取鍋内における炭素濃度に注
目した。−船釣に、脱炭反応は下記式で表わされる。
(Means for Solving the Problems) The present inventors have conducted various studies to solve the above problems. First, we focused on the decarburization reaction and the carbon concentration in the ladle. - In boat fishing, the decarburization reaction is expressed by the following formula.

[CI =[CI0exp(Kc4)  ・・・■ただ
し、[CI:取鍋内炭素濃度(ppm)添字[64は初
期値を表わす Kc:速度定数(win−’) T :脱炭処理時間(sin) ここで、目標とする、製品の炭素含有量を左辺に、脱炭
処理前における[CI 値を右辺の[C]’に代入すれ
ば、各脱炭時間T毎に、目標炭素含有量を得るために必
要なKc値を算出することができる。
[CI = [CI0exp (Kc4) ...■ However, [CI: carbon concentration in ladle (ppm) subscript [64 represents the initial value] Kc: rate constant (win-') T: decarburization treatment time (sin ) Here, by substituting the target carbon content of the product on the left side and the [CI value before decarburization treatment into [C]' on the right side, the target carbon content can be calculated for each decarburization time T. It is possible to calculate the Kc value required to obtain the desired value.

このようにして、Kc値が算出できれば、これから各脱
炭時間Tにおける脱炭量を求めることかでき、そのとき
排ガス中に発生し得るCOガス量を得ることができる。
If the Kc value can be calculated in this way, the amount of decarburization at each decarburization time T can be calculated from this, and the amount of CO gas that can be generated in the exhaust gas at that time can be obtained.

また、真空脱ガス処理設備に添加しているガス量(例え
ばR)I真空脱ガス処理設備で考えれば、還流Arガス
およびIJT羽口からのArガス)およびリーク量を加
味すれば、排ガス中に存在するC06度を計算すること
ができる。
In addition, if we take into account the amount of gas added to the vacuum degassing equipment (for example, R) (if we consider the vacuum degassing equipment, reflux Ar gas and Ar gas from the IJT tuyere) and the amount of leakage, The C06 degrees present in can be calculated.

したがって、各処理時間T毎に目標炭素含有量[CI 
に到達したと仮定した場合の排ガス中のCO濃度の計算
値が得られ、脱炭処理中の各処理時間において、排ガス
中のCO:IA度の計測値が前記計算値に到達した時点
で、脱炭を終了すればよいことになる。
Therefore, for each treatment time T, the target carbon content [CI
A calculated value of the CO concentration in the exhaust gas is obtained assuming that the CO concentration in the exhaust gas is reached, and at each treatment time during the decarburization treatment, when the measured value of CO:IA degree in the exhaust gas reaches the calculated value, All that is needed is to finish decarburization.

このような知見に基づいて、さらに検討を重ねた結果、
本発明を完成するに至った。
Based on this knowledge, after further consideration,
The present invention has now been completed.

ここに、本発明の要旨とするところは、真空脱ガス設備
を用いた脱炭精錬によって極低炭素鋼を製造する方法に
おいて、上記脱炭精錬を行うに際し、各脱炭処理時間に
おいて、目標とする炭素量が得られると仮定した場合の
排ガス中のCO濃度の計算値を求めておき、各脱炭処理
時間における排ガス中のCO濃度の計測値が前記計算値
以下となった時に脱炭を終了することを特徴とする極低
炭素鋼の製造方法である。
Here, the gist of the present invention is that in a method for producing ultra-low carbon steel by decarburization refining using vacuum degassing equipment, when performing the above decarburization refining, the goal is achieved at each decarburization treatment time. The calculated value of the CO concentration in the exhaust gas is calculated assuming that the amount of carbon can be obtained, and decarburization is started when the measured value of the CO concentration in the exhaust gas at each decarburization treatment time is less than or equal to the calculated value. This is a method for producing ultra-low carbon steel, characterized by the following steps:

なお、本発明において、「極低炭素鋼」とは、自動車外
装材に代表される餡成形性銅板等の素材となる鋼をいい
、具体的には、炭素含有量が0.01重量%以下である
鋼を包含する。
In the present invention, "ultra-low carbon steel" refers to steel that is a material for moldable copper plates, etc., which are typified by automobile exterior materials, and specifically, has a carbon content of 0.01% by weight or less. Includes steel that is.

すなわち、本発明は、あらゆる脱炭速度においても、不
要な処理時間の延長を招くことなく目標の炭素含有量に
連中させることができる極低炭素鋼の製造方法であり、
その原理は、前述のように、脱炭速度式および炭素の物
質収支を用いて、各処理時間毎に脱炭終了時の排ガス中
のCO濃度を予測し、計測されたCO濃度と予測CO濃
度が一致した時点でもって脱炭終了時刻を正確に決定し
、このようにして決定した脱炭終了時刻に基づいて、目
標の炭素含有量を有する極低炭素鋼を製造する方法であ
る。
That is, the present invention is a method for producing ultra-low carbon steel that can achieve the target carbon content without unnecessary extension of processing time even at any decarburization rate,
As mentioned above, the principle is to use the decarburization rate equation and carbon mass balance to predict the CO concentration in the exhaust gas at the end of decarburization for each treatment time, and then compare the measured CO concentration and the predicted CO concentration. In this method, the decarburization end time is accurately determined at the time when the decarburization end times coincide with each other, and ultra-low carbon steel having a target carbon content is manufactured based on the decarburization end time determined in this way.

(作用) 以下、本発明を作用効果とともに詳述する。(effect) Hereinafter, the present invention will be explained in detail together with its effects.

すでに述べたように一般的に、RH真空脱ガス処理法に
おける脱炭反応は、0式で表わすことができる。
As already mentioned, the decarburization reaction in the RH vacuum degassing process can generally be expressed by equation 0.

[CI  =[C]’exp(KcT)  ・・・■こ
の0式の左辺に目標とする[CI 濃度を、右辺に溶鋼
の脱炭開始時の初期[Cl0e4度をそれぞれ代入する
ことにより、各処理時間毎における目標[CI濃度到達
に必要な脱炭速度Kcが求まる。
[CI = [C]'exp(KcT) ...■ By substituting the target [CI concentration] on the left side of this equation 0 and the initial [Cl0e4 degree] at the start of decarburization of molten steel on the right side, each The decarburization rate Kc required to reach the target CI concentration for each treatment time is determined.

また、このようにして求めた脱炭速度Kc[を、それぞ
れの処理時間Tについてその近傍の例えば1分間という
時間帯を積分することにより、各処理時間Tにおける脱
炭量がわかるため、上記時間帯にあって脱炭に伴って発
生するCOガスの発生量を算出することができる。
In addition, by integrating the decarburization rate Kc [obtained in this way over a time period of 1 minute in the vicinity for each treatment time T, the amount of decarburization at each treatment time T can be determined. It is possible to calculate the amount of CO gas generated in the belt as a result of decarburization.

次に、排ガスの物質収支を勘案すること、すなわち真空
脱ガス設備に添加するガス量(例えばRH脱ガス設備に
おいては、環流Arガスおよび羽口からの計ガス)にリ
ーク量を加え、更に前記のようにして算出したCOガス
発生量を加えることにより、ガス総量が求められること
から、これにもとすいて各処理時間毎に目N [C1値
に到達したと仮定した場合の排ガス中のCO濃度の計算
値を求めることができる。
Next, consider the material balance of the exhaust gas, that is, add the leakage amount to the amount of gas added to the vacuum degassing equipment (for example, in the RH degassing equipment, the reflux Ar gas and the total gas from the tuyere), and then Since the total amount of gas can be obtained by adding the amount of CO gas generated calculated as follows, it is also necessary to calculate the amount of gas in the exhaust gas assuming that the A calculated value of CO concentration can be obtained.

したがって、脱炭終了は、各脱炭時間において排ガス中
のCO濃度の実際の計測値がこの計算値以下となったと
きとすればよいことになる。
Therefore, the end of decarburization may be determined when the actual measured value of the CO concentration in the exhaust gas becomes equal to or less than this calculated value during each decarburization time.

次に、前記した排ガス物質収支の算出について、さらに
具体的に説明する。排ガス物質収支の情報に関する情報
としては、下記(7)ないしく1)がある。
Next, the calculation of the exhaust gas material balance described above will be explained in more detail. Information regarding exhaust gas material balance includes (7) or 1) below.

(7) COガス=(t@鋼置×ある処理時間近傍1分
間の脱炭量) =溶鋼量X  ((C30exp(−Kc・(丁−0,
5))B [C]’exp(−Kc・(T+0.5)))  X(
イン還流Arガス量 (り)υT羽羽口Arガス量 (1)リーク量 以上の4項目より排ガス中のcoa度を計算することが
できる。
(7) CO gas = (t @ steel station x amount of decarburization in one minute around a certain processing time) = amount of molten steel X ((C30exp(-Kc・(d-0,
5)) B [C]'exp(-Kc・(T+0.5))) X(
The degree of coa in the exhaust gas can be calculated from the following four items: Inflow return Ar gas amount (ri) υT Tuyere Ar gas amount (1) Leakage amount.

たとえば、還流Arガス量= 2 Nm’/sin 、
 LIT羽ロ羽口rガス量−7,6Nm’/min、リ
ーク量9.2 kg/win、(C1’ −400pp
mとしタトき、(C1=20ppm以下の条件を算出す
ると、第1図に示すような範囲となる。
For example, the amount of refluxed Ar gas = 2 Nm'/sin,
LIT feather tuyere r gas amount -7.6Nm'/min, leakage amount 9.2 kg/win, (C1' -400pp
If the condition of (C1=20 ppm or less) is calculated, the range as shown in FIG. 1 is obtained.

したがって、目標[CI値に到達したと仮定した場合の
、排ガス中のCO濃度と脱炭時間Tとの関係(第1図に
おいては斜線を付した範囲)を得ることができる。
Therefore, it is possible to obtain the relationship between the CO concentration in the exhaust gas and the decarburization time T (the shaded range in FIG. 1), assuming that the target CI value is reached.

このように、揉業中にサンプリング回数を増やさずとも
、各脱炭処理時間Tにおける排ガス中のCO濃度を確認
しているだけで最適な脱炭終了タイミングを決定するこ
とができ、目標の炭素含有量を有する極低炭素鋼を得ら
れることとなる。
In this way, the optimal timing for finishing decarburization can be determined simply by checking the CO concentration in the exhaust gas at each decarburization treatment time T, without increasing the number of samplings during rolling. This means that ultra-low carbon steel with a high carbon content can be obtained.

また、本発明にがかる極低炭素鋼の製造方法は制御装置
および脱炭工程に多大な改造・変更を行わなくとも実施
でき、既存設備に関する改造に要する費用が少ないなど
実用上大きな利点がみられる。
Furthermore, the method for producing ultra-low carbon steel according to the present invention can be carried out without major modifications or changes to the control device or decarburization process, and has great practical advantages such as low cost for modification of existing equipment. .

さらに、本発明を実施例により詳述するが、これはあく
までも本発明を例示するものであり、これにより本発明
が限定されるものではない。
Further, the present invention will be explained in detail with reference to Examples, but these are merely illustrative of the present invention and are not intended to limit the present invention.

実施例 実操業への適用結果を第2図および第3図に示す。第2
図には、IC] =20pp+*への到達時間(サンプ
リング結果より)と実際のrc] =20pp+mを狙
った場合での脱炭終了時間(脱炭打切り時間)の比較を
示す。
The results of application to actual operation are shown in FIGS. 2 and 3. Second
The figure shows a comparison between the time to reach IC]=20pp+* (from the sampling results) and the time to complete decarburization (decarburization termination time) when aiming for actual rc]=20pp+m.

従来法であれば、約8分の過剰脱炭時間があったが、本
発明法により3分にまで大幅に短縮することができた。
With the conventional method, the excessive decarburization time was about 8 minutes, but with the method of the present invention, it was possible to significantly shorten the time to 3 minutes.

ただし、この3分は成分外れ防止のため、脱炭時間を予
め3分間はど延長させて操業した結果であり、本発明に
よりほぼ的確に炭素含有量を連中させることができた。
However, this 3 minutes was due to the fact that the decarburization time was extended by 3 minutes in advance in order to prevent components from coming off, and the present invention was able to adjust the carbon content almost accurately.

なお、第3図には、本発明法により得られた成品の[C
1分布を示すが、良好な結果であることがわかる。
In addition, FIG. 3 shows [C] of the product obtained by the method of the present invention.
1 distribution, but it can be seen that the results are good.

(発明の効果) 以上詳述したように、本発明により、例えば炭素含有量
が0.01%以下である極低炭素鋼の溶製において、多
大な制御システムを必要とせず、また製造コストの上昇
を伴わずに、目標の炭素含有量を的確に得ることが可能
となった。
(Effects of the Invention) As detailed above, the present invention eliminates the need for a large control system and reduces manufacturing costs in the production of ultra-low carbon steel with a carbon content of 0.01% or less, for example. It became possible to accurately obtain the target carbon content without any increase in carbon content.

また、例えばRH真空脱ガス法での脱炭処理時間の大幅
な短縮を図ることができ、製造コストの低減に大きく寄
与することも可能となった。
Furthermore, it has become possible to significantly shorten the decarburization treatment time in, for example, the RH vacuum degassing method, and it has also become possible to greatly contribute to a reduction in manufacturing costs.

かかる効果を有する本発明の意義は極めて著しい。The significance of the present invention having such effects is extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかる極低炭素鋼の製造方法におい
て用いる、排ガス中のCO濃度およびRH脱炭時間によ
り定められた、(C) =20ppm以下の範囲を示す
グラフ: 第2図は、本発明にかかる極低炭素鋼の製造方法におい
て、本発明例と比較例とにおける過剰脱炭時間の発生を
比較して示すグラフ; 第3回は、本発明の実施例における成品〔C〕量を比較
して示すグラフ;および 第4図は、従来の極低炭素鋼の製造方法における排ガス
中のcod度と脱炭時間との関係を示すグラフである。
Figure 1 is a graph showing the range of (C) = 20 ppm or less determined by the CO concentration in the exhaust gas and the RH decarburization time used in the method for producing ultra-low carbon steel according to the present invention. , A graph showing a comparison of the occurrence of excessive decarburization time in an example of the present invention and a comparative example in the method for manufacturing ultra-low carbon steel according to the present invention; Part 3 is a finished product [C] in an example of the present invention. FIG. 4 is a graph showing the relationship between the cod degree in exhaust gas and the decarburization time in the conventional manufacturing method of ultra-low carbon steel.

Claims (1)

【特許請求の範囲】[Claims] 真空脱ガス設備を用いた脱炭精錬によって極低炭素鋼を
製造する方法において、上記脱炭精錬を行うに際し、各
脱炭処理時間において、目標とする炭素量が得られると
仮定した場合の排ガス中のCO濃度の計算値を求めてお
き、各脱炭処理時間における排ガス中のCO濃度の計測
値が前記計算値以下となった時に脱炭を終了することを
特徴とする極低炭素鋼の製造方法。
In the method of manufacturing ultra-low carbon steel by decarburization refining using vacuum degassing equipment, when performing the above decarburization refining, exhaust gas assuming that the target amount of carbon is obtained at each decarburization treatment time A calculated value of the CO concentration in the exhaust gas is determined in advance, and decarburization is terminated when the measured value of the CO concentration in the exhaust gas at each decarburization treatment time becomes equal to or less than the calculated value. Production method.
JP13429890A 1990-05-24 1990-05-24 Production of dead-soft carbon steel Pending JPH0428813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13429890A JPH0428813A (en) 1990-05-24 1990-05-24 Production of dead-soft carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13429890A JPH0428813A (en) 1990-05-24 1990-05-24 Production of dead-soft carbon steel

Publications (1)

Publication Number Publication Date
JPH0428813A true JPH0428813A (en) 1992-01-31

Family

ID=15125016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13429890A Pending JPH0428813A (en) 1990-05-24 1990-05-24 Production of dead-soft carbon steel

Country Status (1)

Country Link
JP (1) JPH0428813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355087B1 (en) * 1998-01-21 2002-03-12 Höganäs Ab Process of preparing an iron-based powder in a gas-tight furnace
JP2007020613A (en) * 2005-07-12 2007-02-01 Shishida Seishindo:Kk Make-up brush

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101110A (en) * 1988-10-07 1990-04-12 Nkk Corp Method for assuming carbon concentration in vacuum degassing refining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101110A (en) * 1988-10-07 1990-04-12 Nkk Corp Method for assuming carbon concentration in vacuum degassing refining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355087B1 (en) * 1998-01-21 2002-03-12 Höganäs Ab Process of preparing an iron-based powder in a gas-tight furnace
JP2007020613A (en) * 2005-07-12 2007-02-01 Shishida Seishindo:Kk Make-up brush

Similar Documents

Publication Publication Date Title
JP2013023696A (en) Converter blowing control method
JPH0428813A (en) Production of dead-soft carbon steel
JP4353054B2 (en) Method for decarburizing molten steel in RH vacuum degassing equipment
JPS62158810A (en) Method for determining main material charging quantity in converter operation
JP3235405B2 (en) Hot metal pretreatment method
JP3823907B2 (en) Estimating the amount of decarburization in converter steel and converter operation using this method
JP3415997B2 (en) Guidance method for vacuum decarburization treatment of melting
JPH01309914A (en) Method for dephosphorizing molten iron
JP7376795B2 (en) Molten steel decarburization method in RH vacuum degassing equipment
JP2896302B2 (en) How to adjust nitrogen concentration in molten steel
JPH0433846B2 (en)
JP3293674B2 (en) Control method of end point carbon concentration in RH degassing process
JPH03158408A (en) Method for estimating remaining slag quantity in steelmaking furnace
JPH0533029A (en) Method for deciding charging quantity of main raw material in converter operation
JPH06256840A (en) Vacuum degassing refining method
JPH0310014A (en) Method for controlling end point in secondary refining
JPS6225726B2 (en)
JP3503376B2 (en) Hot metal pretreatment method
JP2001011520A (en) Method and apparatus for controlling blowing in converter
JPS58153721A (en) Controlling method of end carbon content in vod process
JPH01222018A (en) Method for controlling vacuum decarburization of molten steel
JPH0441611A (en) Method for controlling end point of blowing in top and bottom-blown converter
SU1715859A1 (en) Method of converter process control
JPH0668123B2 (en) Nitrogenizing method in a converter with a bottom blowing tuyere
JPH036312A (en) Method for controlling blowing in converter