JP2013023696A - Converter blowing control method - Google Patents

Converter blowing control method Download PDF

Info

Publication number
JP2013023696A
JP2013023696A JP2011156478A JP2011156478A JP2013023696A JP 2013023696 A JP2013023696 A JP 2013023696A JP 2011156478 A JP2011156478 A JP 2011156478A JP 2011156478 A JP2011156478 A JP 2011156478A JP 2013023696 A JP2013023696 A JP 2013023696A
Authority
JP
Japan
Prior art keywords
molten steel
concentration
phosphorus concentration
converter blowing
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011156478A
Other languages
Japanese (ja)
Other versions
JP5582105B2 (en
Inventor
Takeshi Iwamura
健 岩村
Takahiro Furusho
隆浩 古庄
Akira Sato
晶 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011156478A priority Critical patent/JP5582105B2/en
Publication of JP2013023696A publication Critical patent/JP2013023696A/en
Application granted granted Critical
Publication of JP5582105B2 publication Critical patent/JP5582105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a converter blowing control method that can enhance the control accuracy of a phosphorus concentration in a molten steel when stopping converter blowing.SOLUTION: The converter blowing control method includes at least: a measuring step of periodically measuring the exhaust gas components and exhaust gas flow amount in converter blowing to gain measured values; a constant presuming step of presuming the dephosphorizing speed constant based on the measured values gained from the converter blowing operational conditions and the measuring step; a concentration presuming step of sequentially presuming the phosphorus concentration in the molten steel during converter blowing using the presumed dephosphorizing speed constant; a concentration decision step of deciding whether or not the presumed phosphorus concentration in the molten steel is equal to or lower than the phosphorus concentration in a target molten steel; and a changing step of changing the converter blowing operational conditions so that the phosphorus concentration in the molten steel presumed in the concentration presuming step becomes equal to or lower than the target phosphorus concentration in the molten steel when the presumed phosphorus concentration in the molten steel is decided exceeding the target phosphorus concentration in the molten steel in the concentration decision step.

Description

本発明は、転炉吹錬制御方法に関し、特に、溶鋼中りん濃度を制御する転炉吹錬制御方法に関する。   The present invention relates to a converter blowing control method, and more particularly to a converter blowing control method for controlling phosphorus concentration in molten steel.

転炉吹錬において吹止め時の溶鋼成分の制御、その中でも特に溶鋼中りん濃度の制御は、鋼の品質管理上非常に重要である。溶鋼中りん濃度の制御のために、吹込み酸素量、生石灰・スケール等の副原料投入量や投入タイミング、上吹きランス高さ、上吹き酸素流量、底吹きガス流量等が、一般に操作量として用いられている。これらの操作量は、目標りん濃度や溶銑情報、及び、過去の操業実績に基づいて作成された基準等、吹錬開始前に得られる情報で決定されることが多い。   In converter blowing, the control of molten steel components at the time of blowing, especially the control of phosphorus concentration in molten steel, is very important for quality control of steel. In order to control the phosphorus concentration in molten steel, the amount of oxygen blown in, the amount of auxiliary materials such as quick lime and scale, the timing of injection, the top blowing lance height, the top blowing oxygen flow rate, the bottom blowing gas flow rate, etc. It is used. These operation amounts are often determined by information obtained before the start of blowing, such as a target phosphorus concentration, hot metal information, and a standard created based on past operation results.

しかし、同じような操業条件でも実際の吹錬における脱りん挙動の再現性は低く、上記のような吹錬開始前に得られる情報のみに基づいて決定された操作量による吹錬では、吹止め時の溶鋼中りん濃度のばらつきが大きくなるという問題があった。   However, even under similar operating conditions, the reproducibility of the dephosphorization behavior in actual blowing is low, and in the case of blowing with the operation amount determined based only on the information obtained before the start of blowing, There was a problem that the dispersion of phosphorus concentration in molten steel at the time became large.

上記問題に対応すべく、吹錬中に定周期で得られる排ガス成分や排ガス流量の測定値を活用した技術がこれまでに提案されている。例えば特許文献1には、吹錬中の排ガス組成や流量、酸素ガス流量、副原料投入量及び溶銑成分から酸素バランスを逐次計算することにより求められる蓄積酸素量に基づき、転炉内のFeO生成量を推定し、その推定したFeO量に応じて、上吹きランス高さ、酸素ガス流量及び底吹きガス流量のうち少なくともいずれか一つを調整して、処理後のりん濃度を低減する高炭素極低りん鋼の溶製方法が開示されている。また、特許文献2には、排ガスの分析値と排ガス流量から計算される脱炭酸素効率の実績値が、あらかじめ処理パターンごとに設定した目標変化曲線に追従するように、ランス高さ、送酸速度、底吹ガス種類と量のうちのいずれか1つもしくは2以上を調整する溶銑脱りん方法が開示されている。   In order to cope with the above-mentioned problems, technologies that utilize measured values of exhaust gas components and exhaust gas flow rates obtained at regular intervals during blowing have been proposed. For example, Patent Document 1 discloses FeO generation in a converter based on the accumulated oxygen amount obtained by sequentially calculating the oxygen balance from the composition and flow rate of exhaust gas during blowing, the flow rate of oxygen gas, the amount of auxiliary material input, and the hot metal component. High carbon that reduces the phosphorus concentration after treatment by estimating the amount and adjusting at least one of the top blowing lance height, oxygen gas flow rate and bottom blowing gas flow rate according to the estimated FeO amount A method for melting ultra-low phosphorus steel is disclosed. Patent Document 2 discloses that the actual value of decarbonation efficiency calculated from the analysis value of exhaust gas and the flow rate of exhaust gas follows the target change curve set in advance for each treatment pattern, A hot metal dephosphorization method is disclosed in which any one or more of speed, bottom blowing gas type and amount is adjusted.

特開2006−206930号公報JP 2006-206930 A 特開2010−13685号公報Japanese Patent Application Laid-Open No. 2010-13685

特許文献1では、上吹き酸素に関してはその流量調整方法の言及に留まっており、目標りん濃度を得るために必要な吹込み酸素量に関する記載がない。目標りん濃度を得るためには、上吹き酸素流量のみならず上吹き酸素量を適切に調整する必要があるため、特許文献1に開示されている技術によって、所定の溶鋼中りん濃度を得ることは困難と予想される。また、特許文献2に開示されている技術も特許文献1に開示されている技術と同様に、上吹き酸素の流量の調整方法については言及しているが、目標りん濃度を得るために必要な吹込み酸素量に関する記載がない。それゆえ、特許文献2に開示されている技術によって、所定の溶鋼中りん濃度を得ることは困難と予想される。   In patent document 1, only the reference of the flow rate adjustment method is mentioned regarding top blowing oxygen, and there is no description regarding the amount of blowing oxygen required in order to obtain target phosphorus concentration. In order to obtain the target phosphorus concentration, it is necessary to appropriately adjust not only the upper blown oxygen flow rate but also the upper blown oxygen amount, so that the predetermined phosphorus concentration in molten steel is obtained by the technique disclosed in Patent Document 1. Is expected to be difficult. In addition, the technique disclosed in Patent Document 2 refers to a method for adjusting the flow rate of the top blown oxygen, similar to the technique disclosed in Patent Document 1, but is necessary to obtain the target phosphorus concentration. There is no description about the amount of oxygen blown. Therefore, it is expected that it is difficult to obtain a predetermined phosphorus concentration in molten steel by the technique disclosed in Patent Document 2.

また、特許文献1及び特許文献2では、操作量として、上吹きランス高さ、酸素ガス流量及び底吹きガス流量を取り上げているが、これらの操作量は、脱りん以外の吹錬特性(脱炭酸素効率、着熱効率、及び、スラグ滓化率等)に及ぼす影響が非常に大きい。そのため、これらの値を頻繁に変更することは、スロッピング等の異常時を除いて、一般に推奨されない。すなわち、特許文献1及び特許文献2に開示されている技術には、転炉の操業安定化に対する配慮が不十分という問題もあった。   Further, in Patent Document 1 and Patent Document 2, the top blowing lance height, the oxygen gas flow rate, and the bottom blowing gas flow rate are taken up as the manipulated variables. The effects on carbon dioxide efficiency, heat receiving efficiency, slag hatching rate, etc.) are very large. Therefore, it is generally not recommended to change these values frequently except during abnormal conditions such as slapping. In other words, the techniques disclosed in Patent Document 1 and Patent Document 2 have a problem that consideration for stabilization of operation of the converter is insufficient.

そこで、本発明は、転炉吹止め時における溶鋼中りん濃度の制御精度を高めることが可能な転炉吹錬制御方法を提供することを課題とする。   Then, this invention makes it a subject to provide the converter blowing control method which can raise the control precision of the phosphorus concentration in molten steel at the time of converter blowing.

吹錬中の溶鋼中りん濃度[P][%]の時間変化が下記式(1)の1次反応式で表されると仮定する。   It is assumed that the time change of phosphorus concentration [P] [%] in molten steel during blowing is expressed by the primary reaction formula of the following formula (1).

ここで、[P]iniは溶鋼中りん濃度初期値(溶銑りん濃度)[%]であり、kは脱りん速度定数[s−1]である。 Here, [P] ini is the initial phosphorus concentration in molten steel (molten phosphorus concentration) [%], and k is the dephosphorization rate constant [s −1 ].

正確な脱りん速度定数kが得られれば、吹止め時の溶鋼中りん濃度を高精度に推定することができる。但し、一般に、実際の吹錬における脱りん速度定数は一定ではなく、さまざまな操業要因の影響を受けて変動すると考えられる。そこで、本発明者らは、溶銑成分や溶銑温度のようなスタティックな情報だけでなく、定周期で測定した排ガス成分や排ガス流量の測定値のような吹錬中のダイナミックな情報を活用することにより、脱りん速度定数の推定精度の向上を試みた。以下に、溶鋼中りん濃度の推定方法、及び、脱りん速度定数の推定方法について説明する。   If an accurate dephosphorization rate constant k is obtained, the phosphorus concentration in molten steel at the time of blowing can be estimated with high accuracy. However, in general, the dephosphorization rate constant in actual blowing is not constant and is considered to vary under the influence of various operating factors. Therefore, the present inventors utilize not only static information such as hot metal components and hot metal temperature but also dynamic information during blowing such as measured values of exhaust gas components and exhaust gas flow rate measured at regular intervals. Thus, we tried to improve the estimation accuracy of the dephosphorization rate constant. Below, the estimation method of the phosphorus concentration in molten steel and the estimation method of a dephosphorization rate constant are demonstrated.

はじめに、溶鋼中りん濃度の推定方法について説明する。
上記式(1)より、吹錬開始からt秒後における溶鋼中りん濃度は、下記式(2)で表される。
First, a method for estimating the phosphorus concentration in molten steel will be described.
From the above formula (1), the phosphorus concentration in molten steel t seconds after the start of blowing is expressed by the following formula (2).

過去の操業実績データを使って、チャージ毎の脱りん速度定数を求めることができる。あるチャージiの脱りん速度定数kは下記式(3)で表される。 The dephosphorization rate constant for each charge can be obtained using past operation result data. A dephosphorization rate constant k i of a certain charge i is expressed by the following formula (3).

ここで、[P]end,iは吹止め時の溶鋼中りん濃度[%]であり、tend,iは吹止め時点までの経過時間[s]である。 Here, [P] end, i is the phosphorus concentration in molten steel [%] at the time of blowing, and tend , i is the elapsed time [s] until the point of blowing.

過去の操業実績データを使って、上記式(3)から求めた脱りん速度定数の度数分布を、図1に示す。図1より、脱りん速度定数は、ばらつきが大きいことが分かる。本発明者らは鋭意研究の結果、上記式(3)にしたがって算出した脱りん速度定数kを目的変数、種々の操業要因(X)を説明変数とする、下記式(4)で表される回帰式を予め作成しておき、実際の吹錬時には、その時の操業要因を用いて下記式(4)から脱りん速度定数を推定し、これを上記式(2)に適用して溶鋼中りん濃度を推定する構成とすることにより、操業要因の変化に対応した溶鋼中りん濃度の推定が可能になることを知見した。操業要因の例を表1に示す。 FIG. 1 shows the frequency distribution of the dephosphorization rate constant obtained from the above formula (3) using the past operation record data. FIG. 1 shows that the dephosphorization rate constant varies greatly. As a result of intensive studies, the present inventors have expressed the following formula (4) using the dephosphorization rate constant k calculated according to the above formula (3) as an objective variable and various operating factors (X j ) as explanatory variables. In the actual blowing operation, the dephosphorization rate constant is estimated from the following equation (4) using the operating factors at that time, and this is applied to the above equation (2). It was found that the phosphorus concentration in molten steel can be estimated in response to changes in operating factors by adopting a configuration that estimates the phosphorus concentration. Table 1 shows examples of operating factors.

ここで、α及びαは回帰係数であり、Xは操業要因である。 Here, α 0 and α j are regression coefficients, and X j is an operation factor.

本発明者らは鋭意研究の結果、吹錬中の排ガス流量、排ガス成分、上底吹きガス流量、副原料投入量、及び、溶銑成分から酸素収支を計算して得られる炉内蓄積酸素量原単位O(算出方法は後述)が、脱りん速度定数kに大きく影響することを見出した。具体的には、炉内蓄積酸素量原単位Oが大きい場合には、脱りん速度定数kが大きくなる傾向が認められた。 As a result of diligent research, the inventors of the present invention have found that the amount of oxygen accumulated in the furnace obtained by calculating the oxygen balance from the exhaust gas flow rate during exhaust blowing, the exhaust gas component, the top bottom blowing gas flow rate, the amount of auxiliary material input, and the hot metal component. It has been found that the unit O s (calculation method will be described later) greatly affects the dephosphorization rate constant k. Specifically, when the in-furnace oxygen storage unit O s is large, a tendency for the dephosphorization rate constant k to increase was observed.

以下に示す脱りん反応を促進させるためには、スラグ中のCaO濃度及びスラグ中のFeO濃度を高める必要があるが、炉内蓄積酸素量がほぼ(FeO)に対応することからすると、上記の傾向は妥当なものと考えられる。
3(CaO)+5(FeO)+2[P]=(3CaO・P)+5[Fe]
ここで、( )はスラグ内を示し、[ ]は溶銑内を示す。
In order to promote the dephosphorization reaction shown below, it is necessary to increase the CaO concentration in the slag and the FeO concentration in the slag, but the amount of oxygen stored in the furnace corresponds to approximately (FeO). The trend is considered reasonable.
3 (CaO) +5 (FeO) +2 [P] = (3CaO · P 2 O 5 ) +5 [Fe]
Here, () indicates the inside of the slag, and [] indicates the inside of the hot metal.

以下、本発明について説明する。なお、本発明の理解を容易にするため、添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。   The present invention will be described below. In order to facilitate understanding of the present invention, reference numerals in the accompanying drawings are appended in parentheses, but the present invention is not limited to the illustrated embodiments.

本発明は、少なくとも、転炉吹錬時における排ガス成分及び排ガス流量を定期的に測定して、測定値を得る測定工程(S2)と、転炉吹錬の操業条件(操業要因とも言う。以下において同じ。)及び測定工程で得られた測定値に基づいて、脱りん速度定数を推定する定数推定工程(S5)と、該定数推定工程で推定された脱りん速度定数を用いて、転炉吹錬中の溶鋼中りん濃度を逐次推定する濃度推定工程(S6)と、該濃度推定工程で推定された溶鋼中りん濃度が目標溶鋼中りん濃度以下であるか否かを判断する濃度判断工程(S7)と、該濃度判断工程で、推定された溶鋼中りん濃度が目標溶鋼中りん濃度を超えていると判断された場合に、濃度推定工程で推定される溶鋼中りん濃度が目標溶鋼中りん濃度以下となるように、転炉吹錬の操業条件を変更する変更工程(S8)と、を有することを特徴とする、転炉吹錬制御方法である。   In the present invention, at least an exhaust gas component and an exhaust gas flow rate at the time of converter blowing are periodically measured to obtain measurement values (S2), and converter blowing operation conditions (also referred to as operation factors). And the constant estimation step (S5) for estimating the dephosphorization rate constant based on the measurement value obtained in the measurement step, and the converter using the dephosphorization rate constant estimated in the constant estimation step. A concentration estimation step (S6) for sequentially estimating the phosphorus concentration in the molten steel during blowing and a concentration determination step for determining whether or not the phosphorus concentration in the molten steel estimated in the concentration estimation step is less than or equal to the target phosphorus concentration in the molten steel (S7) and when it is determined that the estimated phosphorus concentration in the molten steel exceeds the target phosphorus concentration in the molten steel in the concentration determining step, the phosphorus concentration in the molten steel estimated in the concentration estimating step is To reduce the phosphorous concentration below, A changing step of changing the work condition (S8), characterized by having a a converter blowing control method.

また、上記本発明において、測定値に、転炉吹錬中の溶鋼温度が含まれていても良い。   Moreover, in the said invention, the molten steel temperature in converter blowing may be contained in the measured value.

また、上記本発明において、測定値に、転炉吹錬中の溶鋼温度及び溶鋼中炭素濃度が含まれていても良い。   Moreover, in the said invention, the measured value may contain the molten steel temperature and carbon concentration in molten steel during converter blowing.

また、上記本発明において、測定値に、転炉吹錬中の溶鋼温度、溶鋼中炭素濃度、及び、スラグ中酸素濃度が含まれていても良い。   Moreover, in the said invention, the measured value may contain the molten steel temperature in converter blowing, the carbon concentration in molten steel, and the oxygen concentration in slag.

本発明によれば、転炉吹止め時の溶鋼中りん濃度を高精度で推定することが可能になるので、転炉吹止め時における溶鋼中りん濃度の制御精度を高めることが可能な転炉吹錬制御方法を提供することができる。   According to the present invention, it becomes possible to estimate the phosphorus concentration in molten steel at the time of converter blowing with high accuracy. Therefore, it is possible to increase the control accuracy of the phosphorus concentration in molten steel at the time of converter blowing. A blowing control method can be provided.

脱りん速度定数の度数分布を示す図である。It is a figure which shows frequency distribution of a dephosphorization rate constant. 脱りん速度定数の推定結果を説明する図である。It is a figure explaining the estimation result of a dephosphorization rate constant. 吹止め時における溶鋼中りん濃度の推定結果を説明する図である。It is a figure explaining the estimation result of the phosphorus concentration in molten steel at the time of a blowing stop. 本発明の転炉吹錬制御方法を説明するフロー図である。It is a flowchart explaining the converter blowing control method of this invention. 本発明の転炉吹錬制御方法を実施可能なシステムを説明する図である。It is a figure explaining the system which can implement the converter blowing control method of the present invention.

以下、図面を参照しつつ、本発明の実施形態について説明する。なお、以下に示す実施形態は本発明の例示であり、本発明は以下に示す実施形態に限定されない。以下の説明において、流量は、特に断らない限り、基準状態(0℃、101325Pa)における流量である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, embodiment shown below is an illustration of this invention and this invention is not limited to embodiment shown below. In the following description, the flow rate is a flow rate in a reference state (0 ° C., 101325 Pa) unless otherwise specified.

炉内蓄積酸素量原単位Oの算出方法を、以下に示す。炉内蓄積酸素量原単位Oは、生成したスラグ中のFeOに対応する。 The method of calculating the furnace accumulated oxygen per unit O s, shown below. Furnace accumulated oxygen per unit O s corresponds to the FeO in the produced slag.

排ガス中のCO流量[m/h]、排ガス中のCO流量[m/h]、排ガス中のO流量[m/h]、及び、排ガス中のN流量[m/h]は、それぞれ、下記式(5)、(6)、(7)、(8)で表される。以下の式において、hCO、hCO2、及び、hO2は排ガス成分[%]であり、Qoffgasは排ガス流量[m/h]であり、i_delayは排ガス分析遅れ[−]である。 CO flow rate in the exhaust gas [m 3 / h], CO 2 flow rate in the exhaust gas [m 3 / h], O 2 flow rate in the exhaust gas [m 3 / h], and, N 2 flow rate of the exhaust gas [m 3 / h] is represented by the following formulas (5), (6), (7), and (8), respectively. In the following equations, h CO 2 , h CO 2 , and h O 2 are exhaust gas components [%], Q offgas is an exhaust gas flow rate [m 3 / h], and i_delay is an exhaust gas analysis delay [−].

また、炉内で発生したCO流量[m/h]、及び、炉内で発生したCO流量[m/h]は、以下の式で表される。 The CO flow rate [m 3 / h] generated in the furnace and the CO 2 flow rate [m 3 / h] generated in the furnace are represented by the following equations.

炉内蓄積酸素変化量dO[m/s]は、次の式で表される。 The in-furnace accumulated oxygen change amount dO s [m 3 / s] is expressed by the following equation.

ここで、上吹き酸素流量及び炉内へ投入された副原料に含まれる酸素流量の合計が炉内への入力酸素に相当する。また、炭素と結合し排ガスのCOやCOとして炉外へと排出される酸素流量が炉外への出力酸素に相当する。 Here, the sum of the upper blown oxygen flow rate and the oxygen flow rate contained in the auxiliary raw material charged into the furnace corresponds to the input oxygen into the furnace. Further, the flow rate of oxygen that is combined with carbon and discharged to the outside of the furnace as CO or CO 2 of exhaust gas corresponds to the output oxygen to the outside of the furnace.

上記式(11)で表される炉内蓄積酸素変化量dOを用いて、炉内蓄積酸素量原単位O[m/ton]は、次の式で表される。 Using the in-furnace oxygen storage variation dO s represented by the above formula (11), the in-furnace oxygen storage unit O s [m 3 / ton] is represented by the following formula.

ここで、(%SiO)消費酸素は、SiO形成で消費される酸素量[m]であり、Wstは溶鋼重量[ton]である。調査検討の結果、炉内蓄積酸素量原単位Oを算出する際には、表1における溶銑[Mn]、溶銑[P]、及び、溶銑[Ti]を考慮する必要はなく、溶銑[Si]のみを考慮すれば十分であることを知見した。表1における溶銑[Si]は、式(12)における(%SiO)消費酸素を算出する際に使用する。 Here, (% SiO 2 ) consumed oxygen is the amount of oxygen consumed in forming SiO 2 [m 3 ], and W st is the molten steel weight [ton]. Research study results, when calculating the furnace accumulated oxygen per unit O s is molten iron in Table 1 [Mn], molten iron [P], and not necessary to consider the molten iron [Ti], molten iron [Si It was found that it is sufficient to consider only]. The hot metal [Si] in Table 1 is used when calculating the (% SiO 2 ) consumed oxygen in the equation (12).

以上説明した溶鋼中りん濃度の推定方法では、吹錬中のサブランスによる測定値は、必須の情報ではない。すなわち、吹錬開始後に、溶銑条件、副原料投入情報、及び、測定した排ガス情報を用いて、上記方法により炉内蓄積酸素量原単位を算出し、算出した炉内蓄積酸素量原単位、上吹きランス高さ、上吹き酸素流量、及び、底吹きガス流量等の操業要因の情報を、上記式(4)に代入することにより、脱りん速度定数を推定する。そして、推定した脱りん速度定数を上記式(2)へ代入し、推定する任意の時点における、吹錬開始からの経過時間の実績値を使って、溶鋼中りん濃度を逐次推定することができる。逐次推定の計算周期は、排ガス情報(排ガス流量計、排ガス分析計)のサンプリング周期(例えば、1〜10秒程度)と同じにすれば良い。   In the method for estimating the phosphorus concentration in molten steel described above, the measured value by the sublance during blowing is not essential information. That is, after the start of blowing, the in-furnace accumulated oxygen amount basic unit is calculated by the above method using the hot metal conditions, the auxiliary material input information, and the measured exhaust gas information. By substituting information of operating factors such as the blowing lance height, the top blowing oxygen flow rate, and the bottom blowing gas flow rate into the above equation (4), the dephosphorization rate constant is estimated. Then, the estimated dephosphorization rate constant is substituted into the above equation (2), and the phosphorus concentration in the molten steel can be sequentially estimated using the actual value of the elapsed time from the start of blowing at an arbitrary time point to be estimated. . The calculation cycle of the successive estimation may be the same as the sampling cycle (for example, about 1 to 10 seconds) of the exhaust gas information (exhaust gas flow meter, exhaust gas analyzer).

上記式(4)の説明変数として、排ガス情報を活用して得られる炉内蓄積酸素量原単位、上吹きランス高さ、上吹き酸素流量、及び、底吹きガス流量等の吹錬中のダイナミックな情報を用いて推定した、脱りん速度定数kの結果を図2に示す。また、推定した脱りん速度定数kを上記式(2)へ代入して算出した、溶鋼中りん濃度の推定結果を図3に示す。図2に示したように、重決定R=0.61となり、上記式(4)を用いて推定した脱りん速度定数kと、脱りん速度定数kの実績値とは強く相関していた。すなわち、上記式(4)を用いることにより、脱りん速度定数を高精度に推定することができた。また、図3に示したように、推定した脱りん速度定数を上記式(2)へ代入することにより、溶鋼中りん濃度を高精度に推定することができた。 As an explanatory variable of the above formula (4), dynamics during blowing such as the in-furnace oxygen storage unit obtained by utilizing the exhaust gas information, the top blowing lance height, the top blowing oxygen flow rate, and the bottom blowing gas flow rate FIG. 2 shows the result of the dephosphorization rate constant k estimated using various information. Moreover, the estimation result of the phosphorus concentration in molten steel calculated by substituting the estimated dephosphorization rate constant k into the above equation (2) is shown in FIG. As shown in FIG. 2, the determinant R 2 = 0.61, and the dephosphorization rate constant k estimated using the above equation (4) was strongly correlated with the actual value of the dephosphorization rate constant k. . That is, the dephosphorization rate constant could be estimated with high accuracy by using the above equation (4). Further, as shown in FIG. 3, the phosphorus concentration in the molten steel could be estimated with high accuracy by substituting the estimated dephosphorization rate constant into the above equation (2).

次に、目標溶鋼中りん濃度を得るために必要な操作量の算出方法について、説明する。   Next, a method for calculating the operation amount necessary to obtain the target phosphorus concentration in molten steel will be described.

吹錬開始時点から現時点までの経過時間をt、現時点の操業条件から得られた脱りん速度定数の推定値をkとすると、この時の溶鋼中りん濃度の推定値[P]は、下記式(13)から得られる。 Assuming that the elapsed time from the start of blowing to the present time is t 1 and the estimated value of the dephosphorization rate constant obtained from the current operating conditions is k 1 , the estimated value [P] 1 of the phosphorus concentration in the molten steel at this time is Is obtained from the following equation (13).

吹錬終了予定時間がtであるとすると、吹止め時の溶鋼中りん濃度の予測値[P]は、下記式(14)から得られる。但し、下記式(14)では、現時点の脱りん速度定数kが現時点から吹錬終了時まで変わらないと仮定している。 Assuming that the scheduled time for finishing blowing is t 2 , the predicted value [P] 2 of the phosphorus concentration in the molten steel at the time of blowing is obtained from the following formula (14). However, in the following formula (14), it is assumed that the current dephosphorization rate constant k 1 does not change from the current time to the end of blowing.

上記式(14)から得られる[P]が目標溶鋼中りん濃度[P]aimよりも小さければ、脱りん促進のためのアクション(操作量の変更)は特に必要ない。しかしながら、上記式(14)から得られる[P]が目標溶鋼中りん濃度[P]aimよりも大きい場合には、脱りん促進のための操作量の変更が必要になる。本発明では、必要な操作量の変更量を、下記表2に示した優先度にしたがって決定する。操作量の中で、ランス高さ、上吹き酸素流量、及び、底吹きガス流量は、脱りん以外の吹錬特性(脱炭酸素効率、着熱効率、スラグ滓化率等)に及ぼす影響が非常に大きいため、その優先度を最も低く設定する。また、吹込み酸素量の増加は容易な脱りん促進方法であるため、吹込み酸素量の優先度をスケール量や生石灰量よりも高く設定する。 If [P] 2 obtained from the above formula (14) is smaller than the target molten steel phosphorus concentration [P] aim, no action (changing the operation amount) for promoting dephosphorization is required. However, when [P] 2 obtained from the above formula (14) is larger than the target phosphorus concentration [P] aim in the molten steel, it is necessary to change the operation amount for promoting dephosphorization. In the present invention, the required change amount of the operation amount is determined according to the priority shown in Table 2 below. Among operating quantities, lance height, top blowing oxygen flow rate, and bottom blowing gas flow rate have a significant effect on blowing characteristics other than dephosphorization (decarbonation efficiency, heat receiving efficiency, slag hatching rate, etc.) Therefore, the lowest priority is set. Moreover, since the increase in the amount of blown oxygen is an easy dephosphorization promoting method, the priority of the amount of blown oxygen is set higher than the amount of scale and the amount of quicklime.

<優先度1の操作量>
上記式(14)から得られる[P]が目標溶鋼中りん濃度[P]aimよりも大きい場合は、まず、目標溶鋼中りん濃度[P]aimを満足するために必要な吹錬時間tを下記式(15)にて求める。
<Operation amount of priority 1>
When [P] 2 obtained from the above formula (14) is larger than the target molten steel phosphorus concentration [P] aim , first, the blowing time t required to satisfy the target molten steel phosphorus concentration [P] aim 3 is obtained by the following equation (15).

そして、吹錬終了予定時間tからの超過時間Δt(=t−t)がある許容範囲内であれば、操作量として吹込み酸素量を選択し、超過時間Δt(=t−t)の間に吹込まれる酸素量を考慮して予定吹込酸素量を下記式(16)のように修正し、これに従って吹錬を行う。超過時間Δt(=t−t)の許容範囲は、例えば、処理後[C]の下限値を考慮することにより決定することができる。 Then, if the excess time Δt (= t 3 −t 2 ) from the scheduled blow end time t 2 is within an allowable range, the blown oxygen amount is selected as the manipulated variable, and the excess time Δt (= t 3 − Considering the amount of oxygen blown during t 2 ), the planned blown oxygen amount is corrected as shown in the following formula (16), and blowing is performed according to this. The allowable range of the excess time Δt (= t 3 −t 2 ) can be determined, for example, by considering the lower limit value of [C] after processing.

ここで、ΔO2,aimは予定吹込酸素量[m]であり、右辺第1項は修正前の予定吹込酸素量[m]であり、O2,pは設定酸素流量[m/s](上吹き酸素流量[m/s])である。なお、吹錬終了予定時間t、及び、予定吹込酸素量ΔO2,aimは、酸素収支式と温度収支式とから構成される一般的な吹錬制御システムによって算出済みであるとする。 Here, ΔO 2, aim is scheduled blown oxygen amount [m 3], the first term on the right side is scheduled blown oxygen amount before correction [m 3], O 2, p is set oxygen flow rate [m 3 / s] (top blowing oxygen flow rate [m 3 / s]). It is assumed that the scheduled blowing end time t 2 and the scheduled blown oxygen amount ΔO 2, aim are already calculated by a general blowing control system including an oxygen balance equation and a temperature balance equation.

<優先度2の操作量>
上記優先度1のアクションでも、溶鋼中りん濃度が目標溶鋼中りん濃度[P]aim以下にならないと予想される場合(例えば、上記超過時間Δt(=t−t)がある許容範囲を超過する場合)には、スケールや生石灰を追加投入して、脱りん速度定数自体を大きくすることにより、脱りん能を向上させて対応する。すなわち、吹錬時間tで溶鋼中りん濃度が目標溶鋼中りん濃度[P]aimになる脱りん速度定数kは、下記式(17)で表され、現時点の脱りん速度定数kをkにするために必要な追加スケール投入量ΔWscaleは下記式(18)で表される。得られた追加スケール投入量がある許容範囲内であれば、得られたスケール量を追加投入する。これに対し、得られた追加スケール投入量がある許容範囲外であるために、スケールを追加投入するのみでは上記kが得られない場合には、下記式(19)にて追加生石灰投入量ΔWCaOを求め、スケールを追加投入するとともに得られた追加生石灰量を投入する。追加スケール投入量の上限値は、例えば、スケール投入設備の投入能力によって決定することができ、追加生石灰投入量の上限値は、例えば、生石灰投入設備の投入能力によって決定することができる。なお、生石灰の追加投入よりもスケールの追加投入を優先するのは、スケールの方が脱りん促進の即効性が生石灰よりも高いからである。
<Operation amount of priority 2>
Even in the case of the priority 1 action, if the phosphorus concentration in the molten steel is expected not to be equal to or less than the target phosphorus concentration [P] aim (for example, the allowable time in which the excess time Δt (= t 3 −t 2 ) exists) In the case of exceeding, the dephosphorization ability is improved by adding the scale and quick lime and increasing the dephosphorization rate constant itself. That is, the dephosphorization rate constant k 2 at which the phosphorus concentration in the molten steel becomes the target phosphorus concentration in the molten steel [P] aim at the blowing time t 3 is expressed by the following equation (17), and the current dephosphorization rate constant k 1 is The additional scale input amount ΔW scale necessary to make k 2 is expressed by the following equation (18). If the obtained additional scale input amount is within a certain allowable range, the obtained scale amount is additionally input. On the other hand, when the obtained additional scale input amount is outside a certain allowable range, and k 2 cannot be obtained only by adding the scale, the additional quick lime input amount is calculated by the following equation (19). ΔW CaO is obtained, and an additional amount of quick lime obtained in addition to the scale is added. The upper limit value of the additional scale input amount can be determined by, for example, the input capacity of the scale input facility, and the upper limit value of the additional quick lime input amount can be determined by, for example, the input capacity of the quick lime input facility. The reason why the addition of scale is prioritized over the addition of quicklime is that the scale has a higher immediate effect of promoting dephosphorization than quicklime.

ここで、αscaleは上記式(4)におけるスケールの回帰係数であり、αCaOは上記式(4)における生石灰の回帰係数である。 Here, α scale is the regression coefficient of the scale in the above equation (4), and α CaO is the regression coefficient of quick lime in the above equation (4).

<優先度3の操作量>
スケール及び生石灰を追加投入しても、溶鋼中りん濃度が目標溶鋼中りん濃度以下にならないと予想される場合(例えば、上記ΔWscale及び上記ΔWCaOが何れも許容範囲を超過する場合)には、脱りん速度定数自体を大きくするために、ランス高さ(メインランスの高さ)、上吹き酸素流量、及び、底吹きガス流量を適宜操作する。ランス高さ変更量Δlance[mm]は、下記式(20)から得られる。得られたランス高さ変更量がある許容範囲内であれば、ランス高さを変更する。これに対し、得られたランス高さ変更量がある許容範囲外であるために、ランス高さを変更するのみでは上記kが得られない場合には、ランス高さを変更するとともに上吹き酸素流量を操作する。上吹き酸素流量の変更量ΔFO[m/s]は、下記式(21)から得られる。得られた上吹き酸素流量の変更量がある許容範囲内であれば、ランス高さを変更するとともに上吹き酸素流量を変更する。これに対し、得られた上吹き酸素流量の変更量がある許容範囲外であるために、ランス高さ及び上吹き酸素流量を変更するのみでは上記kが得られない場合には、ランス高さ及び上吹き酸素流量を変更するとともに底吹きガス流量を操作する。底吹きガス流量の変更量ΔFbottom[m/s]は、下記式(22)から得られる。
<Operation amount of priority 3>
If it is expected that the phosphorus concentration in the molten steel will not be lower than the target phosphorus concentration in the molten steel even if additional scale and quicklime are added (for example, if both the ΔW scale and the ΔW CaO exceed the allowable range) In order to increase the dephosphorization rate constant itself, the lance height (main lance height), the top blowing oxygen flow rate, and the bottom blowing gas flow rate are appropriately operated. The lance height change amount Δlance [mm] is obtained from the following equation (20). If the obtained lance height change amount is within a certain allowable range, the lance height is changed. In contrast, in order to be out of tolerance with the lance height changing amount obtained, when the lance by only changing the height is not the k 2 is obtained, blown on with changing the lance height Manipulate the oxygen flow rate. The change amount ΔFO 2 [m 3 / s] of the top blowing oxygen flow rate is obtained from the following formula (21). If the amount of change in the obtained upper blown oxygen flow rate is within a certain allowable range, the lance height is changed and the upper blown oxygen flow rate is changed. In contrast, in order to be out of tolerance there is a change amount of oxygen blown onto the obtained flow, when the lance by only changing the height and the top-blown oxygen flow rate is not the k 2 is obtained, the lance height The top blown oxygen flow rate is changed and the bottom blown gas flow rate is manipulated. The change amount ΔF bottom [m 3 / s] of the bottom blowing gas flow rate is obtained from the following equation (22).

ここで、αlanceは上記式(4)におけるランス高さの回帰係数であり、αFO2は上記式(4)における上吹き酸素流量の回帰係数であり、αFbottomは上記式(4)における底吹きガス流量の回帰係数である。 Here, alpha lance is the regression coefficient of the lance height in the formula (4), alpha FO2 is the regression coefficient of the top-blown oxygen flow rate in the above formula (4), α Fbottom bottom in the formula (4) It is a regression coefficient of the blowing gas flow rate.

次に、吹錬中にサブランスによる測定値が得られた場合における、溶鋼中りん濃度の推定方法を説明する。但し、吹錬開始からサブランス測定時点までの溶鋼中りん濃度は、上記の方法で逐次推定できているものとする。   Next, the estimation method of the phosphorus concentration in molten steel when the measured value by sublance is obtained during blowing will be described. However, it is assumed that the phosphorus concentration in the molten steel from the start of blowing to the sublance measurement time can be estimated successively by the above method.

サブランス測定で溶鋼温度が測定される場合には、サブランス測定溶鋼温度を操業要因に含む形態の回帰式(上記式(4))を予め準備しておき、サブランス測定で溶鋼温度が得られたタイミング以降は、得られた溶鋼温度を上記式(4)へと代入して脱りん速度定数を推定し、上記式(13)を用いて溶鋼中りん濃度を推定する。   When the molten steel temperature is measured by the sublance measurement, a regression equation (formula (4)) including the sublance measured molten steel temperature as an operation factor is prepared in advance, and the molten steel temperature is obtained by the sublance measurement. Thereafter, the obtained molten steel temperature is substituted into the above formula (4) to estimate the dephosphorization rate constant, and the above formula (13) is used to estimate the phosphorus concentration in the molten steel.

一方、サブランス測定で、溶鋼中炭素濃度及び溶鋼温度が測定される場合には、サブランス測定溶鋼中炭素濃度及びサブランス測定溶鋼温度を操業要因に含む形態の回帰式(上記式(4))を予め準備しておく。そして、サブランス測定で溶鋼中炭素濃度及び溶鋼温度が得られたタイミング以降は、得られた溶鋼中炭素濃度及び溶鋼温度を上記式(4)へと代入して脱りん速度定数を推定し、上記式(13)を用いて溶鋼中りん濃度を推定する。   On the other hand, when the carbon concentration in molten steel and the molten steel temperature are measured by the sublance measurement, a regression equation (formula (4)) in a form including the operational factors of the carbon concentration in the molten steel and the molten steel temperature in the sublance is previously calculated. Prepare. And after the timing when the carbon concentration and the molten steel temperature in the molten steel were obtained by the sublance measurement, the dephosphorization rate constant was estimated by substituting the obtained molten steel carbon concentration and the molten steel temperature into the above formula (4), The phosphorus concentration in molten steel is estimated using equation (13).

他方、サブランス測定で、溶鋼中炭素濃度、溶鋼温度、及び、スラグ中酸素濃度が測定される場合には、サブランス測定溶鋼中炭素濃度、サブランス測定溶鋼温度、及び、サブランス測定スラグ中酸素濃度を操業要因に含む形態の回帰式(上記式(4))を予め準備しておき、サブランス測定により得られたスラグ中酸素濃度を用いて、下記式(23)から修正済み炉内蓄積酸素量原単位を求める。そして、サブランス測定で溶鋼中炭素濃度、溶鋼温度、及び、スラグ中酸素濃度が得られたタイミング以降は、得られた溶鋼中炭素濃度及びサブランス測定溶鋼温度と、修正済み炉内蓄積酸素量原単位とを上記式(4)へと代入して脱りん速度定数を推定し、上記式(13)を用いて溶鋼中りん濃度を推定する。   On the other hand, when the carbon concentration in molten steel, the molten steel temperature, and the oxygen concentration in slag are measured by the sublance measurement, the carbon concentration in the sublance measured molten steel, the molten steel temperature in the sublance measurement, and the oxygen concentration in the sublance measured slag are operated. A regression equation (formula (4)) of the form included in the factor is prepared in advance, and the oxygen concentration in the furnace is corrected from the following formula (23) using the oxygen concentration in the slag obtained by the sublance measurement. Ask for. After the timing at which the carbon concentration in molten steel, the molten steel temperature, and the oxygen concentration in slag were obtained by the sublance measurement, the obtained carbon concentration in the molten steel and the molten steel temperature measured in the sublance, and the corrected oxygen storage basic unit Is substituted into the above equation (4) to estimate the dephosphorization rate constant, and the phosphorus concentration in the molten steel is estimated using the above equation (13).

ここで、O’は修正済み炉内蓄積酸素量原単位[m/ton]であり、Oは炉内蓄積酸素量原単位[m/ton]であり、Oslagはスラグ中酸素濃度[%]であり、η及びηは回帰係数である。 Here, O s ′ is the corrected in-furnace oxygen storage unit [m 3 / ton], O s is the in-furnace oxygen storage unit [m 3 / ton], and O slag is oxygen in the slag. Concentration [%], and η 0 and η 1 are regression coefficients.

目標溶鋼中りん濃度を得るために必要な操作量の算出計算は、吹錬中のサブランスによる測定値を用いない場合と同じ手順で実施することができる。   The calculation calculation of the manipulated variable required to obtain the target phosphorus concentration in the molten steel can be carried out in the same procedure as when the measured value by the sublance during blowing is not used.

以上より、サブランス測定を実施しない場合も含めたさまざまなサブランス測定の形態に応じて、適切な回帰式(推定式)を適用することにより、溶鋼中りん濃度を高い精度で推定することが可能になるとともに、目標溶鋼中りん濃度を得るために必要な操作量を適切に算出することができる。それゆえ、推定した溶鋼中りん濃度が目標溶鋼中りん濃度を超える場合には、操作量を変更することにより、溶鋼中りん濃度を目標溶鋼中りん濃度以下へと高精度に制御することが可能になる。   From the above, it is possible to estimate the phosphorus concentration in molten steel with high accuracy by applying an appropriate regression formula (estimation formula) according to various forms of sublance measurement, including when no sublance measurement is performed. In addition, it is possible to appropriately calculate the operation amount necessary to obtain the target phosphorus concentration in molten steel. Therefore, if the estimated phosphorus concentration in the molten steel exceeds the target phosphorus concentration in the molten steel, it is possible to control the phosphorus concentration in the molten steel below the target phosphorus concentration with high accuracy by changing the manipulated variable. become.

図4は、本発明の転炉吹錬制御方法を説明するフロー図である。図4に示したように、本発明の転炉吹錬制御方法は、入力工程(S1)と、測定工程(S2)と、炉内蓄積酸素量原単位算出工程(S3)と、操業要因特定工程(S4)と、定数推定工程(S5)と、濃度推定工程(S6)と、濃度判断工程(S7)と、変更工程(S8)と、吹錬判断工程(S9)と、を有している。   FIG. 4 is a flowchart for explaining the converter blowing control method of the present invention. As shown in FIG. 4, the converter blowing control method of the present invention includes an input step (S1), a measurement step (S2), an in-furnace oxygen storage unit calculation step (S3), and an operation factor identification. A step (S4), a constant estimation step (S5), a concentration estimation step (S6), a concentration determination step (S7), a change step (S8), and a blowing determination step (S9). Yes.

入力工程(以下において、「S1」という。)は、チャージ毎の溶銑重量、溶銑成分(C、Si、Mn、P等)、溶銑温度、及び、溶銑率等の溶銑条件のデータ、吹錬開始から吹錬終了までの所要時間、上吹き酸素流量、底吹きガス流量、副原料(例えば、スケールや生石灰等)の投入量、並びに、目標溶鋼中りん濃度を、後述するシステムに入力する工程である。   The input process (hereinafter referred to as “S1”) includes hot metal weight for each charge, hot metal components (C, Si, Mn, P, etc.), hot metal temperature, hot metal condition data such as hot metal ratio, and start of blowing. In the process of inputting the required time from the end of blowing to the end of blowing, the flow rate of top blown oxygen, the flow rate of bottom blown gas, the amount of auxiliary materials (for example, scale and quicklime), and the target phosphorus concentration in molten steel to the system described later is there.

測定工程(以下において、「S2」という。)は、排ガス流量計を用いて排ガス流量を測定し、排ガス成分分析計を用いて排ガス成分を測定する工程である。   The measurement step (hereinafter referred to as “S2”) is a step of measuring the exhaust gas flow rate using an exhaust gas flow meter and measuring the exhaust gas component using an exhaust gas component analyzer.

炉内蓄積酸素量原単位算出工程(以下において、「S3」という。)は、上記S1で入力されたデータ、上記S2の測定結果、及び、上記式(5)〜(12)から、炉内蓄積酸素量原単位を算出する工程である。   The in-furnace oxygen storage unit calculation step (hereinafter referred to as “S3”) is performed based on the data input in S1, the measurement result in S2, and the equations (5) to (12). This is a step of calculating the accumulated oxygen amount basic unit.

操業要因特定工程(以下において、「S4」という。)は、上記式(4)で用いられる操業要因を特定する工程である。サブランスによる測定結果を用いて脱りん速度定数を推定する場合には、S4で特定される操業要因に、溶鋼温度、又は、溶鋼中炭素濃度及び溶鋼温度、又は、溶鋼中炭素濃度、溶鋼温度、及び、スラグ中酸素濃度が含まれる。これに対し、サブランスによる測定結果を用いずに脱りん速度定数を推定する場合、S4で特定される操業要因には、溶鋼中炭素濃度、溶鋼温度、及び、スラグ中酸素濃度が含まれない。   The operation factor specifying step (hereinafter referred to as “S4”) is a step of specifying the operation factor used in the above equation (4). When estimating the dephosphorization rate constant using the measurement result by the sublance, the operation factor specified in S4 includes the molten steel temperature, the molten steel carbon concentration and the molten steel temperature, the molten steel carbon concentration, the molten steel temperature, And the oxygen concentration in the slag. On the other hand, when the dephosphorization rate constant is estimated without using the measurement result by the sublance, the operation factor specified in S4 does not include the carbon concentration in the molten steel, the molten steel temperature, and the oxygen concentration in the slag.

定数推定工程(以下において、「S5」という。)は、上記S3で算出された炉内蓄積酸素量原単位、及び、上記S4で操業要因が特定された上記式(4)を用いて、脱りん速度定数を推定する工程である。サブランスによるスラグ中酸素濃度の測定結果を用いて脱りん速度定数を推定するために、上記S4で特定された操業要因にスラグ中酸素濃度が含まれている場合、S5では、回帰係数、上記S3で算出された炉内蓄積酸素量原単位、及び、測定されたスラグ中酸素濃度の結果を上記式(23)に代入して修正済み炉内蓄積酸素量原単位を求める。そして、求めた修正済み炉内蓄積酸素量原単位を、上記式(4)に代入することにより、脱りん速度定数を推定する。   The constant estimation step (hereinafter referred to as “S5”) is performed by using the in-furnace oxygen storage unit calculated in S3 and the equation (4) in which the operation factor is specified in S4. This is a step of estimating a phosphorus rate constant. In order to estimate the dephosphorization rate constant using the measurement result of the oxygen concentration in the slag by the sub lance, when the operation factor specified in S4 includes the oxygen concentration in the slag, in S5, the regression coefficient, the above S3 Substituting the in-furnace oxygen storage unit calculated in step 1 and the result of the measured oxygen concentration in the slag into the above equation (23), the corrected in-furnace oxygen storage unit is obtained. Then, the calculated dephosphorization rate constant is estimated by substituting the corrected in-furnace oxygen storage basic unit into the above equation (4).

濃度推定工程(以下において、「S6」という。)は、上記S1で入力された溶銑りん濃度[P]ini、上記S5で推定された脱りん速度定数、及び、吹錬開始時からの経過時間tを上記式(13)に代入し、溶鋼中りん濃度を推定する工程である。 The concentration estimation step (hereinafter referred to as “S6”) includes the molten iron phosphorus concentration [P] ini input in S1, the dephosphorization rate constant estimated in S5, and the elapsed time from the start of blowing. the t 1 is substituted into the equation (13) is a step of estimating the phosphorus concentration in the molten steel.

濃度判断工程(以下において、「S7」という。)は、上記S6で推定した溶鋼中りん濃度が、上記S1で入力された目標溶鋼中りん濃度以下であるか否かを判断する工程である。S7で肯定判断がなされた場合には、上記S6で推定した溶鋼中りん濃度が目標溶鋼中りん濃度以下であるため、操業要因の操作量を変更する必要がない。それゆえ、S7で肯定判断がなされた場合には、後述する変更工程を経ることなく、吹錬判断工程へと進む。これに対し、S7で否定判断がなされた場合には、上記S6で推定した溶鋼中りん濃度が目標溶鋼中りん濃度を超えており、現在の操業条件による吹錬を継続すると、吹錬終了時における溶鋼中りん濃度が目標溶鋼中りん濃度を超える可能性がある。それゆえ、S7で否定判断がなされた場合には、吹錬終了時における溶鋼中りん濃度が目標溶鋼中りん濃度以下となるように、引き続き、変更工程を行う。   The concentration determination step (hereinafter referred to as “S7”) is a step of determining whether or not the phosphorus concentration in molten steel estimated in S6 is equal to or less than the target phosphorus concentration in molten steel input in S1. When an affirmative determination is made in S7, it is not necessary to change the operation amount of the operation factor because the phosphorus concentration in molten steel estimated in S6 is equal to or less than the target phosphorus concentration in molten steel. Therefore, when an affirmative determination is made in S7, the process proceeds to the blowing determination process without going through a changing process described later. On the other hand, if a negative determination is made in S7, the phosphorus concentration in the molten steel estimated in S6 above exceeds the target phosphorus concentration in the molten steel, and if blowing under the current operating conditions is continued, There is a possibility that the phosphorus concentration in molten steel exceeds the target phosphorus concentration in molten steel. Therefore, when a negative determination is made in S7, the changing process is continuously performed so that the phosphorus concentration in the molten steel at the end of blowing is equal to or less than the target phosphorus concentration in molten steel.

変更工程(以下において、「S8」という。)は、上記S7で否定判断がなされた場合に、操作量を変更する工程である。操作量の変更は、表2に記載した優先度順に行われる。操作量の変更量は、上記式(16)〜(22)によって算出することができる。S8で変更された操作量は、後述するシステムへと入力される。   The changing step (hereinafter referred to as “S8”) is a step of changing the operation amount when a negative determination is made in S7. The operation amount is changed in the order of priority described in Table 2. The change amount of the operation amount can be calculated by the above formulas (16) to (22). The operation amount changed in S8 is input to the system described later.

吹錬判断工程(以下において、「S9」という。)は、上記S7で肯定判断がなされた場合にはS7に続いて、上記S7で否定判断がなされた場合には上記S8に続いて行われる工程であり、吹錬中である否かを判断する工程である。S9で肯定判断がなされた場合には、上記S2へと戻って以下同様の処理が繰り返される。これに対し、S9で否定判断がなされた場合には、本発明の吹錬制御方法を終了する。   The blowing determination step (hereinafter referred to as “S9”) is performed following S7 if an affirmative determination is made in S7, and subsequent to S8 if a negative determination is made in S7. It is a process and it is a process of judging whether it is during blowing. When an affirmative determination is made in S9, the process returns to S2 and the same processing is repeated. On the other hand, if a negative determination is made in S9, the blowing control method of the present invention is terminated.

以上の手順に従えば、吹錬開始時から吹錬終了時までの溶鋼中りん濃度を、排ガス情報を活用して高精度に推定可能であり、吹止め時の溶鋼中りん濃度を、目標溶鋼中りん濃度に精度良く的中させることができる。   By following the above procedure, it is possible to accurately estimate the phosphorus concentration in the molten steel from the start of blowing to the end of blowing using the exhaust gas information. It is possible to accurately target the medium phosphorus concentration.

図5は、本発明の転炉吹錬制御方法を実施可能な転炉吹錬制御システム10を説明する図である。図5に示したように、転炉吹錬制御システム10は、溶銑データ1、目標データ2、パラメータ3、及び、排ガス情報データ編集部4から送られたデータを用いて溶鋼中りん濃度を推定する溶鋼中りん濃度推定部5と、操作量算出部6と、入出力部7とを有し、排ガス情報データ編集部4では、排ガス流量計8及び排ガス成分分析計9による測定結果が用いられる。   FIG. 5 is a diagram for explaining a converter blowing control system 10 capable of implementing the converter blowing control method of the present invention. As shown in FIG. 5, the converter blowing control system 10 estimates the phosphorus concentration in molten steel using the molten metal data 1, target data 2, parameter 3, and data sent from the exhaust gas information data editing unit 4. The molten steel phosphorus concentration estimating unit 5, the manipulated variable calculating unit 6, and the input / output unit 7 are used. In the exhaust gas information data editing unit 4, the measurement results by the exhaust gas flow meter 8 and the exhaust gas component analyzer 9 are used. .

より具体的には、溶銑データ1は、チャージ毎の溶銑重量、溶銑成分(C、Si、Mn、P等)、溶銑温度、溶銑率等の溶銑条件のデータであり、目標データ2は、チャージ毎の溶鋼目標成分(C、Si、Mn、P等)、溶鋼目標温度のデータである。また、パラメータ3では、上記式(4)の回帰係数や上記式(23)の回帰係数等が設定される。排ガス情報データ編集部4では、溶銑データ1と排ガス情報(排ガス流量及び排ガス成分)と上吹き酸素流量と副原料投入量とに基づいて、炉内蓄積酸素量原単位が算出される。   More specifically, the hot metal data 1 is data of hot metal conditions such as the hot metal weight for each charge, the hot metal components (C, Si, Mn, P, etc.), the hot metal temperature, the hot metal ratio, and the target data 2 is the charge. It is data of every molten steel target component (C, Si, Mn, P, etc.) and molten steel target temperature. In parameter 3, the regression coefficient of the above equation (4), the regression coefficient of the above equation (23), and the like are set. In the exhaust gas information data editing unit 4, the in-furnace oxygen storage basic unit is calculated based on the hot metal data 1, the exhaust gas information (exhaust gas flow rate and exhaust gas component), the top blown oxygen flow rate, and the auxiliary material input amount.

溶鋼中りん濃度推定部5では、溶銑データ1、上吹き酸素流量、副原料投入量、パラメータ3で設定した回帰係数、及び、排ガス情報データ編集機能4で算出した炉内蓄積酸素量原単位、並びに、サブランス12による測定結果を用いる場合にはサブランス測定値を上記式(4)へと代入して脱りん速度定数が推定される。そして、推定した脱りん速度定数を用いて、上記式(13)に基づいて溶鋼中りん濃度が推定される。   In the molten steel phosphorus concentration estimation unit 5, molten iron data 1, top blown oxygen flow rate, auxiliary material input amount, regression coefficient set in parameter 3, and in-furnace oxygen storage unit calculated in exhaust gas information data editing function 4, In addition, when the measurement result by the sublance 12 is used, the dephosphorization rate constant is estimated by substituting the sublance measurement value into the above equation (4). And the phosphorus concentration in molten steel is estimated based on said Formula (13) using the estimated dephosphorization rate constant.

操作量算出部6では、目標データ2の目標溶鋼中りん濃度を満足するための各操作量の変更量が具体的に計算される。操作量算出部6において変更量が計算されると、吹込み酸素量を変更する場合には、メインランス11へと供給される酸素の供給ON/OFFを制御する部位へ、酸素の供給を止めるべき時間(変更後の時間)に関する情報が送られ、スケール量や生石灰量を変更する場合には、転炉へスケールや生石灰を投入する部位へ、投入すべきスケールや生石灰に関する情報(変更後の量に関する情報)が送られる。また、ランス高さを変更する場合には、メインランス11の高さを制御する部位へ、変更後のメインランス11の高さに関する情報が送られ、上吹き酸素流量を変更する場合には、メインランス11へと供給される酸素の流量を制御する部位へ、変更後の酸素流量に関する情報が送られ、底吹きガス流量を変更する場合には、転炉へと供給される底吹きガスの流量を制御する部位へ、変更後の底吹きガス流量に関する情報が送られる。   In the operation amount calculation unit 6, the change amount of each operation amount for satisfying the target phosphorus concentration in the molten steel of the target data 2 is specifically calculated. When the change amount is calculated in the operation amount calculation unit 6, when changing the amount of blown oxygen, the supply of oxygen is stopped to the site that controls the ON / OFF of the oxygen supplied to the main lance 11. Information on power time (time after change) is sent, and when changing the amount of scale and quick lime, information on the scale and quick lime to be input to the site where scale and quick lime are input to the converter (after change) Information about the quantity) is sent. In addition, when changing the lance height, information on the height of the main lance 11 after the change is sent to the site for controlling the height of the main lance 11, and when changing the upper blown oxygen flow rate, When the information on the changed oxygen flow rate is sent to the site for controlling the flow rate of oxygen supplied to the main lance 11 and the bottom blown gas flow rate is changed, the bottom blown gas supplied to the converter is changed. Information on the changed bottom blown gas flow rate is sent to the site for controlling the flow rate.

また、入出力部7は、推定した溶鋼中りん濃度や計算した各操作量の変更量を表示する機能のほか、目標データ2及びパラメータ3の修正入力等のインターフェイス機能を有している。   The input / output unit 7 has an interface function such as correction input of the target data 2 and the parameter 3 in addition to the function of displaying the estimated phosphorus concentration in the molten steel and the calculated change amount of each operation amount.

このように構成されるシステム10を用いて、本発明の転炉吹錬制御方法を実施することにより、転炉吹止め時における溶鋼中りん濃度の制御精度を高めることが可能になる。   By implementing the converter blowing control method of the present invention using the system 10 configured in this way, it becomes possible to increase the control accuracy of the phosphorus concentration in the molten steel at the time of converter blowing.

以上、現時点において実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は本願明細書中に開示された実施形態に限定されるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う転炉吹錬制御方法も本発明の技術的範囲に包含されるものとして理解されなければならない。   Although the present invention has been described in connection with embodiments that are presently practical and preferred, the present invention is not limited to the embodiments disclosed herein, but is claimed. It can be appropriately changed without departing from the scope of the invention and the gist or idea of the invention that can be read from the entire specification, and it is understood that a converter blowing control method involving such a change is also included in the technical scope of the present invention. It must be.

1…溶銑データ
2…目標データ
3…パラメータ
4…排ガス情報データ編集部
5…溶鋼中りん濃度推定部
6…操作量算出部
7…入出力部
8…排ガス流量計
9…排ガス成分分析計
10…転炉吹錬制御システム
11…メインランス
12…サブランス
DESCRIPTION OF SYMBOLS 1 ... Hot metal data 2 ... Target data 3 ... Parameter 4 ... Exhaust gas information data edit part 5 ... Molten steel phosphorus concentration estimation part 6 ... Manipulation amount calculation part 7 ... Input / output part 8 ... Exhaust gas flow meter 9 ... Exhaust gas component analyzer 10 ... Converter Blowing Control System 11 ... Main Lance 12 ... Sub Lance

Claims (4)

少なくとも、転炉吹錬時における排ガス成分及び排ガス流量を定期的に測定して、測定値を得る測定工程と、
転炉吹錬の操業条件及び前記測定工程で得られた前記測定値に基づいて、脱りん速度定数を推定する定数推定工程と、
前記定数推定工程で推定された前記脱りん速度定数を用いて、前記転炉吹錬中の溶鋼中りん濃度を逐次推定する濃度推定工程と、
前記濃度推定工程で推定された前記溶鋼中りん濃度が目標溶鋼中りん濃度以下であるか否かを判断する濃度判断工程と、
前記濃度判断工程で、推定された前記溶鋼中りん濃度が前記目標溶鋼中りん濃度を超えていると判断された場合に、前記濃度推定工程で推定される前記溶鋼中りん濃度が前記目標溶鋼中りん濃度以下となるように、前記転炉吹錬の操業条件を変更する変更工程と、
を有することを特徴とする、転炉吹錬制御方法。
At least a measurement process for periodically measuring exhaust gas components and exhaust gas flow rate during converter blowing and obtaining measurement values;
A constant estimation step for estimating a dephosphorization rate constant based on operating conditions of converter blowing and the measurement value obtained in the measurement step;
Using the dephosphorization rate constant estimated in the constant estimation step, a concentration estimation step for sequentially estimating the phosphorus concentration in the molten steel during the converter blowing,
A concentration determination step of determining whether or not the phosphorus concentration in the molten steel estimated in the concentration estimation step is equal to or less than a target phosphorus concentration in molten steel;
When it is determined in the concentration determination step that the estimated phosphorus concentration in the molten steel exceeds the target phosphorus concentration in the molten steel, the phosphorus concentration in the molten steel estimated in the concentration estimation step is determined in the target molten steel. A changing step of changing the operating conditions of the converter blowing so as to be equal to or less than the phosphorus concentration;
A converter blowing control method, comprising:
前記測定値に、前記転炉吹錬中の溶鋼温度が含まれることを特徴とする、請求項1に記載の転炉吹錬制御方法。 2. The converter blowing control method according to claim 1, wherein the measured value includes a molten steel temperature during the converter blowing. 3. 前記測定値に、前記転炉吹錬中の溶鋼温度及び溶鋼中炭素濃度が含まれることを特徴とする、請求項1に記載の転炉吹錬制御方法。 2. The converter blowing control method according to claim 1, wherein the measured value includes a molten steel temperature and a carbon concentration in the molten steel during the converter blowing. 3. 前記測定値に、前記転炉吹錬中の溶鋼温度、溶鋼中炭素濃度、及び、スラグ中酸素濃度が含まれることを特徴とする、請求項1に記載の転炉吹錬制御方法。 2. The converter blowing control method according to claim 1, wherein the measured value includes a molten steel temperature, a carbon concentration in the molten steel, and an oxygen concentration in the slag during the converter blowing. 3.
JP2011156478A 2011-07-15 2011-07-15 Converter blowing control method Active JP5582105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011156478A JP5582105B2 (en) 2011-07-15 2011-07-15 Converter blowing control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011156478A JP5582105B2 (en) 2011-07-15 2011-07-15 Converter blowing control method

Publications (2)

Publication Number Publication Date
JP2013023696A true JP2013023696A (en) 2013-02-04
JP5582105B2 JP5582105B2 (en) 2014-09-03

Family

ID=47782398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011156478A Active JP5582105B2 (en) 2011-07-15 2011-07-15 Converter blowing control method

Country Status (1)

Country Link
JP (1) JP5582105B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012257A1 (en) * 2016-07-14 2018-01-18 新日鐵住金株式会社 Method for estimating phosphorus concentration in molten steel and converter blowing control device
JP2018178200A (en) * 2017-04-14 2018-11-15 新日鐵住金株式会社 Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium
JP2018178199A (en) * 2017-04-14 2018-11-15 新日鐵住金株式会社 Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium
KR20190124754A (en) 2017-08-24 2019-11-05 닛폰세이테츠 가부시키가이샤 Method of estimating phosphorus concentration in molten steel, converter blow control device, program and recording medium
JP2020097768A (en) * 2018-12-18 2020-06-25 日本製鉄株式会社 Converter blowing control device, converter blowing control method, and program
JP2020105606A (en) * 2018-12-28 2020-07-09 日本製鉄株式会社 Converter blowing control device, converter blowing control method, and program
JP7376787B2 (en) 2020-01-14 2023-11-09 日本製鉄株式会社 Device for estimating phosphorus concentration in molten steel, statistical model construction device, method for estimating phosphorus concentration in molten steel, statistical model construction method, and program
JP7469646B2 (en) 2020-06-05 2024-04-17 日本製鉄株式会社 Converter blowing control device, statistical model building device, converter blowing control method, statistical model building method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021018589A2 (en) 2019-03-22 2021-11-23 Jfe Steel Corp Blow control method and blow control apparatus for converter type dephosphorization refining furnace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792121A (en) * 1980-11-29 1982-06-08 Sumitomo Metal Ind Ltd Method for estimation of phosphorus concentration of steel bath
JPS58123813A (en) * 1982-01-20 1983-07-23 Sumitomo Metal Ind Ltd Method for controlling content of phosphorus in molten steel
JPS61159520A (en) * 1985-01-08 1986-07-19 Nippon Steel Corp Converter refining method
JPS63128109A (en) * 1986-11-17 1988-05-31 Nippon Steel Corp Control method for de-phosphorization in converter refining
JPH02170909A (en) * 1988-09-07 1990-07-02 Kobe Steel Ltd Method for predicting components at blow-end in converter
JPH05239524A (en) * 1992-02-28 1993-09-17 Sumitomo Metal Ind Ltd Method for controlling blowing of converter
JP2008223047A (en) * 2007-03-08 2008-09-25 Sumitomo Metal Ind Ltd Method for presuming molten steel component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792121A (en) * 1980-11-29 1982-06-08 Sumitomo Metal Ind Ltd Method for estimation of phosphorus concentration of steel bath
JPS58123813A (en) * 1982-01-20 1983-07-23 Sumitomo Metal Ind Ltd Method for controlling content of phosphorus in molten steel
JPS61159520A (en) * 1985-01-08 1986-07-19 Nippon Steel Corp Converter refining method
JPS63128109A (en) * 1986-11-17 1988-05-31 Nippon Steel Corp Control method for de-phosphorization in converter refining
JPH02170909A (en) * 1988-09-07 1990-07-02 Kobe Steel Ltd Method for predicting components at blow-end in converter
JPH05239524A (en) * 1992-02-28 1993-09-17 Sumitomo Metal Ind Ltd Method for controlling blowing of converter
JP2008223047A (en) * 2007-03-08 2008-09-25 Sumitomo Metal Ind Ltd Method for presuming molten steel component

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012257A1 (en) * 2016-07-14 2018-01-18 新日鐵住金株式会社 Method for estimating phosphorus concentration in molten steel and converter blowing control device
KR20180114919A (en) 2016-07-14 2018-10-19 신닛테츠스미킨 카부시키카이샤 Method for Estimating Concentration in Molten Steel and Converter Switching Control Device
CN108779506A (en) * 2016-07-14 2018-11-09 新日铁住金株式会社 Phosphorus concentration method of estimation and control device is bessemerized in molten steel
JPWO2018012257A1 (en) * 2016-07-14 2018-11-22 新日鐵住金株式会社 Method for estimating phosphorus concentration in molten steel and converter blowing control device
JP2018178200A (en) * 2017-04-14 2018-11-15 新日鐵住金株式会社 Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium
JP2018178199A (en) * 2017-04-14 2018-11-15 新日鐵住金株式会社 Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium
KR20190124754A (en) 2017-08-24 2019-11-05 닛폰세이테츠 가부시키가이샤 Method of estimating phosphorus concentration in molten steel, converter blow control device, program and recording medium
JP2020097768A (en) * 2018-12-18 2020-06-25 日本製鉄株式会社 Converter blowing control device, converter blowing control method, and program
JP2020105606A (en) * 2018-12-28 2020-07-09 日本製鉄株式会社 Converter blowing control device, converter blowing control method, and program
JP7376787B2 (en) 2020-01-14 2023-11-09 日本製鉄株式会社 Device for estimating phosphorus concentration in molten steel, statistical model construction device, method for estimating phosphorus concentration in molten steel, statistical model construction method, and program
JP7469646B2 (en) 2020-06-05 2024-04-17 日本製鉄株式会社 Converter blowing control device, statistical model building device, converter blowing control method, statistical model building method and program

Also Published As

Publication number Publication date
JP5582105B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5582105B2 (en) Converter blowing control method
JP6515385B2 (en) Hot metal pretreatment method and hot metal pretreatment control device
JP5527180B2 (en) Converter blowing method and converter blowing system
JP2018178200A (en) Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium
JP2013060659A (en) Method for decarburizing and refining molten iron in converter
JP5533058B2 (en) Blowing method, blowing system, low phosphorus hot metal manufacturing method, and low phosphorus hot metal manufacturing apparatus
JP2012136767A (en) Method for estimating phosphorus concentration in converter
JP5790607B2 (en) Hot metal dephosphorization method, hot metal dephosphorization system, low phosphorus hot metal manufacturing method and low phosphorus hot metal manufacturing apparatus
JP2018178199A (en) Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium
JP6725078B2 (en) Method for estimating phosphorus concentration in molten steel, converter blowing control device, program and recording medium
JP6825348B2 (en) Hot metal pretreatment method, hot metal pretreatment control device, program and recording medium
JP5375318B2 (en) Method for adjusting concentration and temperature of molten metal component and method for producing steel
JP7043949B2 (en) T. Fe estimation method, T.I. Fe control method, converter blow control device, and program
JP5924310B2 (en) Blowing control method and blowing control device
JP2004035986A (en) Converter operation guidance model
TWI627284B (en) Molten pig iron preparation processing method and molten pig iron preparation processing control device
JP2016132809A (en) Dephosphorization method for molten iron
JP4816513B2 (en) Molten steel component estimation method
JP4110676B2 (en) Converter blowing control method and converter blowing control device
JP6331601B2 (en) Blowing control method in steelmaking converter.
JP2621613B2 (en) Control method of end-point carbon concentration in upper-bottom blowing converter
JP6064520B2 (en) Blowing control method and blowing control device
JP4048010B2 (en) Method for estimating phosphorus equilibrium in converters and hot metal pretreatment vessels.
JP2520191B2 (en) Blowing control method for oxygen steelmaking furnace
JP2021031684A (en) Converter blowing control device, statistic model construction device, converter blowing control method, statistic model construction method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R151 Written notification of patent or utility model registration

Ref document number: 5582105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350