JPS63128109A - Control method for de-phosphorization in converter refining - Google Patents

Control method for de-phosphorization in converter refining

Info

Publication number
JPS63128109A
JPS63128109A JP27374486A JP27374486A JPS63128109A JP S63128109 A JPS63128109 A JP S63128109A JP 27374486 A JP27374486 A JP 27374486A JP 27374486 A JP27374486 A JP 27374486A JP S63128109 A JPS63128109 A JP S63128109A
Authority
JP
Japan
Prior art keywords
time
exhaust gas
converter
content
phosphorization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27374486A
Other languages
Japanese (ja)
Inventor
Hidenori Kiyoshi
英典 木吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27374486A priority Critical patent/JPS63128109A/en
Publication of JPS63128109A publication Critical patent/JPS63128109A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute the de-phosphorization in molten steel at high accuracy by continuously measuring composition of converter exhaust gas at the time of refining steed in the converter, converting changing with passing of time to time series changing of parameter by the ARMA system and controlling the converter operational condition by comparing this with the standard pattern. CONSTITUTION:At the time of refining molten iron to steel having the aimed quality by executing de-siliconization, de-manganization, de-sulfurization, de- phosphorization and de-carburization through oxygen blowing, the contents of CO, CO2, H2, O2 in the exhaust gas and flow rate of the exhaust gas from the converter during refining operation are continuously measured. The changes with passing time of the measured values is converted to the time series changing of parameter by ARMA system and this is compared with the standard pattern to quickly and quantitatively represent the difference of the operational condition, and by controlling oxygen lance height and oxygen injecting velocity from the lance, the P content in the molten steel produced is refined as de-phosphorizing to the aimed value with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、転炉吹止め時の溶鋼に含まれる燐含有型を精
度良く目標値に合致させる脱燐制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a dephosphorization control method that accurately matches the phosphorus content contained in molten steel at the time of converter blow-off to a target value.

〔従来の技術〕[Conventional technology]

吹錬中の転炉内においては、主として脱C9脱Si、脱
Mn、脱P等の反応が進行する。これらの反応のうち、
脱C1脱Si、脱Mnについては、比較的容易にその反
応の進行度合を制御することが可能である。
In the converter during blowing, reactions such as C9 removal, Si removal, Mn removal, and P removal mainly proceed. Of these reactions,
Regarding removal of C1, removal of Si, and removal of Mn, it is possible to control the progress of the reaction relatively easily.

ところが、脱P反応は、転炉スラグの性状によって大き
く左右されるが、このスラグの性状を連続的に分析する
技術は現在のところ確立されていない、そこで、排ガス
情報からこのスラグの性状を推定し、その推定値に基づ
いて脱P反応を制御している。
However, the dephosphorization reaction is greatly influenced by the properties of converter slag, but the technology to continuously analyze the properties of this slag has not yet been established. The dephosphorization reaction is controlled based on the estimated value.

たとえば、特開昭55−161012号公報に開示され
た方法においては、スラグ中の残留酸素(O5)をスラ
グ活性化を表す一つの指標として捉えて、脱Pa1mを
行っている。すなわち、排ガスを周期的にサンプリング
し、この排ガス情報からスラグ中の残留酸素(O5)を
約2秒毎に計算し、その計算値の時系列的な変化から脱
P反応が促進される最適操業条件を見い出し、それに基
づいてランス高さ等を制御している。
For example, in the method disclosed in JP-A-55-161012, residual oxygen (O5) in the slag is taken as an indicator of slag activation, and Pa1m is removed. In other words, the exhaust gas is periodically sampled, and the residual oxygen (O5) in the slag is calculated approximately every 2 seconds from this exhaust gas information, and the time-series changes in the calculated value are used to determine the optimum operation in which the dephosphorization reaction is promoted. The conditions are determined and the lance height etc. are controlled based on the conditions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の特開昭55−161012号公報の方法
においては、スラグ中の残留酸素1(Os)のみに着目
しているに過ぎない。
However, the method disclosed in Japanese Patent Application Laid-open No. 55-161012 only focuses on the residual oxygen 1 (Os) in the slag.

ところが、転炉における脱燐反応は、主として、溶鋼中
のPとスラグ中の酸素との反応しやすさによって支配さ
れるものであるから、単にスラグ中の残留酸素I(Os
)を制御情報として使用することは、そのスラグの性状
を正確に把握した制御とはならない。そのため、より一
層の脱Pの安定化と向上のために、制御精度の改善が望
まれている。
However, the dephosphorization reaction in a converter is mainly controlled by the ease with which P in the molten steel reacts with oxygen in the slag, and therefore the dephosphorization reaction in the converter is simply controlled by the residual oxygen I (Os) in the slag.
) as control information does not result in control that accurately grasps the properties of the slag. Therefore, in order to further stabilize and improve P removal, it is desired to improve control accuracy.

そこで、本発明は、このような要望に応えるべく開発さ
れたものであり、排ガスから種々の情報を得て、それに
応じて転炉内における脱燐反応の進行状態を把握し、精
度良く目標脱燐率に溶鋼を仕上げることを目的とする。
Therefore, the present invention was developed in response to such demands, and it is possible to obtain various information from the exhaust gas, grasp the progress state of the dephosphorization reaction in the converter accordingly, and accurately perform the target dephosphorization. The purpose is to finish molten steel to a phosphorus content.

〔問題点を解決するための手段及び作用〕本発明の脱燐
制御方法は、その目的を達成するために、転炉から排出
される排ガスのCO含有量。
[Means and actions for solving the problems] In order to achieve the object, the dephosphorization control method of the present invention controls the CO content of the exhaust gas discharged from the converter.

CO,含有1. Ht含有量、0□金含有及び排ガス流
量を連続的に測定し、これらの測定値の時間的な変化を
ARMA式におけるパラメータの時系列的変化に換算し
、該パラメータの時系列的変化を標準パターンと比較し
て操業条件を制御することを特徴とする。
CO, containing 1. Continuously measure Ht content, 0□gold content, and exhaust gas flow rate, convert the temporal changes in these measured values into time-series changes in parameters in the ARMA formula, and use the time-series changes in the parameters as a standard. It is characterized by controlling operating conditions by comparing with patterns.

以下、本発明を、その作用と共に具体的に説明する。Hereinafter, the present invention will be specifically explained along with its effects.

まず、溶鋼に含有されている不要な炭素Cは、酸素と反
応してCOガスを発生する。このcoガスに一部は、再
度酸素と反応しcotガスとなる。このCOtガス発生
のメカニズムは、複雑であるが、スラグの厚みが大きな
影響を及ぼしている。このスラグの厚みは、スラグの性
状と密接な関係にある。
First, unnecessary carbon C contained in molten steel reacts with oxygen to generate CO gas. A part of this co gas reacts with oxygen again to become cot gas. The mechanism of COt gas generation is complex, but the thickness of the slag has a great influence. The thickness of this slag is closely related to the properties of the slag.

そこで、COガス及びCOtガスの発生量の変化を把握
することにより、スラグの厚みの増減、傾向及び性状等
の定性的な変化を捉えることができる。
Therefore, by understanding changes in the amount of CO gas and COt gas generated, it is possible to understand qualitative changes such as increases and decreases in slag thickness, trends, and properties.

また、I11ガス、0□ガス及び排ガスの流量も、吹錬
反応の推移に密接な関係をもつ、そこで、これらの流量
を制御因子として取り入れるとき、吹錬反応をより細か
な精度で制御することができる。
In addition, the flow rates of I11 gas, 0□ gas, and exhaust gas are also closely related to the progress of the blowing reaction, so when these flow rates are incorporated as control factors, the blowing reaction can be controlled with finer precision. I can do it.

このため、排ガスからCO含有!、 co、含有量。For this reason, CO is included in the exhaust gas! , co, content.

H8含有量、0□含有量及び排ガス流量を求め、これら
の時間的な変化をA RM A (Auto−Regr
essiveMovable Average)形式で
表現された吹錬反応モデル式のパラメータを逐次同定し
て、前記排ガス情報をこのパラメータの時系列変化に変
換し、これによって操業条件の違いを迅速にかつ定量的
に表現し、それに応じて最適操業条件が得られるように
ランス高さ、送酸速度等を制御する。
The H8 content, 0□ content, and exhaust gas flow rate are determined, and their temporal changes are calculated using ARM A (Auto-Regr.
The parameters of the blowing reaction model equation expressed in the Movable Average) format are sequentially identified, and the exhaust gas information is converted into time-series changes in these parameters, thereby quickly and quantitatively expressing differences in operating conditions. , the lance height, oxygen delivery rate, etc. are controlled accordingly to obtain the optimum operating conditions.

ここで、排ガス情報を基に吹錬反応をARMA式化した
モデルについて説明すると、現時点kにおける排ガスの
各成分含有量及び排ガス流量は、(k−1)以前の段階
における排ガス組成及び送酸量の累積として次式のよう
に表現される。
Here, to explain the model in which the blowing reaction is expressed as an ARMA equation based on exhaust gas information, the content of each component of the exhaust gas and the exhaust gas flow rate at the current moment k are the exhaust gas composition and the oxygen supply amount at the stage before (k-1). It is expressed as the accumulation of

CO+t+ ”a+co+w−++ +azCOn−u
 ” °゛°”aacOTk−ml・・・・(11 COt(*+ =e+C(h+++−++ +czCO
t(m−□)+・・・+cscOtn−s+・・・・(
2) Hz n)=e+Hz 1k−11+etHt (*−
x+ + 9 °−+eIIHto+−ur・・・・(
3) Ox on −grot<ト+> 十gtoz n−t
> ” ’ 0 °”gwo!(k−wl・ ・ ・ 
・(4) F(ml −j+Fn−u ”jtFn−t+ + °
°°+jyFn−1)・ ・ ・ ・(5) ただし、 CO□):時刻kにおける排ガスのCO含有量COz 
(Ill :時刻kにおける排ガスのCO□含有研H1
(ml :時刻kにおける排ガスのH2含有量0!(。
CO+t+ ”a+co+w-++ +azCOn-u
” °゛°”aacOTk-ml...(11 COt(*+ =e+C(h+++-++ +czCO
t(m-□)+...+cscOtn-s+...(
2) Hz n)=e+Hz 1k-11+etHt (*-
x+ + 9 °-+eIIHto+-ur・・・・(
3) Ox on -grot 10gtoz n-t
> ” ' 0 °”gwo! (k-wl・ ・ ・
・(4) F(ml −j+Fn−u ”jtFn−t+ + °
°°+jyFn−1)・・・・・(5) However, CO□): CO content COz of exhaust gas at time k
(Ill: CO□ content of exhaust gas at time k H1
(ml: H2 content of exhaust gas at time k is 0!(.

二時刻kにおける排ガスの0□含有量F0):時刻kに
おける排ガス量 FOg on :時刻kにおける送酸量訂M:溶銑量 a+tl+C+d+fl+Lg+h+J+Il:同定す
べきパラメータまた、(k−1)、 (k−2)・・・
等は、時刻kに先立って周期的に排ガスを測定する時刻
を表す。
2 Content of exhaust gas at time k F0): Amount of exhaust gas at time k FOg on : Amount of oxygen supplied at time k M: Amount of hot metal a+tl+C+d+fl+Lg+h+J+Il: Parameters to be identified Also, (k-1), (k-2 )...
etc. represent the time at which exhaust gas is periodically measured prior to time k.

そこで、各時刻におけるCO含有1. co、含有量。Therefore, the CO content 1. co, content.

Hz含有量、03含有量及び排ガス流量を集積し、前記
式(11〜(5)に代入して逐次型最小2乗法により、
各パラメータa+ b、 C+d+ e+ L L h
+ J+ IIが各サンプリング時刻毎に求められる。
Hz content, 03 content, and exhaust gas flow rate are accumulated, and by substituting into the above equations (11 to (5)), using the sequential least squares method,
Each parameter a+ b, C+d+ e+ L L h
+J+II is determined at each sampling time.

たとえば、第1図は、普通鋼用の溶鋼を精錬した場合、
転炉吹止め時に成分連中したときのパラメータa及びC
の時系列的変化を示す、他方、第2図は、はぼ同じ成分
の溶鋼を精錬した場合、成分連中しなかったときのパラ
メータa及びCの時系列的変化を示す、これらの図を比
較するとき、パラメータaでは格別な相違がみられない
が、パラメータCにあっては初期の段1!!)(0〜l
O分)における値が大きく異なっている。この相違が累
積されて、第1図の場合には目標脱燐率となり、第2図
の場合には目標脱燐率から外れたものと考えられる。
For example, Figure 1 shows that when molten steel for ordinary steel is refined,
Parameters a and C when components are mixed at the time of converter blow-off
On the other hand, Figure 2 shows the time-series changes in parameters a and C when molten steel with approximately the same composition is refined and when the compositions are not mixed.These figures are compared. When doing so, no particular difference is observed for parameter a, but for parameter C, the initial stage 1! ! )(0~l
The values at 0 min) are significantly different. It is considered that this difference is accumulated, and the target dephosphorization rate is reached in the case of FIG. 1, and the target dephosphorization rate is deviated from the target dephosphorization rate in the case of FIG.

そこで、各パラメータa+ b、C+ d+ e+ f
+ L h+j、−に関して、第1図に示したような脱
Pのよく進んだ操業例の時系列的変化を過去の操業デー
タから予め求めておき、これを標準パターンとする。
Therefore, each parameter a+ b, C+ d+ e+ f
Regarding +L h+j, -, time-series changes in an example of operation in which P removal has progressed well as shown in FIG. 1 are determined in advance from past operation data, and this is used as a standard pattern.

そして、現在精錬している操業条件から前記式ill〜
(5)によって求められたパラメータa+ b+ C−
+ d+e+ L g+ h+ J+ IIの時系列的
な変化を、パラメータ変化の標準パターンと比較して、
その偏差を求める。
Then, from the current refining operating conditions, the formula ill ~
Parameter a+ b+ C- found by (5)
+ d+e+ L g+ h+ J+ Comparing the time-series changes in II with the standard pattern of parameter changes,
Find the deviation.

次いで、この偏差をランス高さ、送MN等の操業条件の
変化に演算し、脱燐反応が所定の推移をたどって進行す
るように精錬反応を制御する。
Next, this deviation is calculated as a change in operating conditions such as lance height and feed MN, and the refining reaction is controlled so that the dephosphorization reaction proceeds along a predetermined course.

〔実施例〕〔Example〕

次表は、C4,0%、 5i3oxto−”%、 Mn
30 X 10− ”%、P85X10−3%、514
xlO−3%の溶銑を、転炉精錬した場合の各パラメー
タの変化を示すものである。また、第3図に、このパラ
メータの変化に対応して、溶鋼及びスラグと反応する酸
素足の割合を制御するためのランスギヤ7プ(ランスの
先端から溶鋼表面までの距離)の時系列的な変化を併せ
示している。このようにして、各パラメータの変化を標
準パターンに一敗させることにより、16=1.5 x
lO−”%の高い暗度で吹止め時に目標とする燐含有量
に仕上げることができた。
The following table shows C4,0%, 5i3oxto-”%, Mn
30 X 10-”%, P85X10-3%, 514
It shows the changes in each parameter when hot metal of xlO-3% is refined in a converter. In addition, Fig. 3 shows the time series of lance gear 7 (distance from the tip of the lance to the molten steel surface) to control the proportion of oxygen reacting with molten steel and slag in response to changes in this parameter. It also shows changes. In this way, by making the changes in each parameter follow the standard pattern, 16=1.5 x
It was possible to achieve the target phosphorus content at the time of blow-off at a high darkness of 1O-''%.

表:パラメータの時系列的変化 〔発明の効果〕 以上に説明したように、本発明の脱燐制御方法において
は、排ガスから各種の情報を得て、これによってスラグ
の脱P反応性を把握し、最適な脱燐反応の推移に合致す
るように、操業条件を制御している。これにより、転炉
吹止め時の仕上げ脱燐率を精度良く目標値に一致させる
ことが可能となった。
Table: Time-series changes in parameters [Effects of the invention] As explained above, in the dephosphorization control method of the present invention, various information is obtained from the exhaust gas, and the dephosphorization reactivity of slag is grasped from this. , the operating conditions are controlled to match the optimal course of the dephosphorization reaction. This made it possible to accurately match the final dephosphorization rate at the time of converter blow-off to the target value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は成分連中した場合におけるパラメータa及びC
の時系列的変化を示し、第2図は成分連中しない場合に
おけるパラメータa及びCの時系列的変化を示し、第3
図は、ランスギャップの時系列的な変化を示す。
Figure 1 shows the parameters a and C when the components are connected.
Figure 2 shows the time series changes of parameters a and C in the case where the components are not connected;
The figure shows time-series changes in the lance gap.

Claims (1)

【特許請求の範囲】[Claims] 1、転炉から排出される排ガスのCO含有量、CO_2
含有量、H_2含有量、O_2含有量及び排ガス流量を
連続的に測定し、これらの測定値の時間的な変化をAR
MA式におけるパラメータの時系列的変化に換算し、該
パラメータの時系列的変化を標準パターンと比較して操
業条件を制御することを特徴とする転炉精錬における脱
燐制御方法。
1. CO content of exhaust gas discharged from the converter, CO_2
Continuously measure the content, H_2 content, O_2 content, and exhaust gas flow rate, and record the temporal changes in these measured values using AR.
1. A dephosphorization control method in converter refining, characterized in that operating conditions are controlled by converting parameters in an MA formula into time-series changes and comparing the time-series changes in the parameters with a standard pattern.
JP27374486A 1986-11-17 1986-11-17 Control method for de-phosphorization in converter refining Pending JPS63128109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27374486A JPS63128109A (en) 1986-11-17 1986-11-17 Control method for de-phosphorization in converter refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27374486A JPS63128109A (en) 1986-11-17 1986-11-17 Control method for de-phosphorization in converter refining

Publications (1)

Publication Number Publication Date
JPS63128109A true JPS63128109A (en) 1988-05-31

Family

ID=17531965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27374486A Pending JPS63128109A (en) 1986-11-17 1986-11-17 Control method for de-phosphorization in converter refining

Country Status (1)

Country Link
JP (1) JPS63128109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023696A (en) * 2011-07-15 2013-02-04 Nippon Steel & Sumitomo Metal Corp Converter blowing control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023696A (en) * 2011-07-15 2013-02-04 Nippon Steel & Sumitomo Metal Corp Converter blowing control method

Similar Documents

Publication Publication Date Title
JP2017025379A (en) Molten iron pretreating method, and molten iron pretreatment control device
JPS63128109A (en) Control method for de-phosphorization in converter refining
US3533778A (en) Automatic control of pig iron refining
KR102232483B1 (en) Method for estimating phosphorus concentration in molten steel, converter blowing control device, program and recording medium
JP2018095943A (en) Molten iron pretreatment method, molten iron pretreatment control device, program, and recording medium
JPS5858406B2 (en) How to operate a converter
JP7043949B2 (en) T. Fe estimation method, T.I. Fe control method, converter blow control device, and program
JPH04313A (en) Method for estimating c concentration in molten iron in iron-containing cold material melting method
JP7376787B2 (en) Device for estimating phosphorus concentration in molten steel, statistical model construction device, method for estimating phosphorus concentration in molten steel, statistical model construction method, and program
JP7469646B2 (en) Converter blowing control device, statistical model building device, converter blowing control method, statistical model building method and program
US3607230A (en) Process for controlling the carbon content of a molten metal bath
JPS6246606B2 (en)
TW201734214A (en) Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
US3847593A (en) Process for refining metals, in particular liquid pig iron, in oxygen converters with continuous control of the operative procedure
JPS61159520A (en) Converter refining method
JPS6389610A (en) Blowing method for converter
SU1678847A1 (en) Method of controlling metal temperature in converter
JPH02209411A (en) Method for pre-treating molten iron
JPS6246605B2 (en)
JPS60215705A (en) Method for operating melt reducing furnace
Gaines et al. Hot-metal pre-treating tower
SU872564A1 (en) Method of metal temperature control in convertor
JPS5877515A (en) Controlling method for temperature of blown up steel bath in oxygen top blown converter
JPS6123844B2 (en)
JPH093518A (en) Method for controlling end point of blowing in converter