JPS6246606B2 - - Google Patents
Info
- Publication number
- JPS6246606B2 JPS6246606B2 JP10366980A JP10366980A JPS6246606B2 JP S6246606 B2 JPS6246606 B2 JP S6246606B2 JP 10366980 A JP10366980 A JP 10366980A JP 10366980 A JP10366980 A JP 10366980A JP S6246606 B2 JPS6246606 B2 JP S6246606B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- amount
- oxygen
- blowing
- gas flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007664 blowing Methods 0.000 claims description 44
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 33
- 229910052760 oxygen Inorganic materials 0.000 claims description 33
- 239000001301 oxygen Substances 0.000 claims description 33
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 30
- 229910000831 Steel Inorganic materials 0.000 claims description 25
- 239000010959 steel Substances 0.000 claims description 25
- 239000007789 gas Substances 0.000 claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 15
- 239000001569 carbon dioxide Substances 0.000 claims description 15
- 239000011261 inert gas Substances 0.000 claims description 12
- 239000002893 slag Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- 238000000034 method Methods 0.000 description 19
- 230000003068 static effect Effects 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000007670 refining Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 238000005261 decarburization Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Description
【発明の詳細な説明】
本発明は上方向から純酸素を、下方向から炭酸
ガス又は不活性ガスを吹込む上・下吹転炉に関
し、その目的は目標とする終点の溶鋼温度と炭素
含有量に対し適中率の高い吹錬を可能とする上・
下吹転炉を提供することにあり、他の目的は、終
点の溶鋼のP、Mn含有量を目標値もしくは目標
値に近い含有量とする吹錬が可能な上・下吹転炉
を提供することにあり、さらに異なつた他の目的
は吹錬期間のスラグ中蓄酸素量についてあらかじ
め指標となるパターンを選定しておき、吹錬途中
において刻々のスラグ中蓄積酸素量を算出し、そ
の算出値と前記パターンの差を修正することによ
り目標値(温度、成分)に対する適中精度の高い
吹錬が可能な上・下吹転炉を提供することにあ
り、さらに異なつた目的は、操作者による手動操
作が不要かもしくは手動操作が極めて僅少な、い
わゆる自動吹錬が可能な上・下吹転炉を提供する
ことにあり、さらに他の目的は、溶鋼に対する撹
拌作用が優れ、ヒユームロスがすくなく歩留りが
高い上・下吹転炉を提供するにある。Detailed Description of the Invention The present invention relates to a top/bottom blowing converter in which pure oxygen is blown from above and carbon dioxide or inert gas is blown from below. It enables blowing with a high accuracy rate for the amount.
The purpose is to provide a bottom blowing converter, and another purpose is to provide a top/bottom blowing converter that is capable of blowing to bring the P and Mn contents of molten steel at the end point to target values or close to the target values. Another, different purpose is to select in advance a pattern that will serve as an indicator for the amount of oxygen stored in the slag during the blowing period, calculate the amount of oxygen stored in the slag every moment during the blowing period, and calculate the amount of oxygen stored in the slag. The purpose is to provide a top/bottom blowing converter that is capable of blowing with high precision to the target value (temperature, composition) by correcting the difference between the value and the above-mentioned pattern. The object is to provide a top/bottom blowing converter that is capable of so-called automatic blowing, requiring no manual operation or with very little manual operation.Another object is to provide a top/bottom blowing converter that is capable of so-called automatic blowing, and has an excellent stirring effect on molten steel, low fume loss, and high yield. We provide high-quality top and bottom blowing converters.
さて、近時上吹酸素転炉における欠点即ち酸化
ロスの多いことや脱P反応が悪いことを改良する
ため、底吹転炉が見直され始めたが、これとて吹
錬中の鉄の酸化が少ないため、最低溶銑配合率が
高くなることや設備条件が難しいため簡単な改造
によつて上吹転炉を底吹き転炉に変更することは
出来ないなどの問題がある。 Now, in recent years, bottom-blown converters have begun to be reconsidered in order to improve the shortcomings of top-blown oxygen converters, namely high oxidation loss and poor dephosphorization reaction. There are problems such as the minimum hot metal content ratio becoming high due to the small amount of hot metal, and the equipment conditions being difficult, making it impossible to change the top-blowing converter to a bottom-blowing converter by simple modification.
そこで、純酸素の上吹きと炭酸ガスや不活性ガ
スの下吹きを行なう上・下吹転炉が提案されるよ
うになつた。これは周知の底吹転炉に必要な羽口
保護のための冷却ガスが不要であり、O2底吹き
の如く、複雑高価な酸素配管や制御弁機構が必要
でないため設備費が安いと云う利点があるほか、
炭酸ガスを吹込む場合は炭酸ガスの分解反応によ
つて未燃焼廃ガス回収量が増加すると云う利益が
ある。 Therefore, top/bottom blowing converters have been proposed that carry out top blowing of pure oxygen and bottom blowing of carbon dioxide or inert gas. This does not require cooling gas to protect the tuyere, which is required in the well-known bottom-blowing converter, and the equipment cost is low because it does not require complicated and expensive oxygen piping or control valve mechanisms like O 2 bottom-blowing. Besides the advantages,
When carbon dioxide gas is injected, there is an advantage that the amount of unburned waste gas recovered increases due to the decomposition reaction of carbon dioxide gas.
ところで該上・下吹転炉における操業にも種々
の問題点があり改善が必要である。 However, there are various problems in the operation of the top/bottom blowing converter, and improvements are needed.
即ち、一般的に近時周知の上・下吹転炉は、溶
鋼温度および炭素含有量を制御するに当り、サブ
ランスを用いて吹錬終了間際たとえば1〜5分前
に直接溶鋼温度および炭素含有量の実測を行な
い、目標溶鋼温度と目標炭素含有量と前記実測値
との差に応じて、ランス高さ変更、送酸流量変
更、副原料投入、炭酸ガス吹込量又は不活性ガス
吹込量の調整などの諸手段を適宜実施して前記目
標値(温度Tt、炭素含有量Ct)を得ることが出
来る装置を備えている。 That is, in controlling the molten steel temperature and carbon content, generally known top/bottom blowing converters use a sub-lance to control the molten steel temperature and carbon content directly, for example, 1 to 5 minutes before the end of blowing. The amount is measured, and depending on the difference between the target molten steel temperature, target carbon content, and the above-mentioned measured value, changes are made to the lance height, oxygen flow rate, auxiliary material input, carbon dioxide gas injection amount, or inert gas injection amount. It is equipped with a device that can obtain the target values (temperature Tt, carbon content Ct) by appropriately implementing various means such as adjustment.
ところで前記周知の上・下吹転炉の操業に従事
した本発明者等は周知手段による操業では、目標
溶鋼温度、目標炭素含有量に適中させることが難
しく適中精度において今一歩の改善が必要である
ことを知つた。さらにまた周知手段では溶鋼成分
中のP、Mn含有量の変動が上吹転炉より少ない
もののやはりかなりあるためこれを有効に調整す
ることが出来ないことも判明した。 By the way, the present inventors, who have been engaged in the operation of the above-mentioned well-known top and bottom blowing converters, have found that it is difficult to achieve the target molten steel temperature and target carbon content when operating the well-known top/bottom blowing converter. I learned something. Furthermore, it has been found that the known means cannot effectively adjust the fluctuations in the P and Mn contents in the molten steel components, although these fluctuations are smaller than in the top blowing converter furnace.
即ち、従来の吹錬操業はダイナミツク制御とは
称せられているものの、サブランスによる溶鋼の
実測で得られた情報を基点として再び再度静的な
演算を行なうものであり、吹錬中の脱炭反応と造
滓反応の変化までを認識するものではないため操
業努力にかかわらず目標値に対する適中精度に難
点があり、造滓反応のばらつきによる溶鋼
〔P〕、〔Mn〕のばらつきもかなり大きくその改善
が必要であつた。 In other words, although conventional blowing operations are called dynamic control, they perform static calculations again based on information obtained from actual measurement of molten steel using a sublance, and the decarburization reaction during blowing is controlled. Because it does not recognize changes in the slag-making reaction, there is a problem in the accuracy of target values regardless of operational efforts, and the variation in molten steel [P] and [Mn] due to variations in the slag-making reaction is also large, making it difficult to improve. was necessary.
本発明者等は前記問題点の解消に努力した結果
本発明を開発したもので、目標値に対する適中率
を著しく高めることに成功した。 The present inventors have developed the present invention as a result of their efforts to solve the above-mentioned problems, and have succeeded in significantly increasing the accuracy rate for the target value.
さて本発明は装入条件、吹止条件からプログラ
ム設定を行なう静的制御と吹錬中のプロセス信号
を利用する動的制御を結合し綜合的制御を行なう
装置を備えており、スラグ中蓄積酸素量を制御の
重要な指標とする点に著しい特徴を有するもので
あり、前記静的制御と動的制御についてさらに詳
細に説明する。 The present invention is equipped with a device that performs comprehensive control by combining static control that performs program settings based on charging conditions and end-of-blowing conditions, and dynamic control that uses process signals during blowing. The static control and dynamic control will be explained in more detail.
静的な制御を遂行するための装置もしくは動的
な制御を実行する装置、又は両者の装置を備えそ
れらの整合を図りつつ吹錬を行なう装置を有する
ものは、前に述べたように既に周知である。静的
制御は精錬開始前に前もつてランス高さと吹込酸
素量と各種副原料使用量などの精錬条件を設定
し、このプログラムに添つて精錬を完結する制御
であり、動的制御は精錬反応過程の動的な情報を
計測することにより、ランス高さと吹込酸素量と
各種副原料使用量などの精錬条件を設定変更しつ
つ精錬を完結する制御である。 As mentioned above, devices that have a device for performing static control, a device for performing dynamic control, or a device that includes both devices and performs blowing while coordinating them are already well known. It is. Static control is a control in which refining conditions such as lance height, amount of blown oxygen, and amount of various auxiliary materials used are set before the start of refining, and refining is completed according to this program.Dynamic control is a control that completes refining according to this program. This control completes refining while changing refining conditions such as lance height, amount of blown oxygen, and amount of various auxiliary materials used by measuring dynamic information of the process.
ここで言う動的な情報としては、例えば公知の
「転炉制御法」(特公昭42−23695号公報参照)、あ
るいは「酸素上吹法の監視および制御法」(特公
昭43−4088号公報参照)などの精錬排ガスを分析
する方法、あるいは、米国特許第3574598号「塩
基性酸素製鋼の制御方法」などのサブランスを利
用する方法、本発明者等の「酸素転炉の溶鋼温度
および炭素含有量の推定方法」(特開昭52−
101617号)に見られる排ガス情報とサブランスを
利用するもの等数多く考案されている。特に排ガ
ス情報とサブランスを利用する制御法は、終点の
炭素含有量及び溶鋼温度の適中率を大幅に向上し
ている。その他「合金鋼の製法とその装置」(特
開昭51−8109号)、「転炉の操業方法」(特開昭52
−146711号)のように上・下吹転炉としての操業
に要点をおいたものも提示されている。しかして
これらには次の様な問題点がある。 The dynamic information referred to here includes, for example, the well-known "Converter Control Method" (see Japanese Patent Publication No. 42-23695) or the "Monitoring and Control Method for Oxygen Top Blowing Method" (Japanese Patent Publication No. 43-4088). A method of analyzing refining exhaust gas such as the method described in U.S. Pat. Quantity Estimation Method” (Unexamined Japanese Patent Publication No. 1983-
A number of methods have been devised, including those that utilize the exhaust gas information and sublance found in 101617). In particular, the control method that uses exhaust gas information and sublance greatly improves the accuracy of the end point carbon content and molten steel temperature. Others include ``Production method and equipment for alloy steel'' (Japanese Patent Application Laid-Open No. 51-8109), ``Operation Method of Converter Furnace'' (Japanese Patent Application Laid-open No. 52-8109),
-146711), which focuses on operation as a top/bottom blowing converter, has also been proposed. However, these methods have the following problems.
即ち、昇温手段としてのランス操作、送酸流量
操作、炭酸ガス流量もしくは不活性ガス流量操作
による酸素分配の変化による脱炭反応と造滓反応
の変化を期待するときはその計測量がなくその効
果を推定できないため、終点近傍の溶鋼温度及び
炭素含有量の変化の修正を冷却手段のみに限定せ
ざるを得ない。 In other words, when we expect changes in the decarburization reaction and slag-forming reaction due to changes in oxygen distribution caused by lance operation as a temperature raising means, oxygen flow rate control, carbon dioxide gas flow rate, or inert gas flow rate control, there is no measured amount of the change. Since the effect cannot be estimated, correction of changes in molten steel temperature and carbon content near the end point must be limited to cooling means only.
このように、あらかじめ溶鋼の終点温度が終点
目標よりやや高くなる様に副原料を配合し終点近
傍にて副原料の追加量を最新の情報に基づいて修
正して投入する手段では、吹錬の大半に渡り、溶
鋼温度の推移が、常に高目になるために転炉レン
ガに与える悪影響は免れ得ず、さらに転炉吹錬の
目的のひとつである脱燐においても溶鋼温度が高
目にて推移することは、脱燐反応には不利な冶金
雰囲気となるため、装入塩基度を高めるか、ある
いは、スラグ酸化度を上げる様な操業を行う必要
が生じ、品質、コストの面より問題となる。又前
述の「溶鋼温度および炭素含有量の推定方法」
(特開昭52−101617号)および「酸素転炉の溶鋼
温度および炭素含有量の制御方法」(特開昭52−
101618号)の様に、吹錬終点近傍における炉内の
酸素の脱炭反応と鉄の酸化反応への分配を連続し
て計測し制御精度を向上している場合は、溶鋼の
温度及び炭素含有量の変化の方向を修正するため
に冷却手段としては副原料の追加投入を、昇温手
段としてはランス操作、送酸流量に加えて炭酸ガ
ス流量もしくは不活性ガス操作による酸素分配の
変化による脱炭反応、造滓反応の変化も検知でき
るため特に修正方向を一方のみに限定して溶鋼の
終点温度を終点目標よりやや高くなる様に副原料
を配合する必要はないが、それでも、終点近傍に
おいてそれまでに経由して来た溶鋼温度および溶
鋼炭素含有量の変化の方向が終点のそれぞれの目
標を満す方向より大幅にずれがある時は、送酸流
量に加えて炭酸ガス流量もしくは不活性ガス流量
操作、副原料操作あるいはランス高さを大きく操
作する必要が生じ、炉内における酸素分配が大き
く変化するために、造滓反応が不安定となり、終
点における溶鋼燐、マンガン含有量および酸素含
有量のばらつきを拡大し、コスト、品質の面より
大きな問題となる。 In this way, the method of mixing auxiliary raw materials in advance so that the end point temperature of molten steel is slightly higher than the target end point, and adjusting the amount of additional auxiliary raw materials near the end point based on the latest information, does not improve blowing. For most of the time, the temperature of molten steel is always high, which has an unavoidable negative effect on the converter bricks, and even in dephosphorization, which is one of the purposes of converter blowing, the temperature of molten steel is always high. As the transition progresses, the metallurgical atmosphere becomes unfavorable for the dephosphorization reaction, making it necessary to increase the basicity of the charging or to increase the degree of oxidation of the slag, which poses problems in terms of quality and cost. Become. Also, the above-mentioned "Method for estimating molten steel temperature and carbon content"
(Japanese Patent Application Laid-open No. 101617/1983) and “Method for controlling molten steel temperature and carbon content in an oxygen converter”
101618), where the distribution of oxygen in the furnace to the decarburization reaction and the oxidation reaction of iron near the end of blowing is continuously measured to improve control accuracy, the temperature and carbon content of molten steel can be improved. In order to correct the direction of the change in quantity, additional input of auxiliary raw materials is used as a cooling means, lance operation is used as a heating means, and desorption is performed by changing the oxygen distribution by changing the carbon dioxide gas flow rate or inert gas operation in addition to the oxygen flow rate. Changes in the carbon reaction and slag-making reaction can also be detected, so there is no need to limit the correction direction to only one direction and mix auxiliary materials so that the end point temperature of molten steel is slightly higher than the target end point. If the direction of change in the molten steel temperature and molten steel carbon content that have passed through up to that point is significantly different from the direction that satisfies each target at the end point, in addition to the oxygen flow rate, the carbon dioxide gas flow rate or inert It becomes necessary to greatly manipulate the gas flow rate, auxiliary raw materials, or lance height, and the oxygen distribution in the furnace changes greatly, making the slag-making reaction unstable and reducing the molten steel phosphorus, manganese content, and oxygen content at the end point. This increases the variation in quantity and becomes a bigger problem than cost and quality.
前にも述べたように前記問題点を解消するに
は、精度のよい静的制御手段を開発すると共にそ
れに整合する動的制御手段を開発する必要があ
る。従来も静的制御について種々の工夫が行なわ
れて来たが、本発明者等の知る限りでは、精度の
よい静的制御は見当らないのが実状である。 As mentioned above, in order to solve the above problems, it is necessary to develop a highly accurate static control means and a dynamic control means that matches it. Various attempts have been made regarding static control in the past, but as far as the present inventors are aware, no highly accurate static control has yet been found.
本発明は如上の問題を解決するために創案され
たもので、本発明における特徴の1つは前記静的
制御において、送酸流量、炭酸ガス流量もしくは
不活性ガス流量、投入副原料銘柄及び投入速度、
排ガス量および排ガス組成から算出されるスラグ
中蓄積酸素量を演算パラメータのひとつとするこ
とにある。 The present invention was devised to solve the above-mentioned problems, and one of the features of the present invention is that in the static control, the flow rate of oxygen supply, the flow rate of carbon dioxide gas or the flow rate of inert gas, the brand of input auxiliary raw materials, and the input speed,
The purpose is to use the amount of oxygen accumulated in the slag, which is calculated from the amount of exhaust gas and the composition of the exhaust gas, as one of the calculation parameters.
スラグ中蓄積酸素量を静的制御の演算パラメー
タにする場合、その取扱いはおのずと静的制御法
の数式により決定される。静的制御法には広く知
られているように、物質バランスと熱バランスに
影響する要因のうち、モデルの単純化のため、相
関関係がうすい要因や実際上はその変動が小さい
要因を詳略し、基準ヒートとの差異分だけを制御
するために操作しうる要因(多くは吹込酸素量、
炭酸ガス量もしくは不活性ガス量、鉄鉱石量)に
修正する方法が一般的であるが、数式上の表現で
は様々なものが表現されている。そこで簡単な例
について、スラグ中蓄積酸素量の、静的制御モデ
ルへの導入例を説明する。勿論その他の静的制御
モデルにも同様に適用しうる。他の静的制御モデ
ルを利用する場合には、同様に、スラグ中蓄積酸
素量を適当な物質バランス式および熱バランス式
に組み込めばよい。 When the amount of oxygen accumulated in the slag is used as a calculation parameter for static control, its handling is naturally determined by the mathematical formula of the static control method. As is widely known in the static control method, among the factors that affect material balance and heat balance, in order to simplify the model, factors that have a weak correlation or whose fluctuations are small in practice are explained in detail. , factors that can be manipulated to control only the difference from the reference heat (mostly the amount of blown oxygen,
The most common method is to correct it to the amount of carbon dioxide gas, inert gas amount, or iron ore amount, but various expressions are used in mathematical formulas. Therefore, as a simple example, we will explain how the amount of oxygen accumulated in slag is introduced into a static control model. Of course, it can be applied to other static control models as well. When using other static control models, the amount of oxygen accumulated in the slag may be similarly incorporated into the appropriate material balance equation and heat balance equation.
下記〜および式で表わされる従来公知の
静的制御モデルを、〜および式で表わされ
る静的制御モデルに変更する。
The conventionally known static control model represented by the following ~ and formulas is changed to the static control model represented by ~ and formulas.
終点温度 TE=TE End point temperature T E = T E
Claims (1)
いて、(h)〜(k)の装置を備えたことを特徴とする
上・下吹転炉。 (a) 上方向から純酸素を、下方向から炭酸ガスも
しくは不活性ガスを吹込む第1の装置。 (b) 排ガスを未燃焼状態で回収する第2の装置。 (c) 吹錬の任意時機に副原料を投入する第3の装
置。 (d) 吹錬の任意時機に炉内溶鋼の温度および炭素
含有量を実測する第4の装置。 (e) 排ガスの組成を検出する第5の装置。 (f) 排ガスの流量を測定する第6の装置。 (g) 送酸流量に加えて炭酸ガス流量もしくは不活
性ガス流量を検出する第7の装置。 (h) 当該装入条件と吹止条件からランス高さ、吹
込酸素量、副原料投入量に加えて炭酸ガス流量
又は不活性ガス流量を決定し、前記第1、第2
および第3の装置に作動指令を与える第8の装
置。 (i) 当該装入条件と吹止条件と過去の相似吹錬パ
ターンから統計計算もしくは理論計算を用いて
当該吹錬について基準目標となる目標スラグ中
蓄積酸素量の連続的変化量を算出し、該変化量
を第8の装置のランス高さ、吹込酸素量、副原
料投入量決定の際の基準値として第8の装置に
与える第9の装置。 (j) 排ガス組成、排ガス流量、送酸流量、副原料
投入量に加えて炭酸ガス流量又は不活性ガス流
量から経時的にスラグ中蓄積酸素量を算出し第
8の装置に該算出値を入力せしめることにより
第8の装置において、ランス高さ、送酸流量、
副原料投入量の前記基準値に対する修正作動量
を決定せしめる第10の装置。 (k) 吹錬の終了間際に第4の装置を作動せしめる
と共に得られた溶鋼温度と炭素含有量の実測値
と第9および第10の装置からのスラグ中蓄積酸
素量情報から終点溶鋼温度と終点炭素含有量を
推定し目標溶鋼温度と目標炭素含有量の差を少
なくする指令信号を第8の装置に与え第8の装
置にランス高さ、送酸流量副原料投入量に加え
て炭酸ガス流量又は不活性ガス流量の修正作動
量を決定せしめる第11の装置。[Scope of Claims] 1. A top/bottom blowing converter having the following devices (a) to (g), characterized in that it is equipped with the devices (h) to (k). . (a) A first device that blows pure oxygen from above and carbon dioxide or inert gas from below. (b) A second device for recovering exhaust gas in an unburned state. (c) A third device that inputs auxiliary materials at any time during blowing. (d) A fourth device that actually measures the temperature and carbon content of molten steel in the furnace at any time during blowing. (e) A fifth device for detecting the composition of exhaust gas. (f) A sixth device for measuring the flow rate of exhaust gas. (g) A seventh device that detects a carbon dioxide gas flow rate or an inert gas flow rate in addition to the oxygen flow rate. (h) Determine the lance height, blown oxygen amount, auxiliary material input amount, and carbon dioxide gas flow rate or inert gas flow rate from the charging conditions and blow-off conditions, and
and an eighth device that gives an operating command to the third device. (i) Using statistical calculations or theoretical calculations from the charging conditions, end-of-blowing conditions, and past similar blowing patterns, calculate the continuous change in the target amount of oxygen accumulated in the slag, which is the reference target for the blowing, and A ninth device that provides the amount of change to the eighth device as a reference value when determining the lance height, the amount of blown oxygen, and the amount of auxiliary material input in the eighth device. (j) Calculate the amount of oxygen accumulated in the slag over time from the exhaust gas composition, exhaust gas flow rate, oxygen supply flow rate, amount of auxiliary raw materials input, as well as the carbon dioxide gas flow rate or inert gas flow rate, and input the calculated value into the eighth device. In the eighth device, the lance height, the oxygen flow rate,
A tenth device for determining a corrective operation amount for the reference value of the input amount of auxiliary raw materials. (k) The end point molten steel temperature is determined from the actual measured values of molten steel temperature and carbon content obtained by operating the fourth device just before the end of blowing, and information on the amount of oxygen accumulated in the slag from the 9th and 10th devices. A command signal for estimating the end point carbon content and reducing the difference between the target molten steel temperature and the target carbon content is given to the eighth device, and the eighth device receives the lance height, oxygen flow rate, amount of auxiliary material input, and carbon dioxide gas. an eleventh device for determining a corrective actuation amount of the flow rate or inert gas flow rate;
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10366980A JPS5729520A (en) | 1980-07-30 | 1980-07-30 | Top-and-bottom-blown converter |
US06/501,964 US4474361A (en) | 1980-07-30 | 1983-06-09 | Oxygen-blown steelmaking furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10366980A JPS5729520A (en) | 1980-07-30 | 1980-07-30 | Top-and-bottom-blown converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5729520A JPS5729520A (en) | 1982-02-17 |
JPS6246606B2 true JPS6246606B2 (en) | 1987-10-02 |
Family
ID=14360191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10366980A Granted JPS5729520A (en) | 1980-07-30 | 1980-07-30 | Top-and-bottom-blown converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5729520A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4529443A (en) * | 1984-04-26 | 1985-07-16 | Allegheny Ludlum Steel Corporation | System and method for producing steel in a top-blown vessel |
EP0372977B1 (en) * | 1988-12-09 | 1994-11-09 | Nikon Corporation | Electronic flash apparatus |
-
1980
- 1980-07-30 JP JP10366980A patent/JPS5729520A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5729520A (en) | 1982-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20070110828A (en) | Production of stainless steel of aisi 4xx grade ferritic steel in an aod converter | |
JP5225308B2 (en) | Vacuum decarburization refining method for chromium-containing molten steel | |
US4474361A (en) | Oxygen-blown steelmaking furnace | |
JP2012136767A (en) | Method for estimating phosphorus concentration in converter | |
JPS6246606B2 (en) | ||
JPH05263120A (en) | Method for controlling blowing in converter | |
JPS6246605B2 (en) | ||
SU1484297A3 (en) | Method of producing steels with low carbon content | |
JP3659070B2 (en) | Estimating molten steel temperature and carbon concentration during converter blowing, and converter blowing process | |
JP4140939B2 (en) | Converter blowing method | |
US4334922A (en) | Process for metal-bath refining | |
JPS5856729B2 (en) | Blowing control method for pure oxygen top-blown converter | |
JP2520191B2 (en) | Blowing control method for oxygen steelmaking furnace | |
JP7319538B2 (en) | Converter blowing control device, converter blowing control method and program | |
KR100325265B1 (en) | A method for manufacturing a high carbon fluid metal in a convertor | |
JP4048010B2 (en) | Method for estimating phosphorus equilibrium in converters and hot metal pretreatment vessels. | |
JPH0668123B2 (en) | Nitrogenizing method in a converter with a bottom blowing tuyere | |
JPH0310012A (en) | Steelmaking method in converter | |
JPH036312A (en) | Method for controlling blowing in converter | |
JPH0433846B2 (en) | ||
SU1673607A1 (en) | Method of deoxidizing rimming steel | |
JPH093518A (en) | Method for controlling end point of blowing in converter | |
JPH0310014A (en) | Method for controlling end point in secondary refining | |
JPS622603B2 (en) | ||
JP2001279317A (en) | Method for dephosphorizing molten iron |