JP4140939B2 - Converter blowing method - Google Patents

Converter blowing method Download PDF

Info

Publication number
JP4140939B2
JP4140939B2 JP27948499A JP27948499A JP4140939B2 JP 4140939 B2 JP4140939 B2 JP 4140939B2 JP 27948499 A JP27948499 A JP 27948499A JP 27948499 A JP27948499 A JP 27948499A JP 4140939 B2 JP4140939 B2 JP 4140939B2
Authority
JP
Japan
Prior art keywords
molten steel
end point
converter
lime
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27948499A
Other languages
Japanese (ja)
Other versions
JP2000309817A (en
Inventor
隆康 原
貴弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP27948499A priority Critical patent/JP4140939B2/en
Publication of JP2000309817A publication Critical patent/JP2000309817A/en
Application granted granted Critical
Publication of JP4140939B2 publication Critical patent/JP4140939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、転炉吹錬方法に関し、特に、転炉吹錬において終点溶鋼P(燐)を適正に制御するために必要とする石灰投入量を決定する方法に関するものである。
【0002】
【従来の技術】
従来より、転炉吹錬においては、吹錬終了時点での溶鋼温度、溶鋼炭素(C)濃度および溶鋼燐(P)濃度を適正に制御することが重要な課題である。この内、溶鋼温度および溶鋼C濃度を制御する方法については、各種スタティック制御、ダイナミック制御が多数提案され、実用化されている。
また、燐(P)に関しては、特公昭58−36644号公報に開示されているように、冷却材投入量調整によりPを制御する方法、また特公昭58−39202号公報、特開平4−41611号公報、特開平4−187709号公報に開示されているように、サブランス中間測定後に軌道修正を行うことにより燐(P)を制御する方法が提案されている。また前述の各方法とは別に、吹錬初期に投入するトータル石灰量(投入石灰量)を適正化することにより、終点溶鋼燐(P)を適正に制御する方法については、有効な方法は提案されておらず、固定的な基準を用いて石灰投入量を決定するか、また現場の経験と勘に頼ってその都度、基準に修正を加えて石灰投入量を決定し投入しているのが実状である。
【0003】
【発明が解決しようとする課題】
従来の転炉吹錬方法は、以上のように構成されているため、次のような課題が存在していた。すなわち、このような従来法の内、固定的な石灰基準により石灰投入量を決定する方法を採用した場合には、次のような課題が存在していた。
すなわち、石灰投入量を決定する因子は、溶銑珪素濃度、溶銑燐濃度、終点溶鋼目標温度、終点燐濃度目標値、終点炭素濃度目標値、主原料配合割合、炉体溶損状況、底吹き羽口状況、ランスノズル状況など多岐に渡り、これらの因子の全ては把握できないのみならず、全ての組み合わせに対する最適な基準を作成するのが不可能であるため、石灰投入量が最適とならなかった。
また、石灰基準を基に現場において、経験と勘で石灰投入量を変更する方法もあるが、この方法を採用した場合にも、その石灰投入量に個人差が生じ、石灰投入量も最適とならなかった。
そのため、過剰な石灰投入の場合はコスト上昇となり、過小な石灰投入の場合は燐(P)成分値の規格外れ、又は燐(P)成分外れを防止するため終点溶鋼炭素(C)の吹き下げ、スラグFeO濃度の上昇に伴うコスト上昇を引き起こすという課題が発生していた。
【0004】
本発明は、以上のような課題を解決するためになされたもので、特に、吹錬状況の変化に応じて、最適な石灰投入量の精度を高めることにより、P外れを防止し、石灰原単位を削減するようにした転炉吹錬方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明による転炉吹錬方法は、転炉吹錬において、石灰投入量計算式又は石灰投入量計算手順を表す関数
TCaO=F(HMSi,HMP,TE,PE,CE,x1,……,xm,Δa)
但し、
TCaO:転炉装入銑鉄当たりの換算石灰(CaO総量)原単位、
HMSi:溶銑珪素濃度、
HMP :溶銑燐濃度、
TE :転炉終点溶鋼温度、
PE :転炉終点溶鋼燐濃度又は後工程溶鋼燐濃度、
CE :転炉終点溶鋼炭素濃度、
x1,……,xm :その他の要因、
Δa :吹錬チャージ実績を用いて、チャージ毎に更新される学習項、
の前記TE,PE,CEにそれぞれ終点溶鋼温度目標値、終点溶鋼燐濃度目標値又は後工程溶鋼燐濃度目標値、終点溶鋼炭素濃度目標値をそれぞれ代入し、前記HMSi,HMP,x1,……,xmにはそれぞれの要因の実績値または予定値を代入して、石灰投入量を決定して吹錬を行い、
各吹錬終了後には、前記TCaO,HMSi,HMP,x1,……,xmの実績値およびTE,PE,CEの推定値を用いて、前記Δaの値を更新する方法であり、
前記TE,PE,CEの推定値は、
中間測定後の酸素量ΔO、中間測定後の冷却材量ΔSORE、中間測定時の溶鋼の炭素含有量CS、及び溶鋼の中間温度TSを含むTE,PE,CEに関するダイナミック制御モデル式において、CS,TSに各々のサブランス中間測定における測定値を代入するとともに、ΔO,ΔSOREに各々のサブランス中間測定後から転炉終点までの実績値を代入して得る転炉吹錬方法である。
【0006】
【発明の実施の形態】
以下、図面と共に本発明による転炉吹錬方法の好適な実施の形態について説明する。
まず、本発明者は、現場の操業データを解析した結果、石灰投入量決定に関する最適転炉操業とは、「過剰脱燐とならない範囲内で、後工程で問題を生じないまで終点溶鋼炭素(C)を上昇する」操業であると考えた。従って、直近の吹錬状況変化を考慮した上で、後工程で問題を生じない程度まで上昇した終点溶鋼炭素(C)目標と、過剰脱燐とならない程度の適正な終点溶鋼燐目標を実現する石灰投入量を決定する手順を与えればよいことが明らかとなった。
この石灰投入量決定手順であるが、従来法のような固定的な基準では、様々な要因の変化やその他の吹錬状況変化に対応することができないため、石灰基準式を作成し、これを脱燐に関する式と決め、この学習項を追加して、これをチャージ終了毎に実績データを用いて更新する方法とした。このような制御式に関して学習を行う方法は、スタテック制御の終点温度制御モデル・終点溶鋼炭素(C)制御モデルや、ダイナミック制御の各種モデル式においては、一般に広く使用されている。しかしながら、石灰投入量の決定については、従来、数値で表せない原因不明の吹錬状況の変化に応じて石灰投入量を変化させる操業が最適な操業である、という認識がなく、また、スタティック制御においては、脱燐式が制御モデルの中に含まれていないことも有り、石灰投入基準への学習項の追加は成されてない。本発明者は、石灰投入基準がいかなるものであろうとも、それがそのまま脱燐(P)制御式とできることに着目し、本発明を完成したものである。
従って、転炉吹錬において、石灰投入量計算式又は石灰投入量計算手順を表す関数
TCaO=F(HMSi,HMP,TE,PE,CE,x1,……,xm,Δa)
但し、
TCaO:転炉装入銑鉄当たりの換算石灰(CaO総量)原単位、
HMSi:溶銑珪素濃度、
HMP :溶銑燐濃度、
TE :転炉終点溶鋼温度、
PE :転炉終点溶鋼燐濃度又は後工程溶鋼燐濃度、
CE :転炉終点溶鋼炭素濃度、
x1,……,xm :その他の要因、
Δa :吹錬チャージ実績を用いて、チャージ毎に更新される学習項、
の前記TE,PE,CEにそれぞれ終点溶鋼温度目標値、終点溶鋼燐濃度目標値又は後工程溶鋼燐濃度目標値、終点溶鋼炭素濃度目標値をそれぞれ代入し、前記HMSi,HMP,x1,……,xmにはそれぞれの要因の実績値または予定値を代入して、石灰投入量を決定して吹錬を行い、各吹錬終了後には、前記TCaO,HMSi,HMP,x1,……,xmの実績値およびTE,PE,CEの推定値を用いて、前記Δaの値を更新した。
ここで、TE,PE,CEの推定値として、
中間測定後の酸素量ΔO、中間測定後の冷却材量ΔSORE、中間測定時の溶鋼の炭素含有量CS、及び溶鋼の中間温度TSを含むTE,PE,CEに関するダイナミック制御モデル式において、CS,TSに各々のサブランス中間測定における測定値を代入するとともに、ΔO,ΔSOREに各々のサブランス中間測定後から転炉終点までの実績値を代入して得られた値を採用する方法である。
さらに、この場合の前記Δaの値の更新は、溶銑珪素濃度の大幅な変動影響を防止するため、前記TCaOを一定のHMSiに補正して更新することが好ましい。
なお、前述したように最適転炉操業は「過剰脱燐とならない範囲内で、後工程で問題を生じないまで終点溶鋼炭素(C)を上昇する」操業であることにより、終点溶鋼燐濃度目標は燐(P)の規格外れを起こさない程度の数値とし、終点溶鋼炭素濃度目標値は後工程で問題を生じない程度まで上昇した終点溶鋼炭素(C)を目標値とすればよい。
本発明による転炉吹錬方法においては、前述のように、学習項を含んだ石灰投入量計算式を用いて適正な石灰投入量を決定するため、燐(P)濃度の制御精度が向上し、燐(P)成分規格外れを起こさない範囲内で溶鋼燐(P)濃度を上昇させることが可能となる。これにより、必要石灰量を低減でき、トータルコストを最小化することができる。
本出願人は、本発明に関連した発明を、先に特願平9−279146号で提案している。その内容は、本発明法の学習(Δaの更新)時点において、TE,PE,CEとして推定値ではなく、実績値を用いる方法であった。しかし、本発明法を用いる方がさらに効果が大きい。その理由を述べる。
終点Cと終点温度を制御する従来のダイナミック制御においては、経験的に次のようなことが言える。例えば、同一条件、同一石灰量にて吹錬を行った場合、CE(終点C)=0.07%を狙って結果的にCE=0.07%で吹き止まった場合と、CE=0.10%を狙って結果的にCE=0.07%で吹き止まった場合は、明らかにPE(終点P又は後工程P)レベル(期待値、平均値)は異なる。後者の方がPEレベルは高い。しかし、CE=0.07%を狙って結果的にCE=0.07%で吹き止まった場合と、CE=0.07%を狙って結果的にCE=0.10%で吹き止まった場合でも、狙いがCE=0.07%ならそれに相当する酸素を使用しており、CEが高く止まっていても、スラグは十分に酸化されており、十分な脱燐能力を有するためであると考えられる。中間測定後の燐濃度の推定においては、実績CEの情報は有用ではなく、それよりも、サブランス中間測定時点から、どれだけの量の酸素と冷却材を使用したかの方が有用な情報であるわけである。終点P推定式の解析において、終点C分析値の値を使用しようと使用しまいと、終点P推定精度はほとんど変わらないことからもこれが言える。
すなわち、同一吹錬条件、同一石灰投入量のもとでは、実績PEは、実績CEとよりも、推定CE(従来制御の自動吹止なら基本的に推定CE=目標CEである)との方が強い相関を持つ。したがって、投入石灰量を計算する式の学習項Δaの更新(学習)においても、CEとしては、実績値よりも推定値を用いる方が精度が良くなるのである。
TEについても、同様のことが言える。本来ならTE(終点温度)が高いと燐分配が悪化し、PE(P)も高くなるはずであるが、低い目標温度に対して高い実績温度が得られた場合は、それは鉄が多量に酸化されたためである可能性が強く、PEレベルは目標通り低い温度で吹き止まった場合と殆ど変わらない。このため、換算石灰投入量を計算する式の学習項Δaの更新(学習)においても、実績TE値よりも推定TE値を用いる方が精度が良くなる。
PEについては、CEやTEのようなことは言えないが、PE,CE,TEのいずれについても、次のようなことも言える。
スタティック制御モデル式は、通常、転炉吹錬の終点を制御する形の式になっている。しかし、サブランス中間測定以後は、スタティック制御は使用されず、ダイナミック制御式で制御が行われる。これを考えると、スタティック制御とは実質的にはサブランス中間測定までを適正に制御するものである。したがって、学習を行う場合も、中間測定後の予測不可能な誤差分は差し引いて、学習を行うことが望ましい。言い換えると、中間測定までの誤差分のみを学習するわけである。すなわち、中間測定時点での情報を用いた推定値を用いて学習項Δaの更新を行えばよいことになる。したがって、中間測定時点でのTE,PE,CEの推定値を用いて学習を行った方が学習が安定することになる。
以上の理由により、本発明では、先に特願平9−279146号と異なり、学習に使用するTE,PE,CEの値については、実績値でなく、ダイナミック制御式を用いた推定値を使用することとしている。これにより、図1及び図2に示されたように、先に特願平9−279146号に比べても精度向上が得られ、石灰使用量、Pのバラツキが低減される。
【0007】
【実施例】
以下に、本発明による転炉操業の1実施例について説明する。まず、石灰投入基準の考え方について説明する。石灰基準は、次の脱燐平衡式、熱バランス式、物質収支式を連立して解くことにより求められる。具体的な各計算式は次の通りである。
【0008】
(1)式:脱燐平衡式
log((P)/PE/(T.Fe)
=a1・log((CaO)+a2・(MgO)+a3・(T.Fe))
+a4/TE+a5
【0009】
(2)式:熱バランス式
TE=b1・CaO+b2・CaCO+b3・MgCO
+b4・SV・(T.Fe)+b5・HMSi+b6・SORE
+G(x1,……,xn)+b7
【0010】
(3)式:スラグ中(T.Fe)の関係式
(T.Fe)=c1・CE+c2・(SiO)+c3/TE+c4
【0011】
(4)式:P物質収支式
10・(HMP・HMR+CMP・CMR+SCP・SCR)
=0.429・(P)・SV+d1/[P]
0.429はP中の含有率の化学量論的係数である。
【0012】
(5)式:Si物質収支式
0.467・(SiO)・SV=10・(HMSi・HMR
+CMSi・CMR)+0.023・SORE
0.467はSiO中Siの含有率の化学量論的係数、0.023はSORE中Siの含有率である。
【0013】
(6)式:CaO物質収支式
(CaO)・SV/100=TCaO+0.1・SORE
0.1はSORE中のCaO含有率である。
【0014】
(7)式:MgO物質収支式
(MgO)・SV/100=0.15・MgCO+e1
0.15は生ドロマイト中のMgO含有率
【0015】
(8)式:スラグ量計算式
SV・(100−1.29(T.Fe))/100
=2.14・(HMSi・HMR+CMSi・CMR)+TCaO
+0.15・MgCO+0.15・SORE+e1+f1
【0016】
(9)式:換算石灰量計算式
TCaO=0.95・CaO+0.55・CaCO+0.34・MgCO
0.95、0.55、0.34はそれぞれの各原料中の石灰純分比率
【0017】
ここで、
(CaO) :スラグ中CaO濃度(%) 計算式
(SiO) :スラグ中SiO濃度(%) 計算式
(MgO) :スラグ中MgO濃度(%) 計算式
(T.Fe) :スラグ中のT.Fe濃度(%) 計算式
(P) :スラグ中のP濃度(%) 計算式
PE :転炉終点溶鋼燐濃度(%) 目標値、推定値
TE :転炉終点溶鋼温度 (℃) 目標値、推定値
CE :転炉終点溶鋼炭素濃度(%) 目標値、推定値
HMSi :溶銑珪素濃度 (%) 実績値
HMP :溶銑燐濃度 (%) 実績値
CMSi :冷銑珪素濃度 (%) 実績値
CMP :冷銑燐濃度 (%) 実績値
SCP :鋼屑燐濃度 (%) 実績値
HMR :溶銑率 (%) 実績値
CMR :冷銑率 (%) 実績値
SCR :鋼屑率 (%) 実績値
CaO :生石灰原単位(Kg/T−主原料) 計算式
CaCO :石灰石原単位(Kg/T−主原料) 固定量
MgCO :生ドロマイト原(Kg/T−主原料) 計算式
SORE :焼結鉱原単位(Kg/T−主原料) 計算式
TCaO :換算石灰原単位(Kg/T−主原料) 計算式
SV :スラグ量原単位(Kg/T−主原料) 計算式
G(・) :実数値関数
【0018】
前述の各計算(1)〜(9)式の関係式の構築にあたっては、本出願人が用いている185ton転炉の操業データを用いて、主に重回帰により関係式中の係数を決定した。
計算(1)〜(9)式の関係式において、HMSi,HMP,CMSi,CMP,SCP,HMR,CMR,SCRは実績値、PE,TE,CEはそれぞれの目標値を代入し、CaCO,MgCOを固定の量とすれば未知数が(T.Fe),(SiO),(CaO),(MgO),(P),CaO,TCaO,SORE,SVの9個で式が9個あるため、これを解くことにより、終点温度、終点炭素濃度、RH処理開始前燐濃度を目標値とするために必要な主石灰量が求められる。上記計算は非常に煩雑で現場で計算するのには適しないので、簡単のため、上記手法で得られた解とともに以下の近似式を作成し、それを用いた。
(HMSi≧0.2%で使用可能な近似式)
【0019】
石灰投入量は溶銑珪素濃度に対して曲線的に変化するため、近似式はHMSiに対して累乗関数とした。
TCaO=g1・(HMSi)g2・[g3−g4・(F’(CE/10) −F’(g5))+g6・(TE−g7)+g8・(HMP−g9) +g10・(g11−PE)+x1+………xm+Δa/g12]
(10)
ここで、
Δa:吹錬チャージ実績を用いて、チャージ毎に更新される学習項、
F’:後述の実数値関数、である。
なお、石灰石投入量=20Kg/トン−主原料、生ドロマイト投入量=10Kg/トン−主原料に固定して考えている。
以上のような計算式に、鋼種ごとに予め設定された終点目標温度、終点目標炭素、RH処理開始前燐濃度、および溶銑珪素濃度と溶銑燐濃度の実績値を代入することによって適正な換算石灰量が計算でき、これにより終点溶鋼燐濃度を適正な範囲に高精度に制御することができた。
なお、学習に用いるTE,PE,CEの推定値を求めるためには、特開平4−187709号公報に開示されたダイナミックモデル式を用いて推定値を求めた。
【0020】
すなわち、
温度モデル式 …(1a)
TE=0.81TS+13.6ΔO−2.58・ΔSORE/WCH
+0.27HMR−77.8/F’(100・CS)+247.0+学習項
【0021】
酸素モデル式 …(2a)
ΔO/WCH=F’(100・CE)−F’(100・CS)
−0.12・ΔSORE/WCH+0.017・TCaO/WCH
−0.012・SORE/WCH−0.005・CaCO/WCH
−0.22・CaF/WCH+0.35+学習項
但し、
Cを次のように区分してF’(C)を求めた。
0<C<5(10−2%)のとき
F’(C)=−0.928C+12.93
5<C<25(10−2%)のとき
F’(C)=0.73*1n(C)−0.13C+23.7/C+3.1
(但し、Inは自然対数)
25<C(10−2%)のとき
F’(C)=−0.11C+5.7
【0022】
燐モデル式 …(3a)
PE=(0.10HMSi+0.093HMP−1.13・O/PiG
−0.39・ΔO/WCH−0.14・SORE/WCH
−0.59・ΔSORE/WCH−0.36HMR
−0.37CaF/WCH−0.019TCaO/PiG
+0.15(100・CS)−0.12CMR+0.12TS
−87.1)/1000+学習項
但し、
TE :溶鋼の転炉終点溶鋼温度 (℃)
TS :溶鋼の中間温度 (℃)
:中間測定までの酸素量(Nm
ΔO :中間測定後の酸素量(Nm
SORE :冷却材量(Kg)
ΔSORE :中間測定後の冷却材量(Kg)
CE :溶鋼の転炉終点溶鋼炭素含有量(%)
CS :中間測定時の溶鋼の炭素含有量(%)
WCH :主原料(トン)、
HMR :溶銑率(%)
CaCO :石灰石(Kg)、
HMSi :溶銑珪素 (10−2%)
PE :溶鋼の終点燐(10−3%)
PiG :銑鉄(トン)
CMR :冷銑率(%)、
HMP :溶銑燐 (10−3%)
CaF :蛍石(Kg)
なお、冷却材としては焼結鉱を用いた。
これら、(1a)、(2a)、(3a)式のTE,PE,CE以外の変数に全て実績値を代入して、TE,PE,CEについて解いたものをTE,PE,CEの推定値とした。
但し、溶鋼の終点炭素含有量であるCEについては、計算を簡単に導くため、(2a)式をF’(100・CE)について解き、推定値とする。
学習項Δaの更新は、まずHMSi,HMP,x1,……,xmの実績値およびTE,PE,CEの推定値をそれぞれ(10)式に代入することにより得られる換算石灰原単位の計算値、TCaO(cal)および実際に投入した換算石灰原単位、TCaO(R)を以下の式を用いて一定のHMSiに補正する。
補正TCaO(cal)=TCaO(cal)・g12/(g1・(HMSi) g2 )……(11)
補正TCaO(R)=TCaO(R)・g12/(g1・(HMSi) g2 )……(12)
上式より得られる補正TCaO(cal)および補正TCaO(R)の差より(10)式の学習項Δaを学習更新する。
【0023】
【発明の効果】
本発明による転炉吹錬方法は、以上のように構成されているため、終点燐制御精度が向上し、燐成分の規格外れ比率を上昇させることなく、燐成分の平均値を上昇させることが可能となった。
また、TCaOの計算値および実績値を一定のHMSiに補正して学習項Δaを更新することにより、HMSiが変動してもそれに対応した学習を行うことが可能である。
さらに、終点温度、後工程溶鋼燐濃度のRH脱ガス装置への入鍋時のPについては、実績値でなく、ダイナミックモデル式による推定値を用い、また終点Cの代わりにダイナミックモデルのF(CE)値を用いることにより、ダイナミック制御で避けられなかった終点のバラツキを無視することができるようになり、石灰投入量の計算値のバラツキを低減できる。
【図面の簡単な説明】
【図1】 従来法と本発明法との燐(P)外れ率の比較を示す特性図である。
【図2】 従来法と本発明法との燐(P)濃度分布の比較を示す特性図である。
【符号の説明】
TE 転炉終点溶鋼温度
PE 転炉終点溶鋼燐濃度又は後工程溶鋼燐濃度
CE 転炉終点溶鋼炭素濃度
x1,……,xm その他の要因
Δa チャージ毎に更新される学習項
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a converter blowing method, and more particularly to a method for determining the amount of lime input necessary for appropriately controlling the end point molten steel P (phosphorus) in the converter blowing.
[0002]
[Prior art]
Conventionally, in converter blowing, it has been an important subject to appropriately control the molten steel temperature, molten steel carbon (C) concentration, and molten steel phosphorus (P) concentration at the end of blowing. Among these, as for the method of controlling the molten steel temperature and the molten steel C concentration, various static controls and dynamic controls have been proposed and put into practical use.
As for phosphorus (P), as disclosed in JP-B-58-36644, a method of controlling P by adjusting the amount of coolant introduced, JP-B-58-39202, JP-A-4-41611. As disclosed in Japanese Laid-Open Patent Publication No. 4-187709, a method for controlling phosphorus (P) by performing trajectory correction after sub-lance intermediate measurement has been proposed. In addition to the above-mentioned methods, an effective method is proposed for a method of appropriately controlling the end point molten steel phosphorus (P) by optimizing the total amount of lime (the amount of lime input) input at the initial stage of blowing. The lime input is determined using a fixed standard, or the lime input is determined and input by modifying the standard each time depending on the experience and intuition of the site. It's real.
[0003]
[Problems to be solved by the invention]
Since the conventional converter blowing method is configured as described above, the following problems exist. That is, when the method of determining the amount of lime input based on a fixed lime standard among such conventional methods is employed, the following problems exist.
That is, the factors that determine the amount of lime input are: hot metal silicon concentration, hot metal phosphorous concentration, end point molten steel target temperature, end point phosphorus concentration target value, end point carbon concentration target value, main raw material blending ratio, furnace body erosion status, bottom blowing As the mouth conditions and lance nozzle conditions vary, not all of these factors can be ascertained, and it is impossible to create an optimal standard for all combinations, so the lime input was not optimal. .
In addition, there is a method of changing the lime input amount based on experience and intuition based on the lime standard, but even if this method is adopted, there are individual differences in the lime input amount, and the lime input amount is also optimal. did not become.
Therefore, in the case of excessive lime input, the cost increases. In the case of excessive lime input, the end point of molten steel carbon (C) is blown down in order to prevent the phosphorus (P) component value from being deviated or the phosphorus (P) component from being deviated. The subject that the cost raise accompanying the raise of slag FeO density | concentration had generate | occur | produced.
[0004]
The present invention has been made to solve the above-described problems, and in particular, according to changes in the blowing condition, by increasing the accuracy of the optimum amount of lime input, it is possible to prevent P detachment, It aims at providing the converter blowing method which reduced the unit.
[0005]
[Means for Solving the Problems]
In the converter blowing, the converter blowing method according to the present invention is a function of calculating lime input amount or calculating procedure of lime input amount TCaO = F (HMSi, HMP, TE, PE, CE, x1,..., Xm , Δa)
However,
TCaO: Conversion lime (CaO total amount) basic unit per converter charged pig iron,
HMSi: Hot metal silicon concentration,
HMP: hot metal phosphorus concentration,
TE: Converter end point molten steel temperature,
PE: Converter end point molten steel phosphorus concentration or post process molten steel phosphorus concentration,
CE: Converter end point molten steel carbon concentration,
x1, ..., xm: other factors,
Δa: A learning term that is updated for each charge using the blow smelting charge record,
, The end point molten steel temperature target value, the end point molten steel phosphorus concentration target value or the post-process molten steel phosphorus concentration target value, the end point molten steel carbon concentration target value are respectively substituted into the TE, PE, and CE, and the HMSi, HMP, x1,. , Xm is substituted with actual or planned values of each factor, lime input is determined and blown,
After each blowing, the value of Δa is updated using the actual values of TCaO, HMSi, HMP, x1,..., Xm and the estimated values of TE, PE, and CE.
The estimated values of TE, PE, and CE are
In the dynamic control model formula for TE, PE, and CE including the oxygen amount ΔO 2 after the intermediate measurement, the coolant amount ΔSORE after the intermediate measurement, the carbon content CS of the molten steel at the intermediate measurement, and the intermediate temperature TS of the molten steel, , TS is substituted for the measured value in each sublance intermediate measurement, and ΔO 2 , ΔSORE is substituted with the actual values from the respective sublance intermediate measurement to the converter end point.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a converter blowing method according to the present invention will be described with reference to the drawings.
First, as a result of analyzing the on-site operation data, the present inventor found that the optimum converter operation related to the determination of lime input amount is “within the range where excessive dephosphorization does not occur, until the end point molten steel carbon ( C) ascending "operation. Therefore, in consideration of the latest changes in blowing conditions, the end-point molten steel (C) target that has risen to a level that does not cause a problem in the subsequent process and the appropriate end-point molten steel phosphorus target that does not cause excessive dephosphorization are realized. It became clear that a procedure for determining the amount of lime input should be given.
Although this is the procedure for determining the amount of lime input, a fixed standard such as the conventional method cannot cope with changes in various factors and other changes in the blowing condition. The formula for dephosphorization was determined, and this learning term was added, and this was updated by using actual data every time the charge was completed. A method for learning about such a control equation is generally widely used in an end point temperature control model of static control, an end point molten steel (C) control model, and various model equations of dynamic control. However, regarding the determination of lime input, there is no recognition that the operation that changes the amount of lime input according to the change in the unexplained blowing condition that cannot be expressed numerically is the optimum operation, and static control. In, the dephosphorization formula is not included in the control model, and the learning term is not added to the lime input standard. The inventor of the present invention has completed the present invention, focusing on the fact that whatever the lime input standard is, it can be directly used as a dephosphorization (P) control formula.
Therefore, in converter blowing, lime input calculation formula or function expressing lime input calculation procedure TCaO = F (HMSi, HMP, TE, PE, CE, x1,..., Xm, Δa)
However,
TCaO: Conversion lime (CaO total amount) basic unit per converter charged pig iron,
HMSi: Hot metal silicon concentration,
HMP: hot metal phosphorus concentration,
TE: Converter end point molten steel temperature,
PE: Converter end point molten steel phosphorus concentration or post process molten steel phosphorus concentration,
CE: Converter end point molten steel carbon concentration,
x1, ..., xm: other factors,
Δa: A learning term that is updated for each charge using the blow smelting charge record,
, The end point molten steel temperature target value, the end point molten steel phosphorus concentration target value or the post-process molten steel phosphorus concentration target value, and the end point molten steel carbon concentration target value are substituted for the TE, PE, and CE, respectively, and the HMSi, HMP, x1,. , Xm are substituted with actual values or planned values of the respective factors, and the amount of lime is determined and blown, and after each blowing, the TCaO, HMSi, HMP, x1,..., Xm The value of Δa was updated using the actual value of TE and the estimated values of TE, PE, and CE.
Here, as estimated values of TE, PE, and CE,
In the dynamic control model formula for TE, PE, and CE including oxygen amount ΔO 2 after intermediate measurement, coolant amount ΔSORE after intermediate measurement, carbon content CS of molten steel at intermediate measurement, and intermediate temperature TS of molten steel, CS , TS is substituted with the measured value in each sublance intermediate measurement, and the values obtained by substituting the actual values from after each sublance intermediate measurement to the converter end point into ΔO 2 and ΔSORE are employed.
Further, in this case, the update of the value of Δa is preferably performed by correcting the TCaO to a constant HMSi in order to prevent a significant fluctuation effect of the molten silicon concentration.
As described above, the optimum converter operation is an operation of “increasing the end point molten steel (C) within a range not causing excessive dephosphorization until no problem occurs in the post-process”, thereby achieving an end point molten steel phosphorus concentration target. Is a numerical value that does not cause the phosphorus (P) to be out of specification, and the end point molten steel carbon concentration target value may be the end point molten steel (C) that has risen to a level that does not cause a problem in the subsequent process.
In the converter blowing method according to the present invention, as described above, an appropriate amount of lime is determined using a lime amount calculation formula including a learning term, so that the control accuracy of the phosphorus (P) concentration is improved. It is possible to increase the molten steel phosphorus (P) concentration within a range that does not cause the phosphorus (P) component to be out of specification. Thereby, a required lime amount can be reduced and a total cost can be minimized.
The present applicant has previously proposed an invention related to the present invention in Japanese Patent Application No. 9-279146. The content was a method using actual values instead of estimated values as TE, PE, and CE at the time of learning (update of Δa) of the method of the present invention. However, it is more effective to use the method of the present invention. Give the reason.
In the conventional dynamic control for controlling the end point C and the end point temperature, the following can be said empirically. For example, when blowing is performed under the same conditions and the same amount of lime, when CE (end point C) = 0.07%, the result is stopped at CE = 0.07%, and CE = 0. When aiming at 10% and finally stopping at CE = 0.07%, the level of PE (end point P or subsequent process P) (expected value, average value) is clearly different. The latter has a higher PE level. However, when CE = 0.07% is eventually blown off at CE = 0.07%, and CE = 0.07% is blown off at CE = 0.10%. However, if the target is CE = 0.07%, oxygen corresponding to that is used, and even if CE remains high, the slag is sufficiently oxidized and has sufficient dephosphorization ability. It is done. The actual CE information is not useful in estimating the phosphorus concentration after the intermediate measurement, but rather the amount of oxygen and coolant used since the sublance intermediate measurement time. There is. This can also be said from the fact that the end point P estimation accuracy hardly changes even if the end point C analysis value is used in the analysis of the end point P estimation formula.
That is, under the same blowing conditions and the same amount of lime input, the actual PE is an estimated CE (basically estimated CE = target CE for automatic blow-off in conventional control) rather than the actual CE. Has a strong correlation. Therefore, also in the update (learning) of the learning term Δa of the formula for calculating the input lime amount, as CE, the accuracy is better when the estimated value is used than the actual value.
The same can be said for TE. Originally, if TE (end point temperature) is high, phosphorus distribution will deteriorate and PE (P) will also increase, but if a high actual temperature is obtained for a low target temperature, it will oxidize a large amount of iron. The PE level is almost the same as when it was blown off at a low temperature as intended. For this reason, also in the update (learning) of the learning term Δa of the formula for calculating the converted lime input amount, the accuracy is better when the estimated TE value is used than the actual TE value.
Regarding PE, CE and TE cannot be said, but the following can be said for any of PE, CE and TE.
The static control model formula is usually a formula that controls the end point of converter blowing. However, after the sublance intermediate measurement, the static control is not used and the control is performed by the dynamic control type. Considering this, the static control substantially controls the sublance intermediate measurement appropriately. Therefore, when learning is performed, it is desirable to perform the learning by subtracting an unpredictable error after the intermediate measurement. In other words, only the error up to the intermediate measurement is learned. That is, the learning term Δa may be updated using an estimated value using information at the time of intermediate measurement. Therefore, learning is more stable when learning is performed using the estimated values of TE, PE, and CE at the time of intermediate measurement.
For the reasons described above, in the present invention, unlike Japanese Patent Application No. 9-279146, TE, PE, and CE values used for learning are not actual values but estimated values using dynamic control equations. To do. Thereby, as shown in FIG.1 and FIG.2, a precision improvement is obtained even compared with Japanese Patent Application No. 9-279146 previously, and the variation in the amount of lime and P is reduced.
[0007]
【Example】
Below, one Example of the converter operation by this invention is described. First, the concept of the lime input standard will be described. The lime standard is obtained by simultaneously solving the following dephosphorization equilibrium formula, heat balance formula, and mass balance formula. Specific calculation formulas are as follows.
[0008]
(1) Formula: Dephosphorization equilibrium type log ((P 2 O 5 ) / PE 2 /(T.Fe) 5 )
= A1 · log ((CaO) + a2 · (MgO) + a3 · (T.Fe))
+ A4 / TE + a5
[0009]
(2) Formula: Heat balance formula TE = b1 · CaO + b2 · CaCO 3 + b3 · MgCO 3
+ B4.SV. (T.Fe) + b5.HMSi + b6.SORE
+ G (x1, ..., xn) + b7
[0010]
(3) Formula: Relational expression of (T.Fe) in slag (T.Fe) = c1 · CE + c2 · (SiO 2 ) + c3 / TE + c4
[0011]
(4) Formula: P material balance formula 10 · (HMP · HMR + CMP · CMR + SCP · SCR)
= 0.429 · (P 2 O 5 ) · SV + d1 / [P]
0.429 is a stoichiometric coefficient of content in P 2 O 5 .
[0012]
(5) Formula: Si material balance formula 0.467 · (SiO 2 ) · SV = 10 · (HMSi · HMR
+ CMSi · CMR) + 0.023 · SORE
0.467 stoichiometric coefficients of content in SiO 2 Si, 0.023 is the content of the Si Sore.
[0013]
(6) Formula: CaO material balance formula (CaO) · SV / 100 = TCaO + 0.1 · SORE
0.1 is the CaO content in SORE.
[0014]
(7) Formula: MgO material balance formula (MgO) · SV / 100 = 0.15 · MgCO 3 + e1
0.15 is MgO content in raw dolomite
Formula (8): Slag amount calculation formula SV · (100-1.29 (T.Fe)) / 100
= 2.14 · (HMSi · HMR + CMSi · CMR) + TCaO
+ 0.15 · MgCO 3 + 0.15 · SORE + e1 + f1
[0016]
(9) Formula: Equivalent lime amount calculation formula TCaO = 0.95 · CaO + 0.55 · CaCO 3 + 0.34 · MgCO 3
0.95, 0.55, and 0.34 are the ratios of pure lime in each raw material.
here,
(CaO): CaO concentration in slag (%) Calculation formula (SiO 2 ): SiO 2 concentration in slag (%) Calculation formula (MgO): MgO concentration in slag (%) Calculation formula (T.Fe): in slag T.A. Fe concentration (%) Calculation formula (P 2 O 5 ): P 2 O 5 concentration in slag (%) Calculation formula PE: Converter end-point molten steel phosphorus concentration (%) Target value, estimated value TE: Converter end-point molten steel temperature (° C) Target value, estimated value CE: Converter end-point molten steel carbon concentration (%) Target value, estimated value HMSi: Molten silicon concentration (%) Actual value HMP: Molten phosphorus concentration (%) Actual value CMSi: Cold silicon concentration (%) Actual value CMP: Cold phosphorus concentration (%) Actual value SCP: Steel scrap phosphorus concentration (%) Actual value HMR: Hot metal ratio (%) Actual value CMR: Cold iron ratio (%) Actual value SCR: Steel scrap rate (%) actual CaO: burnt lime consumption rate (Kg / T-main raw material) formula CaCO 3: lime Ishihara units (Kg / T-main raw material) fixed amount MgCO 3: raw dolomite Hara (Kg / T-main raw material ) Calculation formula SORE: Sinter unit consumption (Kg / T-main raw material) Calculation Formula TCaO: Conversion lime basic unit (Kg / T-main raw material) Calculation formula SV: Slag amount basic unit (Kg / T-main raw material) Calculation formula G (•): Real value function
In the construction of the relational expressions of the above-described calculations (1) to (9), the coefficients in the relational expressions were determined mainly by multiple regression using the operation data of the 185ton converter used by the applicant. .
In the relational expressions of the calculations (1) to (9), HMSi, HMP, CMSi, CMP, SCP, HMR, CMR, and SCR are substituted with actual values, PE, TE, and CE are substituted with respective target values, and CaCO 3 , If MgCO 3 is a fixed amount, there are nine unknowns (T.Fe), (SiO 2 ), (CaO), (MgO), (P 2 O 5 ), CaO, TCaO, SORE, and SV. Since there are nine, by solving this, the amount of main lime necessary for setting the end point temperature, end point carbon concentration, and phosphorus concentration before the start of RH treatment to the target values is obtained. The above calculation is very complicated and not suitable for on-site calculation. For simplicity, the following approximate expression was created and used together with the solution obtained by the above method.
(Approximate expression that can be used when HMSi ≧ 0.2%)
[0019]
Since the amount of lime input varies in a curved manner with respect to the molten silicon concentration, the approximate expression is a power function with respect to HMSi.
TCaO = g1 * (HMSi) g2 * [g3-g4 * (F '(CE / 10) -F' (g5)) + g6 * (TE-g7) + g8 * (HMP-g9) + g10 * (g11-PE) + X1 +... + Xm + Δa / g12]
(10)
here,
Δa: A learning term that is updated for each charge using the blowing charge record,
F ′: a real value function described later.
It is assumed that the input amount of limestone = 20 kg / ton-main raw material and the input amount of raw dolomite = 10 kg / ton-main raw material.
By substituting the end point target temperature, end point target carbon, phosphorus concentration before starting RH treatment, and actual values of hot metal silicon concentration and hot metal phosphorus concentration, which are preset for each steel type, into the above formula The amount could be calculated, and the phosphorus concentration in the end-point molten steel could be controlled to an appropriate range with high accuracy.
In addition, in order to obtain | require the estimated value of TE, PE, and CE used for learning, the estimated value was calculated | required using the dynamic model formula disclosed by Unexamined-Japanese-Patent No. 4-187709.
[0020]
That is,
Temperature model formula (1a)
TE = 0.81TS + 13.6ΔO 2 −2.58 · ΔSORE / WCH
+ 0.27HMR-77.8 / F ′ (100 · CS) + 247.0 + learning term
Oxygen model formula (2a)
ΔO 2 / WCH = F ′ (100 · CE) −F ′ (100 · CS)
-0.12 · ΔSORE / WCH + 0.017 · TCaO / WCH
−0.012 · SORE / WCH−0.005 · CaCO 3 / WCH
−0.22 · CaF 2 /WCH+0.35+learning term where
C 'was divided as follows to obtain F' (C).
When 0 <C <5 (10 −2 %) F ′ (C) = − 0.928C + 12.93
When 5 <C <25 (10 −2 %) F ′ (C) = 0.73 * 1n (C) −0.13C + 23.7 / C + 3.1
(However, In is a natural logarithm)
When 25 <C (10 −2 %) F ′ (C) = − 0.11C + 5.7
[0022]
Phosphorus model formula (3a)
PE = (0.10HMSi + 0.093HMP-1.13 · O 2 / PiG
-0.39 · ΔO 2 /WCH-0.14·SORE/WCH
-0.59 · ΔSORE / WCH-0.36HMR
-0.37CaF 2 /WCH-0.019TCaO/PiG
+0.15 (100 ・ CS) −0.12CMR + 0.12TS
-87.1) / 1000 + learning term, where
TE: Molten steel end point molten steel temperature (° C)
TS: Intermediate temperature of molten steel (° C)
O 2 : oxygen amount until intermediate measurement (Nm 3 )
ΔO 2 : oxygen amount after intermediate measurement (Nm 3 )
SORE: Coolant amount (Kg)
ΔSORE: Amount of coolant after intermediate measurement (Kg)
CE: Molten steel carbon content (%)
CS: Carbon content of molten steel during intermediate measurement (%)
WCH: Main raw material (tons),
HMR: Hot metal ratio (%)
CaCO 3 : Limestone (Kg),
HMSi: Hot metal silicon (10 -2 %)
PE: Phosphor end point phosphorus (10 −3 %)
PiG: Pig iron
CMR: refrigeration rate (%),
HMP: Hot metal phosphorus (10 -3 %)
CaF 2 : Fluorite (Kg)
Note that sintered ore was used as the coolant.
Substituting actual values for all variables other than TE, PE, and CE in equations (1a), (2a), and (3a), and solving for TE, PE, and CE is an estimated value of TE, PE, and CE. It was.
However, for CE, which is the end-point carbon content of the molten steel, in order to simplify the calculation, the equation (2a) is solved for F ′ (100 · CE) to be an estimated value.
The learning term Δa is updated by first calculating the calculated lime intensity values by substituting the actual values of HMSi, HMP, x1,..., Xm and the estimated values of TE, PE, and CE into the equation (10), respectively. , TCaO (cal) and actually put the converted lime intensity, hand corrected to a certain HMSi using the following equation TCaO (R).
Correction TCaO (cal) = TCaO (cal) · g12 / (g1 · (HMSi) g2 ) (11)
Correction TCaO (R) = TCaO (R) .g12 / (g1. (HMSi) g2 ) (12)
The learning term Δa in the equation (10) is learned and updated from the difference between the corrected TCaO (cal) and the corrected TCaO (R) obtained from the above equation.
[0023]
【The invention's effect】
Since the converter blowing method according to the present invention is configured as described above, the end point phosphorus control accuracy is improved, and the average value of the phosphorus component can be increased without increasing the off-specification ratio of the phosphorus component. It has become possible.
Further, by updating the hand correcting the learning term Δa calculated values and actual values of TCaO a constant HMSI, it is possible to perform learning HMSI is correspondingly vary.
Furthermore, for the P at the time of pouring into the RH degassing apparatus having the end point temperature and the phosphorus concentration in the post-process molten steel, the estimated value based on the dynamic model formula is used instead of the actual value, and the F ( By using the CE) value, it becomes possible to ignore the variation in the end point that cannot be avoided in the dynamic control, and the variation in the calculated value of the lime input can be reduced.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing a comparison of phosphorus (P) detachment rates between a conventional method and a method of the present invention.
FIG. 2 is a characteristic diagram showing a comparison of phosphorus (P) concentration distribution between the conventional method and the method of the present invention.
[Explanation of symbols]
TE Converter end-point molten steel temperature PE Converter end-point molten steel phosphorus concentration or post-process molten steel phosphorus concentration CE Converter end-point molten steel carbon concentration x1, ..., xm Other factors Δa Learning term updated for each charge

Claims (1)

転炉吹錬において、石灰投入量計算式又は石灰投入量計算手順を表す関数
TCaO=F(HMSi,HMP,TE,PE,CE,x1,……,xm,Δa)
但し、
TCaO:転炉装入銑鉄当たりの換算石灰(CaO総量)原単位、
HMSi:溶銑珪素濃度、
HMP :溶銑燐濃度、
TE :転炉終点溶鋼温度、
PE :転炉終点溶鋼燐濃度又は後工程溶鋼燐濃度、
CE :転炉終点溶鋼炭素濃度、
x1,……,xm :その他の要因、
Δa :吹錬チャージ実績を用いて、チャージ毎に更新される学習項、
の前記TE,PE,CEにそれぞれ終点溶鋼温度目標値、終点溶鋼燐濃度目標値又は後工程溶鋼燐濃度目標値、終点溶鋼炭素濃度目標値をそれぞれ代入し、前記HMSi,HMP,x1,……,xmにはそれぞれの要因の実績値または予定値を代入して、石灰投入量を決定して吹錬を行い、
各吹錬終了後には、前記TCaO,HMSi,HMP,x1,……,xmの実績値およびTE,PE,CEの推定値を用いて、前記Δaの値を更新する方法であり、
前記TE,PE,CEの推定値は、
中間測定後の酸素量ΔO、中間測定後の冷却材量ΔSORE、中間測定時の溶鋼の炭素含有量CS、及び溶鋼の中間温度TSを含むTE,PE,CEに関するダイナミック制御モデル式において、CS,TSに各々のサブランス中間測定における測定値を代入するとともに、ΔO,ΔSOREに各々のサブランス中間測定後から転炉終点までの実績値を代入して得ることを特徴とする転炉吹錬方法。
In converter blowing, lime input calculation formula or lime input calculation procedure TCaO = F (HMSi, HMP, TE, PE, CE, x1, ..., xm, Δa)
However,
TCaO: Conversion lime (CaO total amount) basic unit per converter charged pig iron,
HMSi: Hot metal silicon concentration,
HMP: hot metal phosphorus concentration,
TE: Converter end point molten steel temperature,
PE: Converter end point molten steel phosphorus concentration or post process molten steel phosphorus concentration,
CE: Converter end point molten steel carbon concentration,
x1, ..., xm: other factors,
Δa: A learning term that is updated for each charge using the blow smelting charge record,
, The end point molten steel temperature target value, the end point molten steel phosphorus concentration target value or the post-process molten steel phosphorus concentration target value, the end point molten steel carbon concentration target value are respectively substituted into the TE, PE, and CE, and the HMSi, HMP, x1,. , Xm is substituted with actual or planned values of each factor, lime input is determined and blown,
After each blowing, the value of Δa is updated using the actual values of TCaO, HMSi, HMP, x1,..., Xm and the estimated values of TE, PE, and CE.
The estimated values of TE, PE, and CE are
In the dynamic control model formula for TE, PE, and CE including the oxygen amount ΔO 2 after the intermediate measurement, the coolant amount ΔSORE after the intermediate measurement, the carbon content CS of the molten steel at the intermediate measurement, and the intermediate temperature TS of the molten steel, , TS is substituted with the measured value in each sublance intermediate measurement, and is obtained by substituting the actual value from after each sublance intermediate measurement to the end point of the converter into ΔO 2 , ΔSORE. .
JP27948499A 1999-02-22 1999-09-30 Converter blowing method Expired - Lifetime JP4140939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27948499A JP4140939B2 (en) 1999-02-22 1999-09-30 Converter blowing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-43006 1999-02-22
JP4300699 1999-02-22
JP27948499A JP4140939B2 (en) 1999-02-22 1999-09-30 Converter blowing method

Publications (2)

Publication Number Publication Date
JP2000309817A JP2000309817A (en) 2000-11-07
JP4140939B2 true JP4140939B2 (en) 2008-08-27

Family

ID=26382745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27948499A Expired - Lifetime JP4140939B2 (en) 1999-02-22 1999-09-30 Converter blowing method

Country Status (1)

Country Link
JP (1) JP4140939B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561405B2 (en) * 2005-02-28 2010-10-13 Jfeスチール株式会社 Converter blowing control method
JP4915316B2 (en) * 2007-08-28 2012-04-11 住友金属工業株式会社 Converter blowing control method and converter blowing control system
JP5821656B2 (en) * 2011-01-28 2015-11-24 Jfeスチール株式会社 Quick lime concentration prediction device and blowing control method
JP5948863B2 (en) * 2011-12-26 2016-07-06 Jfeスチール株式会社 Converter refining method
CN115652022A (en) * 2022-09-27 2023-01-31 江苏省沙钢钢铁研究院有限公司 Automatic control method for feeding of electric arc furnace

Also Published As

Publication number Publication date
JP2000309817A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
JP4140939B2 (en) Converter blowing method
JP2012136767A (en) Method for estimating phosphorus concentration in converter
JPH11117013A (en) Converter blowing
JP6825348B2 (en) Hot metal pretreatment method, hot metal pretreatment control device, program and recording medium
US4227921A (en) Method of controlling a blast furnace operation
JPH0797611A (en) Method for controlling molten steel temperature in steelmaking process
KR20050024963A (en) Method for Refinig Molten Pig Iron in Converter
JP2004035986A (en) Converter operation guidance model
JP5924310B2 (en) Blowing control method and blowing control device
CN112481439A (en) Smelting process of converter low-phosphorus steel
JP4048010B2 (en) Method for estimating phosphorus equilibrium in converters and hot metal pretreatment vessels.
JP4421314B2 (en) Determination of slag amount in hot metal refining
JP7319538B2 (en) Converter blowing control device, converter blowing control method and program
JP2724365B2 (en) Blast furnace operation method
US4043801A (en) Method of simultaneously controlling temperature and carbon content of molten steel at the end-point in oxygen top-blown converter
JP6064520B2 (en) Blowing control method and blowing control device
JP2520191B2 (en) Blowing control method for oxygen steelmaking furnace
JP2621613B2 (en) Control method of end-point carbon concentration in upper-bottom blowing converter
JPS6246606B2 (en)
JPH07268433A (en) Method for controlling end point in steel making process of converter
RU2252263C1 (en) Device of formation of a converter process control
JPH09256021A (en) Device for calculating charging quantity of auxiliary raw material into converter
JPS5985841A (en) Manufacture of ferrochromium
JP3738411B2 (en) Converter blowing end point control method
JPS5855519A (en) Controlling method for operation of aod furnace with computer simulation

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term