JP2000309817A - Converter blowing method - Google Patents

Converter blowing method

Info

Publication number
JP2000309817A
JP2000309817A JP27948499A JP27948499A JP2000309817A JP 2000309817 A JP2000309817 A JP 2000309817A JP 27948499 A JP27948499 A JP 27948499A JP 27948499 A JP27948499 A JP 27948499A JP 2000309817 A JP2000309817 A JP 2000309817A
Authority
JP
Japan
Prior art keywords
molten steel
converter
lime
hmsi
tcao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27948499A
Other languages
Japanese (ja)
Other versions
JP4140939B2 (en
Inventor
Takayasu Hara
隆康 原
Takahiro Yamaguchi
貴弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP27948499A priority Critical patent/JP4140939B2/en
Publication of JP2000309817A publication Critical patent/JP2000309817A/en
Application granted granted Critical
Publication of JP4140939B2 publication Critical patent/JP4140939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To decide a lime charging quantity needed to suitably control the end point of phosphorous P in molten steel in a converter blowing. SOLUTION: In a lime charging quantity calculating formula or a function showing the lime charging quantity calculating sequence, TCaO=F (HMSi, HMP, TE, PE, CE, x1,...xm+δa) (wherein, TCaO: unit requirement of converter lime (CaO total quantity) per charged molten iron into the converter, HMSi: silicon concn. in the molten iron, HMP: phosphorus concn. in the molten iron, THE: molten steel temp. at the end point in the converter, PE: phosphorus concn. in the molten steel at the end point in the converter or phosphorus concn. in the molten steel in the succeeding process, CE: carbon concn. in the molten steel at the end point in the converter, x1,...xm: other factors and δa: a learning term updated at every charge using the actual result of the blowing charge), is used and each target value is substituted into TE, PE, CE, and in HMSi, HMP, and x1,...xm, the actual result value or scheduled value of each factor is substituted, and the lime charging quantity is decided to execute the blowing. After each blowing, δa is updated with the actual values of TCaO, HMSi, HMP, x1,...xm and the estimated values of TE, PE, CE.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、転炉吹錬方法に関
し、特に、転炉吹錬において終点溶鋼P(燐)を適正に
制御するために必要とする石灰投入量を決定する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a converter blowing method, and more particularly, to a method for determining a lime input amount required for properly controlling an end molten steel P (phosphorus) in a converter blowing. It is.

【0002】[0002]

【従来の技術】従来より、転炉吹錬においては、吹錬終
了時点での溶鋼温度、溶鋼炭素(C)濃度および溶鋼燐
(P)濃度を適正に制御することが重要な課題である。
この内、溶鋼温度および溶鋼C濃度を制御する方法につ
いては、各種スタティック制御、ダイナミック制御が多
数提案され、実用化されている。また、燐(P)に関し
ては、特公昭58−36644号公報に開示されている
ように、冷却材投入量調整によりPを制御する方法、ま
た特公昭58−39202号公報、特開平4−4161
1号公報、特開平4−187709号公報に開示されて
いるように、サブランス中間測定後に軌道修正を行うこ
とにより燐(P)を制御する方法が提案されている。ま
た前述の各方法とは別に、吹錬初期に投入するトータル
石灰量(投入石灰量)を適正化することにより、終点溶
鋼燐(P)を適正に制御する方法については、有効な方
法は提案されておらず、固定的な基準を用いて石灰投入
量を決定するか、また現場の経験と勘に頼ってその都
度、基準に修正を加えて石灰投入量を決定し投入してい
るのが実状である。
2. Description of the Related Art Conventionally, in converter blowing, it has been important to properly control the molten steel temperature, the molten steel carbon (C) concentration and the molten steel phosphorus (P) concentration at the end of blowing.
Among them, various methods of controlling the temperature of the molten steel and the concentration of the molten steel C have been proposed and put to practical use, various types of static control and dynamic control. Regarding phosphorus (P), as disclosed in Japanese Patent Publication No. 58-36644, a method of controlling P by adjusting the amount of coolant input, and Japanese Patent Publication No. 58-39202, Japanese Patent Application Laid-Open No. 4-4161.
As disclosed in Japanese Unexamined Patent Publication No. 1 and JP-A-4-187709, there has been proposed a method of controlling phosphorus (P) by performing a trajectory correction after a sublance intermediate measurement. In addition to the above-mentioned methods, an effective method is proposed for the method of properly controlling the end-point molten steel phosphorus (P) by optimizing the total lime amount (the amount of lime input) at the initial stage of blowing. The lime input amount is determined using a fixed standard, or the lime input amount is determined and input based on the experience and intuition of the site and modifying the standard each time. It is a fact.

【0003】[0003]

【発明が解決しようとする課題】従来の転炉吹錬方法
は、以上のように構成されているため、次のような課題
が存在していた。すなわち、このような従来法の内、固
定的な石灰基準により石灰投入量を決定する方法を採用
した場合には、次のような課題が存在していた。すなわ
ち、石灰投入量を決定する因子は、溶銑珪素濃度、溶銑
燐濃度、終点溶鋼目標温度、終点燐濃度目標値、終点炭
素濃度目標値、主原料配合割合、炉体溶損状況、底吹き
羽口状況、ランスノズル状況など多岐に渡り、これらの
因子の全ては把握できないのみならず、全ての組み合わ
せに対する最適な基準を作成するのが不可能であるた
め、石灰投入量が最適とならなかった。また、石灰基準
を基に現場において、経験と勘で石灰投入量を変更する
方法もあるが、この方法を採用した場合にも、その石灰
投入量に個人差が生じ、石灰投入量も最適とならなかっ
た。そのため、過剰な石灰投入の場合はコスト上昇とな
り、過小な石灰投入の場合は燐(P)成分値の規格外
れ、又は燐(P)成分外れを防止するため終点溶鋼炭素
(C)の吹き下げ、スラグFeO濃度の上昇に伴うコス
ト上昇を引き起こすという課題が発生していた。
The conventional converter blowing method has the following problems because it is configured as described above. That is, among the conventional methods, when the method of determining the amount of lime input based on a fixed lime standard is employed, the following problem exists. That is, the factors that determine the amount of lime input are hot metal silicon concentration, hot metal phosphorus concentration, target molten steel target temperature, target phosphorus concentration target value, target carbon concentration target value, main raw material mixing ratio, furnace body erosion status, bottom blow blade In a wide variety of situations such as mouth conditions and lance nozzle conditions, not only all of these factors could not be grasped, but it was not possible to create optimal standards for all combinations, so the amount of lime input was not optimal. . There is also a method of changing the amount of lime input based on the lime standard at the site based on experience and intuition.However, even if this method is adopted, there is an individual difference in the amount of lime input, and the amount of lime input is optimal. did not become. For this reason, the cost increases when excessive lime is charged, and when the lime is excessively small, the end-point molten carbon (C) is blown down to prevent the phosphorus (P) component value from being out of specification or the phosphorus (P) component from falling off. However, there has been a problem that the cost is increased due to the increase in the slag FeO concentration.

【0004】本発明は、以上のような課題を解決するた
めになされたもので、特に、吹錬状況の変化に応じて、
最適な石灰投入量の精度を高めることにより、P外れを
防止し、石灰原単位を削減するようにした転炉吹錬方法
を提供することを目的とする。
[0004] The present invention has been made to solve the above-described problems, and in particular, in response to changes in blowing conditions,
An object of the present invention is to provide a converter blowing method in which the accuracy of an optimum amount of lime is increased to prevent the deviation of P and reduce the lime intensity.

【0005】[0005]

【課題を解決するための手段】本発明による転炉吹錬方
法は、転炉吹錬において、石灰投入量計算式又は石灰投
入量計算手順を表す関数 TCaO=F(HMSi,HMP,TE,PE,CE,
x1,……,xm+Δa) 但し、 TCaO:転炉装入銑鉄当たりの換算石灰(CaO総
量)原単位、 HMSi:溶銑珪素濃度、 HMP :溶銑燐濃度、 TE :転炉終点溶鋼温度、 PE :転炉終点溶鋼燐濃度又は後工程溶鋼燐濃度、 CE :転炉終点溶鋼炭素濃度、 x1,……,xm :その他の要因、 Δa :吹錬チャージ実績を用いて、チャージ毎に更
新される学習項、 の前記TE,PE,CEにそれぞれ終点溶鋼温度目標
値、終点溶鋼燐濃度目標値又は後工程溶鋼燐濃度目標
値、終点溶鋼炭素濃度目標値をそれぞれ代入し、前記H
MSi,HMP,x1,……,xmにはそれぞれの要因
の実績値または予定値を代入して、石灰投入量を決定し
て吹錬を行い、各吹錬終了後には、前記TCaO,HM
Si,HMP,x1,……,xmの実績値およびTE,
PE,CEの推定値を用いて、前記Δaの値を更新する
転炉吹錬方法である。また、前記TE,PE,CEの推
定値は、サブランス中間測定結果を用いたダイナミック
制御モデル式又は終点成分推定式に転炉終点までの実績
値を代入して得た値とする方法である。また、前記TC
aOを一定のHMSiに補正して前記Δaの値を更新す
る方法である。
A converter blowing method according to the present invention provides a lime input calculation formula or a function representing a lime input calculation procedure in converter blowing, TCaO = F (HMSi, HMP, TE, PE). , CE,
x1,..., xm + Δa) where, TCaO: converted lime (total CaO) unit per pig iron charged to the converter, HMSi: hot metal silicon concentration, HMP: hot metal phosphorus concentration, TE: converter end-point molten steel temperature, PE: conversion Furnace end-point molten steel phosphorous concentration or post-process molten steel phosphorus concentration, CE: Converter end-point molten steel carbon concentration, x1,..., Xm: Other factors, Δa: Learning item that is updated for each charge using the results of blowing charge Substitute the target molten steel temperature target value, the target molten steel phosphorus concentration target value or the post-process molten steel phosphorus concentration target value, and the target molten steel carbon concentration target value into the TE, PE, and CE, respectively.
.., Xm are substituted with actual or scheduled values of the respective factors to determine the amount of lime to be blown, and after each blow, the TCaO, HM
Actual values of Si, HMP, x1,..., Xm and TE,
This is a converter blowing method in which the value of Δa is updated using the estimated values of PE and CE. Further, the estimated values of the TE, PE, and CE are values obtained by substituting the actual values up to the end point of the converter into a dynamic control model equation or an end point component estimation equation using a sublance intermediate measurement result. In addition, the TC
This is a method of correcting aO to a constant HMSi and updating the value of Δa.

【0006】[0006]

【発明の実施の形態】以下、図面と共に本発明による転
炉吹錬方法の好適な実施の形態について説明する。ま
ず、本発明者は、現場の操業データを解析した結果、石
灰投入量決定に関する最適転炉操業とは、「過剰脱燐と
ならない範囲内で、後工程で問題を生じないまで終点溶
鋼炭素(C)を上昇する」操業であると考えた。従っ
て、直近の吹錬状況変化を考慮した上で、後工程で問題
を生じない程度まで上昇した終点溶鋼炭素(C)目標
と、過剰脱燐とならない程度の適正な終点溶鋼燐目標を
実現する石灰投入量を決定する手順を与えればよいこと
が明らかとなった。この石灰投入量決定手順であるが、
従来法のような固定的な基準では、様々な要因の変化や
その他の吹錬状況変化に対応することができないため、
石灰基準式を作成し、これを脱燐に関する式と決め、こ
の学習項を追加して、これをチャージ終了毎に実績デー
タを用いて更新する方法とした。このような制御式に関
して学習を行う方法は、スタテック制御の終点温度制御
モデル・終点溶鋼炭素(C)制御モデルや、ダイナミッ
ク制御の各種モデル式においては、一般に広く使用され
ている。しかしながら、石灰投入量の決定については、
従来、数値で表せない原因不明の吹錬状況の変化に応じ
て石灰投入量を変化させる操業が最適な操業である、と
いう認識がなく、また、スタティック制御においては、
脱燐式が制御モデルの中に含まれていないことも有り、
石灰投入基準への学習項の追加は成されてない。本発明
者は、石灰投入基準がいかなるものであろうとも、それ
がそのまま脱燐(P)制御式とできることに着目し、本
発明を完成したものである。従って、転炉吹錬におい
て、石灰投入量計算式又は石灰投入量計算手順を表す関
数 TCaO=F(HMSi,HMP,TE,PE,CE,
x1,……,xm+Δa) 但し、 TCaO:転炉装入銑鉄当たりの換算石灰(CaO総
量)原単位、 HMSi:溶銑珪素濃度、 HMP :溶銑燐濃度、 TE :転炉終点溶鋼温度、 PE :転炉終点溶鋼燐濃度又は後工程溶鋼燐濃度、 CE :転炉終点溶鋼炭素濃度、 x1,……,xm :その他の要因、 Δa :吹錬チャージ実績を用いて、チャージ毎に更
新される学習項、 の前記TE,PE,CEにそれぞれ終点溶鋼温度目標
値、終点溶鋼燐濃度目標値又は後工程溶鋼燐濃度目標
値、終点溶鋼炭素濃度目標値をそれぞれ代入し、前記H
MSi,HMP,x1,……,xmにはそれぞれの要因
の実績値または予定値を代入して、石灰投入量を決定し
て吹錬を行い、各吹錬終了後には、前記TCaO,HM
Si,HMP,x1,……,xmの実績値およびTE,
PE,CEの推定値を用いて、前記Δaの値を更新し
た。ここで、TE,PE,CEの推定値として、サブラ
ンス中間測定結果を用いたダイナミック制御モデル式ま
たは終点成分推定式に転炉終点までの実績値を代入して
得られた値を採用する方法である。さらに、この場合の
前記Δaの値の更新は、溶銑珪素濃度の大幅な変動影響
を防止するため、前記TCaOを一定のHMSiに補正
して更新することが好ましい。なお、前述したように最
適転炉操業は「過剰脱燐とならない範囲内で、後工程で
問題を生じないまで終点溶鋼炭素(C)を上昇する」操
業であることにより、終点溶鋼燐濃度目標は燐(P)の
規格外れを起こさない程度の数値とし、終点溶鋼炭素濃
度目標値は後工程で問題を生じない程度まで上昇した終
点溶鋼炭素(C)を目標値とすればよい。本発明による
転炉吹錬方法においては、前述のように、学習項を含ん
だ石灰投入量計算式を用いて適正な石灰投入量を決定す
るため、燐(P)濃度の制御精度が向上し、燐(P)成
分規格外れを起こさない範囲内で溶鋼燐(P)濃度を上
昇させることが可能となる。これにより、必要石灰量を
低減でき、トータルコストを最小化することができる。
本出願人は、本発明に関連した発明を、先に特願平9−
279146号で提案している。その内容は、本発明法
の学習(Δaの更新)時点において、TE,PE,CE
として推定値ではなく、実績値を用いる方法であった。
しかし、本発明法を用いる方がさらに効果が大きい。そ
の理由を述べる。終点Cと終点温度を制御する従来のダ
イナミック制御においては、経験的に次のようなことが
言える。例えば、同一条件、同一石灰量にて吹錬を行っ
た場合、CE(終点C)=0.07%を狙って結果的に
CE=0.07%で吹き止まった場合と、CE=0.1
0%を狙って結果的にCE=0.07%で吹き止まった
場合は、明らかにPE(終点P又は後工程P)レベル
(期待値、平均値)は異なる。後者の方がPEレベルは
高い。しかし、CE=0.07%を狙って結果的にCE
=0.07%で吹き止まった場合と、CE=0.07%
を狙って結果的にCE=0.10%で吹き止まった場合
でも、狙いがCE=0.07%ならそれに相当する酸素
を使用しており、CEが高く止まっていても、スラグは
十分に酸化されており、十分な脱燐能力を有するためで
あると考えられる。中間測定後の燐濃度の推定において
は、実績CEの情報は有用ではなく、それよりも、サブ
ランス中間測定時点から、どれだけの量の酸素と冷却材
を使用したかの方が有用な情報であるわけである。終点
P推定式の解析において、終点C分析値の値を使用しよ
うと使用しまいと、終点P推定精度はほとんど変わらな
いことからもこれが言える。すなわち、同一吹錬条件、
同一石灰投入量のもとでは、実績PEは、実績CEとよ
りも、推定CE(従来制御の自動吹止なら基本的に推定
CE=目標CEである)との方が強い相関を持つ。した
がって、投入石灰量を計算する式の学習項Δaの更新
(学習)においても、CEとしては、実績値よりも推定
値を用いる方が精度が良くなるのである。TEについて
も、同様のことが言える。本来ならTE(終点温度)が
高いと燐分配が悪化し、PE(P)も高くなるはずであ
るが、低い目標温度に対して高い実績温度が得られた場
合は、それは鉄が多量に酸化されたためである可能性が
強く、PEレベルは目標通り低い温度で吹き止まった場
合と殆ど変わらない。このため、換算石灰投入量を計算
する式の学習項Δaの更新(学習)においても、実績T
E値よりも推定TE値を用いる方が精度が良くなる。P
Eについては、CEやTEのようなことは言えないが、
PE,CE,TEのいずれについても、次のようなこと
も言える。スタティック制御モデル式は、通常、転炉吹
錬の終点を制御する形の式になっている。しかし、サブ
ランス中間測定以後は、スタティック制御は使用され
ず、ダイナミック制御式で制御が行われる。これを考え
ると、スタティック制御とは実質的にはサブランス中間
測定までを適正に制御するものである。したがって、学
習を行う場合も、中間測定後の予測不可能な誤差分は差
し引いて、学習を行うことが望ましい。言い換えると、
中間測定までの誤差分のみを学習するわけである。すな
わち、中間測定時点での情報を用いた推定値を用いて学
習項Δaの更新を行えばよいことになる。したがって、
中間測定時点でのTE,PE,CEの推定値を用いて学
習を行った方が学習が安定することになる。以上の理由
により、本発明では、先に特願平9−279146号と
異なり、学習に使用するTE,PE,CEの値について
は、実績値でなく、ダイナミック制御式を用いた推定値
を使用することとしている。これにより、図1及び図2
に示されたように、先に特願平9−279146号に比
べても精度向上が得られ、石灰使用量、Pのバラツキが
低減される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a converter blowing method according to the present invention will be described below with reference to the drawings. First, the present inventor analyzed the on-site operation data and found that the optimum converter operation related to the determination of lime input was defined as "the end-point molten carbon ( C) "ascending operations. Therefore, in consideration of the latest change in the blowing condition, the target molten carbon (C) target which has risen to a level that does not cause a problem in the post-process and the proper target molten phosphorus target which does not cause excessive dephosphorization are realized. It became clear that a procedure for determining the amount of lime input should be provided. In this lime input amount determination procedure,
Because fixed standards such as the conventional method cannot respond to changes in various factors and other changes in blowing conditions,
A method of preparing a lime reference formula, determining this as a formula relating to dephosphorization, adding this learning term, and updating this using the actual data every time charging is completed. The method of learning with respect to such a control formula is generally widely used in an end-point temperature control model / end-point molten steel (C) control model of static control and various model formulas of dynamic control. However, regarding the determination of lime input,
Conventionally, there is no recognition that the operation of changing the lime input amount in accordance with the change of the blowing condition of unknown cause that cannot be expressed numerically is the optimal operation, and in static control,
Dephosphorization may not be included in the control model,
No learning terms have been added to the lime input standard. The inventor of the present invention has completed the present invention by paying attention to the fact that, regardless of the lime input standard, it can be directly used as a dephosphorization (P) control formula. Therefore, in converter blowing, a function for expressing the lime input calculation formula or the lime input calculation procedure TCaO = F (HMSi, HMP, TE, PE, CE,
x1,..., xm + Δa) where TCaO: converted lime (total CaO) unit per pig iron charged to the converter, HMSi: hot metal silicon concentration, HMP: hot metal phosphorus concentration, TE: converter end-point molten steel temperature, PE: conversion Furnace end-point molten steel phosphorus concentration or post-process molten steel phosphorus concentration, CE: converter end-point molten steel carbon concentration, x1,..., Xm: other factors, Δa: learning item that is updated for each charge using the results of blowing charge Substitute the target molten steel temperature target value, the target molten steel phosphorus concentration target value or the post-process molten steel phosphorus concentration target value, and the target molten steel carbon concentration target value into the TE, PE, and CE, respectively.
.., Xm are substituted with actual values or scheduled values of the respective factors to determine the amount of lime to be blown, and after each blowing, the TCaO, HM
Actual values of Si, HMP, x1,..., Xm and TE,
The value of Δa was updated using the estimated values of PE and CE. Here, as an estimated value of TE, PE, CE, a method is employed in which a value obtained by substituting the actual value up to the end point of the converter into a dynamic control model equation using the sublance intermediate measurement result or an end point component estimation equation is adopted. is there. Further, in this case, it is preferable to update the value of Δa by correcting the TCaO to a constant HMSi in order to prevent a significant change in the hot metal silicon concentration. As described above, the optimal converter operation is to raise the end molten steel carbon (C) until a problem does not occur in a subsequent process within a range that does not cause excessive dephosphorization. Is a value that does not cause the phosphorus (P) to deviate from the standard, and the target value of the molten steel carbon concentration at the end point may be the target molten carbon (C) that has risen to a level that does not cause a problem in the subsequent process. In the converter blowing method according to the present invention, as described above, since an appropriate amount of lime is determined using the lime calculation formula including the learning term, the control accuracy of the phosphorus (P) concentration is improved. The phosphorus (P) concentration in the molten steel can be increased within a range that does not cause the phosphorus (P) component to be out of specification. Thereby, the required amount of lime can be reduced, and the total cost can be minimized.
The present applicant has previously filed an invention related to the present invention in Japanese Patent Application No.
No. 279146. At the time of learning (updating Δa) of the method of the present invention, TE, PE, CE
Was a method using actual values instead of estimated values.
However, using the method of the present invention is more effective. The reason will be described. In the conventional dynamic control for controlling the end point C and the end point temperature, the following can be said empirically. For example, when blowing is performed under the same conditions and the same amount of lime, the case where CE (end point C) is 0.07% and the blowing is stopped at CE = 0.07%, and the case where CE = 0. 1
In the case of stopping at 0% with CE = 0.07%, the PE (end point P or post-process P) level (expected value, average value) is obviously different. The latter have higher PE levels. However, aiming for CE = 0.07%, as a result CE
= 0.07% when it stops and CE = 0.07%
Even if the target stops at CE = 0.10% as a result, if the target is CE = 0.07%, the equivalent oxygen is used, and even if the CE is high, the slag is sufficient. This is considered to be due to being oxidized and having sufficient dephosphorization ability. In estimating the phosphorus concentration after the intermediate measurement, the information on the actual CE is not useful, and rather, the amount of oxygen and coolant used since the time of the sublance intermediate measurement is more useful information. There is. This can also be said from the fact that the accuracy of the end point P estimation hardly changes, regardless of whether the analysis of the end point P estimation formula uses the value of the end point C analysis value. That is, the same blowing conditions,
Under the same amount of lime input, the actual PE has a stronger correlation with the estimated CE (basically, the estimated CE = the target CE in the case of conventional automatic shutoff) than the actual CE. Therefore, even in updating (learning) the learning term Δa of the equation for calculating the amount of lime input, using the estimated value as the CE is more accurate than the actual value. The same is true for TE. Normally, if TE (end point temperature) is high, phosphorus distribution will deteriorate, and PE (P) should also increase. However, when a high actual temperature is obtained for a low target temperature, it means that a large amount of iron is oxidized. The PE level is almost the same as when the blow was stopped at a low temperature as intended. For this reason, even when updating (learning) the learning term Δa of the equation for calculating the converted lime input amount, the performance
The accuracy is better when the estimated TE value is used than the E value. P
About E, I can't say something like CE or TE,
The following can be said about any of PE, CE, and TE. The static control model formula is usually a formula for controlling the end point of the converter blowing. However, after the sublance intermediate measurement, the static control is not used and the control is performed by the dynamic control method. Considering this, the static control effectively controls up to the intermediate measurement of the sublance. Therefore, when performing learning, it is desirable to perform learning by subtracting an unpredictable error after the intermediate measurement. In other words,
Only the error up to the intermediate measurement is learned. That is, the learning term Δa may be updated using the estimated value using the information at the time of the intermediate measurement. Therefore,
Learning will be more stable if learning is performed using the estimated values of TE, PE, and CE at the time of the intermediate measurement. For the above reasons, in the present invention, unlike the Japanese Patent Application No. Hei 9-279146, the values of TE, PE, and CE used for learning use not the actual values but the estimated values using the dynamic control formula. You are going to. Thereby, FIGS. 1 and 2
As described above, the accuracy can be improved as compared with Japanese Patent Application No. 9-279146, and the lime usage and the variation in P can be reduced.

【0007】[0007]

【実施例】以下に、本発明による転炉操業の1実施例に
ついて説明する。まず、石灰投入基準の考え方について
説明する。石灰基準は、次の脱燐平衡式、熱バランス
式、物質収支式を連立して解くことにより求められる。
具体的な各計算式は次の通りである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the converter operation according to the present invention will be described below. First, the concept of the lime input standard will be described. The lime standard can be obtained by simultaneously solving the following dephosphorization equilibrium equation, heat balance equation, and mass balance equation.
The specific formulas are as follows.

【0008】(1)式:脱燐平衡式 log((P25)/PE2/(T.Fe)5)=a1・
log((CaO)+a2・(MgO)+a3・(T.
Fe))+a4/TE+a5
Formula (1): Dephosphorization equilibrium formula log ((P 2 O 5 ) / PE 2 /(T.Fe) 5 ) = a1 ·
log ((CaO) + a2. (MgO) + a3. (T.
Fe)) + a4 / TE + a5

【0009】(2)式:熱バランス式 TE=b1・CaO+b2・CaCO3+b3・MgC
3+b4・SV・(T.Fe)+b5・HMSi+b
6・SORE+G(x1,……,xn)+b7
Formula (2): thermal balance formula TE = b1.CaO + b2.CaCO 3 + b3.MgC
O 3 + b4 · SV · (T.Fe) + b5 · HMSi + b
6 · SORE + G (x1,..., Xn) + b7

【0010】(3)式:スラグ中(T.Fe)の関係式 (T.Fe)=c1・CE+c2・(SiO2)+c3
/TE+c4
Equation (3): Relational expression of (T.Fe) in slag (T.Fe) = c1 · CE + c2 · (SiO 2 ) + c3
/ TE + c4

【0011】(4)式:P物質収支式 10・(HMP・HMR+CMP・CMR+SCP・S
CR)=0.429・(P25)・SV+d1/[P] 0.429はP25中の含有率の化学量論的係数であ
る。
Formula (4): P material balance formula 10 · (HMP · HMR + CMP · CMR + SCP · S
(CR) = 0.429 · (P 2 O 5 ) · SV + d1 / [P] 0.429 is the stoichiometric coefficient of the content in P 2 O 5 .

【0012】(5)式:Si物質収支式 0.467・(SiO2)・SV=10・(HMSi・
HMR+CMSi・CMR)+0.023・SORE 0.467はSiO2中Siの含有率の化学量論的係
数、0.023はSORE中Siの含有率である。
Formula (5): Si material balance formula 0.467 · (SiO 2 ) · SV = 10 · (HMSi ·
HMR + CMSi · CMR) + 0.023 · SORE 0.467 is the stoichiometric coefficient of the content of Si in SiO 2 , and 0.023 is the content of Si in SORE.

【0013】(6)式:CaO物質収支式 (CaO)・SV/100=TCaO+0.1・SOR
E 0.1はSORE中のCaO含有率である。
Equation (6): CaO mass balance equation (CaO) · SV / 100 = TCaO + 0.1 · SOR
E 0.1 is the CaO content in the SORE.

【0014】(7)式:MgO物質収支式 (MgO)・SV/100=0.15・MgCO3+e
1 0.15は生ドロマイト中のMgO含有率
Formula (7): MgO mass balance formula (MgO) · SV / 100 = 0.15 · MgCO 3 + e
1 0.15 is MgO content in raw dolomite

【0015】(8)式:スラグ量計算式 SV・(100−1.29(T.Fe))/100=
2.14・(HMSi・HMR+CMSi・CMR)+
TCaO+0.15・MgCO3+0.15・SORE
+e1+f1
Formula (8): Slag amount calculation formula SV · (100-1.29 (T.Fe)) / 100 =
2.14 · (HMSi · HMR + CMSi · CMR) +
TCaO + 0.15.MgCO 3 + 0.15.SORE
+ E1 + f1

【0016】(9)式:換算石灰量計算式 TCaO=0.95・CaO+0.55・CaCO3
0.34・MgCO3 0.95、0.55、0.34はそれぞれの各原料中の
石灰純分比率
Formula (9): Calculation formula for converted lime amount TCaO = 0.95 · CaO + 0.55 · CaCO 3 +
0.34 · MgCO 3 0.95, 0.55, 0.34 is the ratio of pure lime in each raw material

【0017】ここで、 (CaO) :スラグ中CaO濃度(%) 計算式 (SiO2) :スラグ中SiO2濃度(%) 計算式 (MgO) :スラグ中MgO濃度(%) 計算式 (T.Fe) :スラグ中のT.Fe濃度(%) 計算式 (P25) :スラグ中のP25濃度(%) 計算式 PE :転炉終点溶鋼燐濃度(%) 目標値、推定値 TE :転炉終点溶鋼温度 (℃) 目標値、推定値 CE :転炉終点溶鋼炭素濃度(%) 目標値、推定値 HMSi :溶銑珪素濃度 (%) 実績値 HMP :溶銑燐濃度 (%) 実績値 CMSi :冷銑珪素濃度 (%) 実績値 CMP :冷銑燐濃度 (%) 実績値 SCP :鋼屑燐濃度 (%) 実績値 HMR :溶銑率 (%) 実績値 CMR :冷銑率 (%) 実績値 SCR :鋼屑率 (%) 実績値 CaO :生石灰原単位(Kg/T−主原料) 計算式 CaCO3 :石灰石原単位(Kg/T−主原料) 固定量 MgCO3 :生ドロマイト原(Kg/T−主原料) 計算式 SORE :焼結鉱原単位(Kg/T−主原料) 計算式 TCaO :換算石灰原単位(Kg/T−主原料) 計算式 SV :スラグ量原単位(Kg/T−主原料) 計算式 G(・) :実数値関数Here, (CaO): CaO concentration in slag (%) Formula (SiO 2 ): SiO 2 concentration in slag (%) Formula (MgO): MgO concentration in slag (%) Formula (T. Fe): T. in slag. Fe concentration (%) Formula (P 2 O 5 ): P 2 O 5 concentration in slag (%) Formula PE: Phosphorus concentration (%) of converter end-point molten steel Target value, estimated value TE: Converter end-point molten steel temperature (° C) Target value, estimated value CE: Concentration of molten steel carbon at converter end point (%) Target value, estimated value HMSi: Hot metal silicon concentration (%) Actual value HMP: Hot metal phosphorus concentration (%) Actual value CMSi: Cold iron silicon concentration (%) Actual value CMP: Cold iron phosphorus concentration (%) Actual value SCP: Steel scrap phosphorus concentration (%) Actual value HMR: Hot metal ratio (%) Actual value CMR: Cold iron ratio (%) Actual value SCR: Steel scrap rate (%) actual CaO: burnt lime consumption rate (Kg / T-main raw material) formula CaCO 3: lime Ishihara units (Kg / T-main raw material) fixed amount MgCO 3: raw dolomite Hara (Kg / T-main raw material ) Calculation formula SORE: Sinter unit intensity (Kg / T-main raw material) Calculation formula TC O: in terms of lime consumption per unit (Kg / T- main raw material) formula SV: slag per unit (Kg / T- main raw material) formula G (·): real-valued function

【0018】前述の各計算(1)〜(9)式の関係式の
構築にあたっては、本出願人が用いている185ton
転炉の操業データを用いて、主に重回帰により関係式中
の係数を決定した。計算(1)〜(9)式の関係式にお
いて、HMSi,HMP,CMSi,CMP,SCP,
HMR,CMR,SCRは実績値、PE,TE,CEは
それぞれの目標値を代入し、CaCO3,MgCO3を固
定の量とすれば未知数が(T.Fe),(SiO2),
(CaO),(MgO),(P25),CaO,TCa
O,SORE,SVの9個で式が9個あるため、これを
解くことにより、終点温度、終点炭素濃度、RH処理開
始前燐濃度を目標値とするために必要な主石灰量が求め
られる。上記計算は非常に煩雑で現場で計算するのには
適しないので、簡単のため、上記手法で得られた解とと
もに以下の近似式を作成し、それを用いた。(HMSi
≧0.2%で使用可能な近似式)
In constructing the relational expressions of the above-described calculations (1) to (9), 185 tons used by the present applicant are used.
Using the operation data of the converter, the coefficients in the relational expressions were determined mainly by multiple regression. In the relational expressions of the calculations (1) to (9), HMSi, HMP, CMSi, CMP, SCP,
The actual values are substituted for HMR, CMR and SCR, and the respective target values are substituted for PE, TE and CE. If CaCO 3 and MgCO 3 are fixed amounts, the unknowns are (T.Fe), (SiO 2 ),
(CaO), (MgO), (P 2 O 5 ), CaO, TCa
Since there are 9 equations for 9 of O, SORE, and SV, solving them yields the amount of main lime necessary to set the end point temperature, the end point carbon concentration, and the phosphorus concentration before the start of the RH treatment to the target values. . Since the above calculation is very complicated and not suitable for calculation on site, for the sake of simplicity, the following approximate expression was created together with the solution obtained by the above method and used. (HMSi
Approximate expression that can be used with ≧ 0.2%)

【0019】石灰投入量は溶銑珪素濃度に対して曲線的
に変化するため、近似式はHMSiに対して累乗関数と
した。 TCaO=g1・(HMSi)g2・[g3−g4・(F’(CE/10) − F’(g5))+g6・(TE−g7)+g8・(HMP−g9) +g10・ (g11−PE)+x1+………,xm+Δa/g12] (10) ここで、 Δa:吹錬チャージ実績を用いて、チャージ毎に更新さ
れる学習項、 F’:後述の実数値関数、である。 なお、石灰石投入量=20Kg/トン−主原料、生ドロ
マイト投入量=10Kg/トン−主原料に固定して考え
ている。以上のような計算式に、鋼種ごとに予め設定さ
れた終点目標温度、終点目標炭素、RH処理開始前燐濃
度、および溶銑珪素濃度と溶銑燐濃度の実績値を代入す
ることによって適正な換算石灰量が計算でき、これによ
り終点溶鋼燐濃度を適正な範囲に高精度に制御すること
ができた。なお、学習に用いるTE,PE,CEの推定
値を求めるためには、特開平4−187709号公報に
開示されたダイナミックモデル式を用いて推定値を求め
た。
Since the amount of lime input changes in a curve with respect to the hot metal silicon concentration, the approximation formula is a power function for HMSi. TCaO = g1. (HMSi) g2. [G3-g4. (F '(CE / 10) -F' (g5)) + g6. (TE-g7) + g8. (HMP-g9) + g10. (G11-PE) + X1 +..., Xm + Δa / g12] (10) Here, Δa: a learning term that is updated for each charge using the blowing charge results, and F ′: a real-valued function described below. It is assumed that the input amount of limestone is fixed at 20 kg / ton-main raw material, and the input amount of raw dolomite is 10 kg / ton-main raw material. By substituting the end point target temperature, end point target carbon, phosphorus concentration before the start of RH treatment, and the actual values of the hot metal silicon concentration and the hot metal phosphorus concentration preset for each steel type into The amount could be calculated, and thereby the phosphorus concentration in the molten steel at the end point could be controlled to an appropriate range with high accuracy. In order to obtain the estimated values of TE, PE, and CE used for learning, the estimated values were obtained by using a dynamic model equation disclosed in Japanese Patent Application Laid-Open No. 4-187709.

【0020】すなわち、 温度モデル式 …(1a) TE=0.81TS+13.6ΔO2−2.58・ΔSORE/WCH +0.27HMR−77.8/F’(100・CS)+247.0+学習項That is, the temperature model equation (1a) TE = 0.81TS + 13.6ΔO 2 −2.58 · ΔSORE / WCH + 0.27HMR−77.8 / F ′ (100 · CS) + 247.0 + learning term

【0021】 酸素モデル式 …(2a) ΔO2/WCH=F’(100・CE)−F’(100・CS) −0.12・ΔSORE/WCH+0.017・TCaO/WCH −0.012・SORE/WCH−0.005・CaCO3/WCH −0.22・CaF2/WCH+0.35+学習項 但し、Cを次のように区分してF’(C)を求めた。0
<C<5(10-2%)のとき F’(C)=−0.928C+12.93 5<C<25(10-2%)のとき F’(C)=0.73*1n(C)−0.13C+2
3.7/C+3.1 (但し、Inは自然対数) 25<C(10-2%)のとき F’(C)=−0.11C+5.7
Oxygen model formula (2a) ΔO 2 /WCH=F′(100·CE)−F′(100·CS)−0.12ΔSORE/WCH+0.017·TCaO/WCH−0.012·SORE /WCH−0.005·CaCO 3 /WCH−0.22·CaF 2 /WCH+0.35+learning term However, C was divided as follows to obtain F ′ (C). 0
<C <5 (10 -2 %) F '(C) =-0.928C + 12.93 5 <C <25 (10 -2 %) F' (C) = 0.73 * 1n (C ) -0.13C + 2
3.7 / C + 3.1 (where In is the natural logarithm) When 25 <C (10 -2 %), F ′ (C) = − 0.11C + 5.7

【0022】 燐モデル式 …(3a) PE=(0.10HMSi+0.093HMP−1.13・O2/PiG −0.39・ΔO2/WCH−0.14・SORE/WCH −0.59・ΔSORE/WCH−0.36HMR −0.37CaF2/WCH−0.019TCaO/PiG +0.15(100・CS)−0.12CMR+0.12TS −87.1)/1000+学習項 但し、 TE :溶鋼の転炉終点溶鋼温度 (℃) TS :溶鋼の中間温度 (℃) O2 :中間測定までの酸素量(Nm3) ΔO2 :中間測定後の酸素量(Nm3) SORE :冷却材量(Kg) ΔSORE :中間測定後の冷却材量(Kg) CE :溶鋼の転炉終点溶鋼炭素含有量(%) CS :中間測定時の溶鋼の炭素含有量(%) WCH :主原料(トン)、 HMR :溶銑率(%) CaCO3 :石灰石(Kg)、 HMSi :溶銑珪素 (10-2%) PE :溶鋼の終点燐(10-3%) PiG :銑鉄(トン) CMR :冷銑率(%)、 HMP :溶銑燐 (10-3%) CaF2 :蛍石(Kg) なお、冷却材としては焼結鉱を用いた。これら、(1
a)、(2a)、(3a)式のTE,PE,CE以外の
変数に全て実績値を代入して、TE,PE,CEについ
て解いたものをTE,PE,CEの推定値とした。但
し、溶鋼の終点炭素含有量であるCEについては、計算
を簡単に導くため、(2a)式をF’(100・CE)
について解き、推定値とする。学習項Δaの更新は、ま
ずHMSi,HMP,x1,……,xmの実績値および
TE,PE,CEの推定値をそれぞれ(10)式に代入
することにより得られる換算石灰原単位の計算値、TC
aO(cal)および実際に投入した換算石灰原単位、
TCaO(R)を以下の式を用いて一定のHMSiに補
正する。 補正TCaO(cal)=TCaO(cal)・g12/(g1・(HMSi )g2)……(11) 補正TCaO(R)=TCaO(R)・g12/(g1・(HMSi)g2) ……(12) 上式より得られる補正TCaO(cal)および補正T
CaO(R)の差より(10)式の学習項Δaを学習更
新する。
Phosphorus model formula (3a) PE = (0.10HMSi + 0.093HMP-1.13 · O 2 /PiG−0.39·ΔO 2 /WCH−0.14·SORE/WCH−0.59·ΔSORE /WCH-0.36HMR -0.37CaF 2 /WCH-0.019TCaO/PiG +0.15 (100 · CS) -0.12CMR + 0.12TS -87.1) / 1000 + learning term, however, TE: BOF of molten steel End point molten steel temperature (° C.) TS: Intermediate temperature of molten steel (° C.) O 2 : Oxygen amount until intermediate measurement (Nm 3 ) ΔO 2 : Oxygen amount after intermediate measurement (Nm 3 ) SORE: Coolant amount (Kg) ΔSORE : Coolant amount after intermediate measurement (Kg) CE: Carbon content of molten steel at converter end point of molten steel (%) CS: Carbon content of molten steel at intermediate measurement (%) WCH: Main raw material (ton), HM : Hot metal ratio (%) CaCO 3: Limestone (Kg), HMSI: hot metal silicon (10 -2%) PE: molten steel endpoint phosphorus (10 -3%) PIG: pig iron (tons) CMR: Hiyazukuritsu (%) , HMP: hot metal phosphorus (10 −3 %) CaF 2 : fluorite (Kg) The sintered ore was used as a coolant. These, (1
a), (2a), and (3a) were substituted with actual values for variables other than TE, PE, and CE, and those obtained for TE, PE, and CE were used as estimated values of TE, PE, and CE. However, for CE, which is the end-point carbon content of molten steel, the equation (2a) is changed to F ′ (100 · CE) in order to easily guide the calculation.
And solve for it. The learning term Δa is updated by first substituting the actual values of HMSi, HMP, x1,..., Xm and the estimated values of TE, PE, and CE into the equation (10) to calculate the converted lime intensity. , TC
aO (cal) and converted lime intensity unit actually input,
TCaO (R) is corrected to a constant HMSi using the following equation: Corrected TCaO (cal) = TCaO (cal) · g12 / (g1 · (HMSi) g2) (11) Corrected TCaO (R) = TCaO (R) · g12 / (g1 · (HMSi) g2) (...) 12) Corrected TCaO (cal) and corrected T obtained from the above equations
The learning term Δa in equation (10) is learned and updated from the difference between CaO (R).

【0023】[0023]

【発明の効果】本発明による転炉吹錬方法は、以上のよ
うに構成されているため、終点燐制御精度が向上し、燐
成分の規格外れ比率を上昇させることなく、燐成分の平
均値を上昇させることが可能となった。また、TCaO
の計算値および実績値を一定のHMSiに補正して学習
項Δaを更新することにより、HMSiが変動してもそ
れに対応した学習を行うことが可能である。さらに、終
点温度、後工程溶鋼燐濃度のRH脱ガス装置への入鍋時
のPについては、実績値でなく、ダイナミックモデル式
による推定値を用い、また終点Cの代わりにダイナミッ
クモデルのF(CE)値を用いることにより、ダイナミ
ック制御で避けられなかった終点のバラツキを無視する
ことができるようになり、石灰投入量の計算値のバラツ
キを低減できる。
Since the converter blowing method according to the present invention is configured as described above, the accuracy of controlling the phosphorus at the end point is improved, and the average value of the phosphorus component is increased without increasing the out-of-specification ratio of the phosphorus component. Can be raised. Also, TCaO
By updating the calculated value and the actual value to a constant HMSi and updating the learning term Δa, even if the HMSi fluctuates, it is possible to perform learning corresponding thereto. Further, as for the P at the time of placing the end point temperature and the phosphorus concentration in the post-process molten steel into the RH degassing apparatus, not the actual value but an estimated value based on the dynamic model equation is used, and instead of the end point C, F ( By using the CE) value, it is possible to ignore the variation of the end point which cannot be avoided by the dynamic control, and it is possible to reduce the variation of the calculated value of the lime input amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来法と本発明法との燐(P)外れ率の比較を
示す特性図である。
FIG. 1 is a characteristic diagram showing a comparison of a phosphorus (P) departure rate between a conventional method and a method of the present invention.

【図2】従来法と本発明法との燐(P)濃度分布の比較
を示す特性図である。
FIG. 2 is a characteristic diagram showing a comparison of phosphorus (P) concentration distribution between the conventional method and the method of the present invention.

【符号の説明】[Explanation of symbols]

TE 転炉終点溶鋼温度 PE 転炉終点溶鋼燐濃度又は後工程溶鋼燐濃度 CE 転炉終点溶鋼炭素濃度 x1,……,xm その他の要因 Δa チャージ毎に更新される学習項 TE Converter end-point molten steel temperature PE Converter end-point molten steel phosphorus concentration or post-process molten steel phosphorus concentration CE Converter end-point molten steel carbon concentration x1, ..., xm Other factors Δa Learning item updated at each charge

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 転炉吹錬において、石灰投入量計算式又
は石灰投入量計算手順を表す関数 TCaO=F(HMSi,HMP,TE,PE,CE,
x1,……,xm+Δa) 但し、 TCaO:転炉装入銑鉄当たりの換算石灰(CaO総
量)原単位、 HMSi:溶銑珪素濃度、 HMP :溶銑燐濃度、 TE :転炉終点溶鋼温度、 PE :転炉終点溶鋼燐濃度又は後工程溶鋼燐濃度、 CE :転炉終点溶鋼炭素濃度、 x1,……,xm :その他の要因、 Δa :吹錬チャージ実績を用いて、チャージ毎に更
新される学習項、 の前記TE,PE,CEにそれぞれ終点溶鋼温度目標
値、終点溶鋼燐濃度目標値又は後工程溶鋼燐濃度目標
値、終点溶鋼炭素濃度目標値をそれぞれ代入し、前記H
MSi,HMP,x1,……,xmにはそれぞれの要因
の実績値または予定値を代入して、石灰投入量を決定し
て吹錬を行い、各吹錬終了後には、前記TCaO,HM
Si,HMP,x1,……,xmの実績値およびTE,
PE,CEの推定値を用いて、前記Δaの値を更新する
ことを特徴とする転炉吹錬方法。
1. In converter blowing, a function for expressing a lime input formula or a lime input calculation procedure TCaO = F (HMSi, HMP, TE, PE, CE,
x1,..., xm + Δa) where, TCaO: converted lime (total CaO) unit per pig iron charged to the converter, HMSi: hot metal silicon concentration, HMP: hot metal phosphorus concentration, TE: converter end-point molten steel temperature, PE: conversion Furnace end-point molten steel phosphorous concentration or post-process molten steel phosphorus concentration, CE: Converter end-point molten steel carbon concentration, x1,..., Xm: Other factors, Δa: Learning item that is updated for each charge using the results of blowing charge Substitute the target molten steel temperature target value, the target molten steel phosphorus concentration target value or the post-process molten steel phosphorus concentration target value, and the target molten steel carbon concentration target value into the TE, PE, and CE, respectively.
.., Xm are substituted with actual or scheduled values of the respective factors to determine the amount of lime to be blown, and after each blow, the TCaO, HM
Actual values of Si, HMP, x1,..., Xm and TE,
A converter blowing method comprising: updating the value of Δa using the estimated values of PE and CE.
【請求項2】 前記TE,PE,CEの推定値は、サブ
ランス中間測定結果を用いたダイナミック制御モデル式
又は終点成分推定式に転炉終点までの実績値を代入して
得たことを特徴とする請求項1記載の転炉吹錬方法。
2. The method according to claim 1, wherein the estimated values of TE, PE, and CE are obtained by substituting the actual values up to the end point of the converter into a dynamic control model equation or an end point component estimation equation using a sublance intermediate measurement result. The converter blowing method according to claim 1.
【請求項3】 前記TCaOを一定のHMSiに補正し
て前記Δaの値を更新することを特徴とする請求項1記
載の転炉吹錬方法。
3. The converter blowing method according to claim 1, wherein the value of Δa is updated by correcting the TCaO to a constant HMSi.
JP27948499A 1999-02-22 1999-09-30 Converter blowing method Expired - Lifetime JP4140939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27948499A JP4140939B2 (en) 1999-02-22 1999-09-30 Converter blowing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4300699 1999-02-22
JP11-43006 1999-02-22
JP27948499A JP4140939B2 (en) 1999-02-22 1999-09-30 Converter blowing method

Publications (2)

Publication Number Publication Date
JP2000309817A true JP2000309817A (en) 2000-11-07
JP4140939B2 JP4140939B2 (en) 2008-08-27

Family

ID=26382745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27948499A Expired - Lifetime JP4140939B2 (en) 1999-02-22 1999-09-30 Converter blowing method

Country Status (1)

Country Link
JP (1) JP4140939B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233312A (en) * 2005-02-28 2006-09-07 Jfe Steel Kk Method for controlling blowing in converter
JP2009052109A (en) * 2007-08-28 2009-03-12 Sumitomo Metal Ind Ltd Method and system for controlling blowing in converter
JP2012167365A (en) * 2011-01-28 2012-09-06 Jfe Steel Corp Quicklime concentration prediction apparatus, and blowing control method
JP2013133484A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp Converter refining method
CN115652022A (en) * 2022-09-27 2023-01-31 江苏省沙钢钢铁研究院有限公司 Automatic control method for feeding of electric arc furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233312A (en) * 2005-02-28 2006-09-07 Jfe Steel Kk Method for controlling blowing in converter
JP4561405B2 (en) * 2005-02-28 2010-10-13 Jfeスチール株式会社 Converter blowing control method
JP2009052109A (en) * 2007-08-28 2009-03-12 Sumitomo Metal Ind Ltd Method and system for controlling blowing in converter
JP2012167365A (en) * 2011-01-28 2012-09-06 Jfe Steel Corp Quicklime concentration prediction apparatus, and blowing control method
JP2013133484A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp Converter refining method
CN115652022A (en) * 2022-09-27 2023-01-31 江苏省沙钢钢铁研究院有限公司 Automatic control method for feeding of electric arc furnace

Also Published As

Publication number Publication date
JP4140939B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
CN103361461B (en) Online prediction control method for phosphorus content of low-carbon steel smelted by converter
CN105671248B (en) A kind of smelting process of converter high efficiency dephosphorating
JP2012136767A (en) Method for estimating phosphorus concentration in converter
JP2000309817A (en) Converter blowing method
CN113961865A (en) Method for accurately controlling addition amount of temperature regulator in TSC (thyristor switched capacitor) stage of large converter
JPH11117013A (en) Converter blowing
JP2751800B2 (en) Liquid Steel Temperature Control Method in Steel Making Process
JP6825348B2 (en) Hot metal pretreatment method, hot metal pretreatment control device, program and recording medium
JP4048010B2 (en) Method for estimating phosphorus equilibrium in converters and hot metal pretreatment vessels.
JP4807895B2 (en) Converter main raw material blending method
JP5924310B2 (en) Blowing control method and blowing control device
CN106498113A (en) A kind of converter smelting process of 82B steel
KR20050024963A (en) Method for Refinig Molten Pig Iron in Converter
JP2004035986A (en) Converter operation guidance model
JP7319538B2 (en) Converter blowing control device, converter blowing control method and program
JP6064520B2 (en) Blowing control method and blowing control device
JP4421314B2 (en) Determination of slag amount in hot metal refining
CN115261546B (en) Determination method, system, equipment and medium for most economical scrap ratio in converter steelmaking
JP2724365B2 (en) Blast furnace operation method
JP2002285223A (en) Method for dephosphorizing molten iron
JP2520191B2 (en) Blowing control method for oxygen steelmaking furnace
JPH05171244A (en) Method for estimating lowest blending ratio of molten iron in converter
TWI658143B (en) Method of reducing lime in basic oxygen furnace
JPH07268433A (en) Method for controlling end point in steel making process of converter
JPS6246606B2 (en)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term