JP4807895B2 - Converter main raw material blending method - Google Patents

Converter main raw material blending method Download PDF

Info

Publication number
JP4807895B2
JP4807895B2 JP32958299A JP32958299A JP4807895B2 JP 4807895 B2 JP4807895 B2 JP 4807895B2 JP 32958299 A JP32958299 A JP 32958299A JP 32958299 A JP32958299 A JP 32958299A JP 4807895 B2 JP4807895 B2 JP 4807895B2
Authority
JP
Japan
Prior art keywords
calculation
converter
main raw
raw material
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32958299A
Other languages
Japanese (ja)
Other versions
JP2001152228A (en
Inventor
正信 中村
康一郎 瀬村
龍平 三角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32958299A priority Critical patent/JP4807895B2/en
Publication of JP2001152228A publication Critical patent/JP2001152228A/en
Application granted granted Critical
Publication of JP4807895B2 publication Critical patent/JP4807895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、予備処理溶銑を上底吹き型転炉に装入して、脱炭処理および/または脱りん処理を行うに際して、溶銑、スクラップ、冷銑などの主原料の配合計算を、計算機を用いて精度よく制御する方法の技術分野に属するものである。
【0002】
【従来の技術】
主原料配合計算を行う際、転炉装入溶銑の成分、温度、転炉副原料投入銘柄および投入量、転炉出鋼時の合金鉄投入銘柄および投入量、出鋼温度、吹止[C]といった主原料配合の熱収支・鉄収支計算を行う前提条件となるの内、主原料配合段階で実績が既に確定している値については実績値を用いる。しかし、主原料配合は実際の処理(吹錬)よりも以前に実施する必要があるため、その間に目標とする処理後の成分、温度を変更する必要が生じる場合がある。そこで、従来は、鋼種ごとに事前に決定している設定値を前提条件の設定値として用いて、主原料配合計算にて主原料配合計算を行っていた。
【0004】
また、主原料配合計算は、これまで特開平5−33029号公報などに見られるように、“鉄収支”によって出鋼量を確保することが主目的と考えられており、副原料使用量および精錬特性に影響を与える重要な操業要因である“熱収支”に着目して主原料配合量を調整しているものはなかった。
【0005】
転炉装入前の溶銑段階で事前に脱りん処理する場合、脱りん反応は転炉で行う1600〜1750℃と比較して、できるだけ低温で行う方が反応効率が高くなるため、脱りん処理後の温度は溶銑の凝固温度を考慮して1250〜1350℃の範囲で処理するのが一般的である。この温度は、脱りん処理を行わずに転炉に装入する時の溶銑温度である1300〜1400℃と比較して約50℃低い。また、脱りん処理は酸化精錬であるため脱りん反応に伴い、脱炭および脱珪反応も同時に起こり、溶銑中の[C]濃度は高炉出銑時の4.3〜4.8質量%より0.3〜1.0質量%程度脱炭して転炉装入時には、3.5〜4.4質量%の範囲に低下し、溶銑中の[Si]濃度も高炉出銑時の0.2〜0.6質量%より0.10質量%程度以下まで低下してしまう。溶銑中の[P]濃度も同様に、高炉出銑時の0.07〜0.15質量%より0.005〜0.050質量%の範囲まで低下している。これら[C] [Si] [P]成分は酸化反応により発熱して溶銑温度を上昇させる働きをするが、脱りん処理を転炉装入前の溶銑段階で行うことにより、これらの反応熱が転炉段階では低下してしまい、転炉装入温度の低下と合わせて転炉段階での熱余裕が著しく低減することになる。このため本発明では、転炉装入温度が1250〜1350℃、[C]:3.5〜4.5質量%、[Si]:0.10質量%以下、[P]:0.005〜0.050質量%である脱りん処理した溶銑を対象とした。
【0006】
従って、転炉装入前の溶銑段階で事前に脱りん処理した場合、熱的に余裕がないために、溶銑配合計算の誤差が大きく熱余裕がない方向に振れる場合、炭素質あるいはFeSiといった高価な昇熱材を使用する必要が生じてくる。これらの昇熱材を使用した場合、さらには、炭素質を用いると、吹錬時間が延長して生産性の低下および放熱量の増加を招き、エネルギー効率が低下してしまう。また、FeSiを用いた場合も、塩基度を調整するために、生石灰などの CaO源を増量使用する必要が生じて発生するスラグ量が増加する結果、熱ロスの増加、さらには、鉄歩留りおよびMn歩留りの低下をまねく。
【0007】
反対に、熱余裕が大きすぎる場合、鉄鉱石・スケールなどの冷却材を投入する量を増やせばよいわけであるが、溶銑予備処理を行った溶銑を用いて転炉吹錬を行う場合、転炉炉内のスラグ量が少量であるため、鉄鉱石・スケールなどの酸化鉄源を多量に使用すると、炉内スラグ中の酸化鉄濃度である(%T.Fe)が過剰に上昇してしまう。その結果、鉄歩留りおよびMn歩留りの低下、さらには、スラグ量の増加にり転炉耐火物の溶損速度の増大を招き、転炉炉寿命の低下に至る。
【0008】
さらには、このように鉄歩留りが変化すると、目標としていた出鋼量に対しても、増減が生じることになる。出鋼量が少ないとチャージ当たりのトン数低下によるエネルギー効率低下となり、極端な場合は取鍋のフリーボード(空間高さ)制約および溶鋼処理での制約のため出鋼不能に陥る場合もある。逆に、出鋼量が多いと起重機での吊り上げ搬送が不能となる。
【0009】
しかし、上記の技術では、鋼種ごとに設定した値を用いて主原料配合計算を実施しているため、その値に起因する誤差が大きく、その結果、主原料配合計算の精度が低くなっており、上記の課題が残されたままになっている。また、各前提条件値の推定計算精度が低いため、定数を用いる方が精度が上がると判断して、これまでは定数を用いていた。
【0010】
特に、予備処理→転炉の生産プロセスで連続的・効率的に生産する場合には、主原料の一つである溶銑を予備処理中あるいは処理後であって、成分・温度が判明する前に、主原料配合を実施する必要がかなりの頻度で生じる。さらには、時間的に余裕がある場合でも、処理後サンプル・測温が不能となり、分析値・測温値が判らない場合がある。このような場合、転炉に装入される成分・温度の予測計算精度が低いと、実際に転炉に装入する主原料の配合バランスが計算からずれて不適切となり、エネルギーロスおよび出鋼量が目標値から外れることになる。
【0011】
目標出鋼温度は、転炉以降の溶鋼処理および連続鋳造工程の処理工程、待ち時間、鍋状況などにより最適値が変化するため、定数の設定値ではなく、できるだけ転炉吹錬開始時点を見計らって最適目標温度を精度よく推定計算する必要がある。目標出鋼温度が変化すると、転炉での脱りん効率およびMn歩留りが大きく影響を受けるため、最適な副原料投入量が変化して熱収支および鉄収支が変化するが、現状の計算ではこの変化を考慮できない。
【0012】
溶銑予備処理を行った溶銑を用いて転炉吹錬を行う場合、転炉での脱りん処理負荷が軽減されることから、転炉炉内のスラグ量を低減できる。従って、転炉炉内でのMn歩留りの向上が図れるため、高価なMn系合金鉄の使用量抑制の目的で、転炉にてMn鉱石を積極的に使用するのが一般的である。しかし、従来の主原料配合計算では、Mn鉱石の投入は考慮されず、実際に転炉に溶銑が装入された時点になって、転炉にて熱余裕が有ればその中でMn鉱石を使用し、熱余裕が無い場合は、炭素質あるいはFeSiといった高価な昇熱材を使用していた。反対に熱余裕が過剰に有る場合は、鉄鉱石やスケールなどの冷却材を多量投入して(%T.Fe)が高くなり、Mn歩留りを低減させることになる。
【0013】
本発明は、上記の問題点を解決するためになされたもので、装入溶銑温度が1250〜1350℃、[C]:3.5〜4.5質量%、[Si]:0.10質量%以下、[P]:0.005〜0.050質量%である、転炉装入前の溶銑段階で事前に脱りん処理した熱余裕のない溶銑を、70〜350t規模の上底吹き型転炉に装入して脱炭処理および/または脱りん処理を行うに際して、溶銑、スクラップ、冷銑という主原料の配合計算を計算機を用いて制御するにあたり、主原料配合の熱収支・鉄収支計算を行うための前提条件となる変数を、それぞれを推定する計算モデルを用いることにより算出し、主原料の配合計算をして主原料を配合する転炉の主原料配合方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
その要旨は、装入溶銑温度が1250〜1350℃、[C]:3.5〜4.5質量%、[Si]:0.10質量%以下、[P]:0.005〜0.050質量%である、転炉装入前の溶銑段階で事前に脱りん処理した熱余裕のない溶銑を、70〜350t規模の上底吹き型転炉に装入して脱炭処理および/または脱りん処理を行うに際して、溶銑、スクラップ、冷銑という主原料の配合計算を計算機を用いて制御するにあたり、 転炉装入溶銑の成分・温度、転炉副原料投入銘柄および投入量、転炉出鋼時の合金鉄投入銘柄および投入量、出鋼温度、吹止[C]といった主原料配合の熱収支・鉄収支計算を行うための前提条件となる変数を、それぞれを推定する計算モデルを用いることにより算出し、これらの計算結果を用いて転炉での鉄収支計算と熱量収支計算を行い、その鉄収支計算および熱量収支計算と、主原料配合計算との間で一回以上のデータの授受を行って精度よく主原料の配合計算をして主原料を配合することを特徴とする転炉の主原料配合方法である。
【0017】
上底吹き型転炉にて脱りん処理した後、脱りんスラグを排滓した後に炉内に残った、温度が1250〜1350℃、 [C]:3.5〜4.5質量%、[Si]:0.10質量%以下、[P]:0.005〜0.050質量%の熱余裕のない溶銑を、再び、脱炭処理および/または脱りん処理を行うに際しての、上記の転炉の主原料配合方法である。
【0018】
【発明の実施の形態】
本発明は、計算機を用いて制御することを前提としており、図1のような計算機設備をもとに一例を説明する。溶銑を転炉に装入する容器に必要量の溶銑を払い出す「溶銑秤量所」、スクラップや冷銑などを転炉に装入する容器に必要量を入れる「スクラップ秤量所」、そして主原料配合量を指示する「主原料配合指示所」や転炉などに計算機の計算結果を表示するテレビを設置し、本発明の結果である配合計算量を実際の配合に適用して後述の効果を達成する。なお、製鋼工程の操業形態により溶銑やスクラップ・冷銑の秤量所のレイアウトおよび構成は変わるものとし、また発明に係わる配合計算量に基づいて配合するにあたり、機械設備により自動的に配合を行う場合や、操作員が配合計算量に基づいて機械設備を手動操作して配合を行う場合などの例が考えられる。
【0019】
続いて、配合量を計算する方法について説明する。配合量を計算する方法は図2に示すような考え方に基づいて計算する。吹止[C]予測計算1において、まず、吹止[C]を決定し、この吹止[C]を使用して次の出鋼温度予測計算2において出鋼温度を計算し、さらに、前記吹止[C]と出鋼温度を使用して、転炉副原料投入量計算3で副原料の投入量を計算し、前記吹止[C]、前記出鋼温度、副原料投入量を使用して、合金鉄投入量計算4で合金鉄投入量を計算し、最後に、これらの各計算の結果の全てを使用して、転炉鉄収支計算5および転炉熱収支計算6と、主原料配合計算7との間で一回以上のデータの授受により精度よく主原料の配合計算をする。また、1で説明される最初の計算から、ここでは7で説明される最後の計算までを複数回繰り返して計算したり一回だけで計算を終了する場合も含む。
【0020】
次に、転炉において既に吹錬した単一の、または複数のチャージの実際の配合量や転炉出鋼時の温度や成分などの実績データを使用して図2で実行する各計算の計算係数を、全ての実績データと、それに対応する計算結果との誤差ができるだけ小さくなるように変更して学習させることにより経時変化に対応して精度を維持または向上させるようにする。
【0021】
1〜3などの計算のいずれかで、そのチャージが必要とするMnの規格を満たすのに適当なもしくは十分な転炉投入Mn鉱石量または鉄Mn鉱石量を計算して、その場合においても必要十分な熱余裕となるよう主原料の配合量を計算する。この時、転炉投入Mn鉱石量または鉄Mn鉱石量から予測される吹止[Mn]をもとに4の合金鉄投入量計算においてMnに関係する合金鉄の投入量を精度よく計算することで、主原料配合量の精度も向上する。
【0022】
上記の説明では、一連の処理の中で脱炭処理および/または脱りん処理を行う場合だが、脱りん処理した後に、一度排滓して再び脱炭処理および/または脱りん処理を行う場合において、図2または図3の各計算において脱りん処理後の排滓を考慮させることで精度の高い主原料配合量を計算することが可能となる。また、排滓前後の脱りん処理について、図4に示すように脱りん処理計算8という形で独立した計算とする場合も含んでいる。
【0023】
以上述べたように、本発明は主原料配合計算モデルのみでなく、吹止[C]予測計算において、吹止[C]を決定し、この吹止[C]を使用して出鋼温度予測計算において出鋼温度を計算し、さらに、前記吹止[C]と出鋼温度を使用して、転炉副原料投入量計算で副原料の投入量を計算し、前記吹止[C]、前記出鋼温度、副原料投入量を使用して、合金鉄投入量計算で合金鉄投入量を計算し、これらの計算結果を用いて転炉での鉄収支計算と熱量収支計算を行っているため、転炉出鋼時の出鋼量および出鋼温度を精度よく計算できる。すなわち、本発明の主原料配合方法を用いることにより、転炉出鋼温度を精度よく推定計算でき、転炉の主原料配合が適切にできる。従って、炭素質あるいはFeSiといった高価な昇熱材を使用することなしに、あるいは鉄鉱石やスケールなどの冷却材を多量投入することなく吹錬できる。
【0024】
その結果、吹錬時間の延長に起因する生産性の低下および放熱量の増加を招かず、エネルギー効率の低下を抑制できる。また、塩基度調整のための生石灰などCaO 源の増量使用をする必要がなくなり、熱ロスの増加、さらには、鉄歩留りおよびMn歩留りの低下を招くことがなくなる。また、炉内スラグ中の酸化鉄濃度である(%T.Fe)が過剰に上昇することがなくなり、鉄歩留りおよびMn歩留りの低下、さらには、転炉耐火物の溶損速度の増大を招かず、転炉炉寿命の低下を抑制できる。
【0025】
また、鉄収支および熱収支を学習させることにより、転炉炉容積の変化などの経時変化にも対応することができる。
【0026】
上記の計算モデルを適用し、転炉での熱バランスを最適化することにより、コストメリットの高い、Mn成分規格の高い鋼種に積極的に熱余裕を持たせ、炭素質あるいはFeSiといった高価な昇熱材を使用することなしに、あるいは鉄鉱石やスケールなどの冷却材を多量投入してMn歩留りを低減させることなく、Mn鉱石使用量の拡大を図ることができる。
【0027】
【実施例】
次に、実操業の例を挙げて説明する。280t混銑車による脱珪・脱りん処理を行った溶銑を、240t上底吹き転炉へスクラップと一緒に装入し、吹錬するプロセスにて、比較例として、従来の計算機モデルによる主原料配合計算結果に基づいて主原料配合を実施した結果を図5に、実施例として、本発明の計算結果を適用した結果を図6に示す。これらは、転炉における熱余裕を溶銑配合率(HMR) で示したものであり、目標とするところの熱余裕をばらつき小さく確保できればよいことになる。ここで、目標とする熱余裕とは、Mn規格に対応したMn鉱石を投入するのに十分な熱余裕であり、実施例では、溶銑配合率 1.8%とした。また、予備処理段階での脱りん処理で粗鋼のりん規格上限以下までりんが低減されていない場合は、転炉段階にて再度脱りん処理する必要があるため、投入した生石灰・軽焼ドロマイトなどの造滓材を滓化させるのに必要な量のスケール・鉄鉱石などの冷却材を投入するのに十分な熱余裕をさらに確保する必要がある。
【0028】
図5と図6を比較すると、目標とする熱余裕に対して、本発明により、ばらつきを小さくすることができる(図6参照)。その結果、表1に示すように、Mn鉱石を多量配合でき、スケール、鉄鉱石といった酸化鉄系の冷却材およびFeSi、黒鉛といった昇熱材の使用量を低減することができた。
【0029】
【表1】

Figure 0004807895
【0030】
【発明の効果】
以上述べたところから明らかなように、本発明によれば、転炉出鋼量を精度よく推定計算でき、かつ転炉出鋼温度を精度よく推定計算して転炉での主原料配合が適切にできる。従って、炭素質あるいはFeSiといった高価な昇熱材を使用することなしに、あるいは、鉄鉱石やスケールなどの冷却材を多量投入することなく吹錬が可能である。また、鉄収支および熱収支を学習させることにより転炉炉容積の変化などの経時変化に対応できる。
【0031】
さらには、コストメリットの高いMn成分規格の高い鋼種に積極的に熱余裕を持たせ、炭素質あるいはFeSiといった高価な昇熱材を使用することなしに、あるいは、鉄鉱石やスケールなどの冷却材を多量投入してMn歩留りを低減させることなく、Mn鉱石使用量の拡大を図ることができる。
【0032】
以上の結果、主原料配合段階で種々の条件変化に対して各計算モデルを有機的に結合して主原料配合量の計算を行い、これに基づいて主原料配合計を行うことにより、エネルギーミニマムの転炉吹錬が実施可能となる。
【図面の簡単な説明】
【図1】 転炉の主原料配合量を計算機で制御する計算機設備例を示す図である。
【図2】 本発明に関わる主原料配合量計算の手順を説明する図である。
【図3】 図2に示す1〜6の個別の計算を主原料配合量計算の一部として使用する場合の参考例を示す図である。
【図4】 本発明に関わる主原料配合量計算において脱りん処理計算を追加した主原料配合量計算の手順を説明する図である。
【図5】 比較例である従来の計算モデルによる主原料配合計算における熱余裕の実績値を示す図である。
【図6】 実施例である本発明に関わる計算モデルによる主原料配合計算における熱余裕の実績値を示す図である。
【符号の説明】
1…吹止[C]予測計算、2…出鋼温度予測計算、3…転炉副原料投入量計算、4…合金鉄投入量計算、5…転炉鉄収支計算、6…転炉熱収支計算、7…主原料配合計算、8…脱りん処理計算。[0001]
BACKGROUND OF THE INVENTION
In the present invention, when a pre-treated hot metal is charged into an upper-bottom-blown converter and decarburization and / or dephosphorization is performed, a blending calculation of main raw materials such as hot metal, scrap, and cold iron is performed using a computer. It belongs to the technical field of the method of using and controlling accurately.
[0002]
[Prior art]
When calculating the raw material composition, the composition and temperature of the molten iron in the furnace, the temperature, the secondary auxiliary material input brand and input amount, the iron alloy input brand and input amount at the time of converter steelmaking, the steel output temperature, the blowout [C Among the values that are the preconditions for calculating the heat balance and the iron balance of the main raw material composition, the actual value is used for the value that has already been confirmed in the main raw material composition stage. However, since the main raw material blending needs to be performed before the actual treatment (blowing), it may be necessary to change the target components and temperature after the treatment. Therefore, conventionally, the main raw material blending calculation is performed in the main raw material blending calculation using the set value determined in advance for each steel type as the set value of the precondition.
[0004]
In addition, as seen in JP-A-5-33029 and the like, the main raw material blending calculation is considered to have a main purpose of securing the amount of steel output by “iron balance”. did not have to adjust the main raw material amount in view of the "heat balance" is an important operating factor influencing refining properties.
[0005]
In the case of dephosphorization in advance in the hot metal stage before the charging of the converter, the dephosphorization reaction is performed at a temperature as low as possible compared to 1600 to 1750 ° C. in the converter. The subsequent temperature is generally processed in the range of 1250 to 1350 ° C. in consideration of the solidification temperature of the hot metal. This temperature is about 50 ° C. lower than 1300 to 1400 ° C., which is the hot metal temperature when charging the converter without dephosphorization. In addition, since the dephosphorization treatment is oxidation refining, decarburization and desiliconization reactions occur simultaneously with the dephosphorization reaction, and the [C] concentration in the hot metal is from 4.3 to 4.8 % by mass at the time of blast furnace discharge. When decarburized by about 0.3 to 1.0 % by mass and charged in the converter, it falls to the range of 3.5 to 4.4 % by mass , and the [Si] concentration in the hot metal is also 0. It will fall to about 0.10 mass% or less from 2-0.6 mass% . Similarly, the [P] concentration in the hot metal also decreases from 0.07 to 0.15 mass% at the time of blast furnace discharge to a range of 0.005 to 0.050 mass% . These [C] [Si] [P] components generate heat by the oxidation reaction and work to raise the hot metal temperature. However, by carrying out the dephosphorization process in the hot metal stage before charging the converter, the heat of reaction is reduced. It decreases in the converter stage, and the thermal margin in the converter stage is remarkably reduced together with the decrease in the converter charging temperature. For this reason, in this invention, converter charging temperature is 1250-1350 degreeC, [C]: 3.5-4.5 mass% , [Si]: 0.10 mass% or less, [P]: 0.005- The hot metal subjected to dephosphorization treatment of 0.050 % by mass was used as a target.
[0006]
Therefore, if the dephosphorization process is performed in advance in the hot metal stage before the converter charging, there is no thermal margin. It is necessary to use a new heat-up material. When these heat-up materials are used, further, if carbon is used, the blowing time is extended, resulting in a decrease in productivity and an increase in heat dissipation, resulting in a decrease in energy efficiency. In addition, when FeSi is used, it is necessary to use an increased amount of CaO source such as quick lime to adjust the basicity, resulting in an increase in the amount of slag generated, resulting in an increase in heat loss, iron yield and Mn yield decreases.
[0007]
On the other hand, if the heat margin is too large, it is sufficient to increase the amount of iron ore / scale and other coolants. However, when the converter is blown using hot metal that has undergone hot metal pretreatment, Because the amount of slag in the furnace is small, the iron oxide concentration (% T.Fe) in the furnace slag will increase excessively when a large amount of iron oxide such as iron ore and scale is used. . As a result, a decrease in iron yield and Mn yield, and an increase in the slag amount, an increase in the rate of erosion of the converter refractory, leading to a decrease in converter furnace life.
[0008]
Furthermore, when the iron yield changes in this way, the increase or decrease also occurs with respect to the target steel output. If the amount of steel output is small, energy efficiency decreases due to a decrease in tonnage per charge, and in extreme cases, it may become impossible to output steel due to restrictions on the freeboard (space height) of the ladle and restrictions on molten steel processing. Conversely, if the amount of steel output is large, the hoisting machine cannot be lifted and conveyed.
[0009]
However, in the above technology, since the main raw material composition calculation is performed using the value set for each steel type, the error due to the value is large, and as a result, the accuracy of the main raw material composition calculation is low. The above challenges remain. In addition, since the estimation calculation accuracy of each precondition value is low, it has been determined that the accuracy is improved by using a constant, and so far, the constant has been used.
[0010]
In particular, in the case of continuous and efficient production from the pretreatment to the converter production process, hot metal, one of the main raw materials, is being pretreated or after the treatment, before the components and temperature are known. The need to carry out the main raw material formulation occurs quite often. Furthermore, even if there is a time allowance, the sample / temperature measurement after processing becomes impossible, and the analysis value / temperature measurement value may not be known. In such a case, if the calculation accuracy of the components and temperatures charged to the converter is low, the blending balance of the main raw materials actually charged to the converter will deviate from the calculation and become inappropriate, resulting in energy loss and steel output. The amount will deviate from the target value.
[0011]
The target steel output temperature varies depending on the molten steel processing after the converter and the continuous casting process, waiting time, pan conditions, etc. Therefore, it is necessary to accurately estimate and calculate the optimum target temperature. If the target steel output temperature changes, the dephosphorization efficiency and Mn yield in the converter will be greatly affected, so the optimum secondary material input will change and the heat balance and iron balance will change. I can't consider changes.
[0012]
When converter blowing is performed using hot metal that has been subjected to hot metal pretreatment, the dephosphorization processing load in the converter is reduced, so that the amount of slag in the converter can be reduced. Therefore, since it is possible to improve the yield of Mn in the converter, it is general to actively use Mn ore in the converter for the purpose of suppressing the amount of expensive Mn-based alloy iron used. However, in the conventional calculation of the main raw material, Mn ore is not taken into account, and when the hot metal is actually charged into the converter, if there is a heat margin in the converter, Mn ore If there is no heat margin, an expensive heat-up material such as carbonaceous or FeSi was used. On the other hand, if there is an excessive heat margin, a large amount of coolant such as iron ore or scale is added (% T.Fe) to increase (Mn yield).
[0013]
The present invention has been made to solve the above problems, and the molten iron temperature is 1250 to 1350 ° C., [C]: 3.5 to 4.5 mass% , [Si]: 0.10 mass. % , [P]: 0.005 to 0.050 mass% , hot-melted dephosphorized iron in the hot metal stage before charging the converter in advance, with an upper bottom blow mold of 70 to 350 t scale in performing charging to decarburization and / or dephosphorization treatment converter, molten iron, scrap, per the control using the computer the blending calculation of the main raw material of Hiyazuku, heat balance iron main raw material formulation To provide a main raw material blending method for a converter that calculates the variables that are the preconditions for calculating the balance by using a calculation model that estimates each of the variables, and blends the main raw material by blending the main raw material. With the goal.
[0014]
[Means for Solving the Problems]
The summary is that the molten iron temperature is 1250 to 1350 ° C., [C]: 3.5 to 4.5 mass% , [Si]: 0.10 mass% or less, [P]: 0.005 to 0.050. The hot metal with no heat margin that has been dephosphorized in advance in the hot metal stage before charging the converter, which is mass% , is charged into a 70-350t scale bottom-bottom converter and decarburized and / or decarburized. in performing phosphorous process, molten pig iron, scrap, per the control using the computer the blending calculation of the main raw material of Hiyazuku, components and temperature of Tenro charging molten iron, the converter secondary feedstock input stocks and input amount, BOF Calculation models that estimate the variables that are the preconditions for calculating the heat balance and iron balance of the main raw material composition, such as the alloy iron input brand and amount, the output temperature, and the blowout [C] Calculated by using the calculation results, and using these calculation results, iron balance calculation and calorific value in the converter Performed supporting calculations, and its iron balance calculations and heat balance calculation, that performs data transmission and reception more than once between the main raw material formulation calculated by the blending calculations accurately Shugenryo blending main raw material This is a method for blending the main raw materials of the converter.
[0017]
After dephosphorization treatment in the top-bottom blown converter, the temperature of 1250 to 1350 ° C., [C]: 3.5 to 4.5 mass% , remaining in the furnace after removing the dephosphorization slag, Si]: 0.10 % by mass or less, [P]: 0.005 to 0.050 % by mass of the hot metal having no heat margin when the decarburization process and / or the dephosphorization process are performed again. This is a method for blending the main raw materials of the furnace.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is premised on control using a computer, and an example will be described based on computer equipment as shown in FIG. “Steam Weighing Station” that delivers the required amount of hot metal to the container charged with hot metal into the converter, “Scrap Weighing Station” that puts the required amount into the container charged with scrap and cold metal into the converter, and main raw materials Installed a “main raw material blending indicator” that indicates the blending amount and a TV that displays the calculation results of the computer in a converter, etc., and applied the blended amount calculated as a result of the present invention to the actual blending to achieve the effects described below. Achieve. In addition, the layout and configuration of the hot metal, scrap, and cold steel weighing stations will vary depending on the operation mode of the steelmaking process, and when blending automatically based on the amount of blending calculation related to the invention, when mechanical blending is performed automatically In addition, an example is conceivable in which the operator performs the blending by manually operating the mechanical equipment based on the blending calculation amount.
[0019]
Then, the method to calculate a compounding quantity is demonstrated. The method for calculating the amount is calculated based on the concept shown in FIG. In the blow stop [C] prediction calculation 1, first, the blow stop [C] is determined, and using this blow stop [C], the steel output temperature is calculated in the next steel output temperature prediction calculation 2. Using the blow-off [C] and the output steel temperature, calculate the input amount of the auxiliary material in the converter auxiliary material input calculation 3, and use the blow-off [C], the output steel temperature, and the auxiliary material input. Then, the alloy iron input amount is calculated by the alloy iron input amount calculation 4, and finally, all of the results of these respective calculations are used to calculate the converter iron balance calculation 5 and the converter heat balance calculation 6, The blending calculation of the main raw material is performed accurately by sending and receiving data to and from the blending calculation 7 at least once. In addition, a case where the calculation from the first calculation described in 1 to the last calculation described in 7 is repeated a plurality of times or the calculation is completed only once is included.
[0020]
Next, calculation of each calculation executed in FIG. 2 using actual data such as the actual blending amount of single or multiple charges already blown in the converter and the temperature and composition at the time of steelmaking from the converter . The coefficient is changed and learned so that the error between all the actual data and the corresponding calculation result is as small as possible, so that the accuracy is maintained or improved corresponding to the change with time.
[0021]
Necessary or sufficient to calculate the amount of Mn ore input to the converter or the amount of iron Mn ore appropriate or sufficient to meet the Mn standard required for the charge by any of the calculations 1 to 3 etc. The blending amount of the main raw material is calculated so that there is sufficient heat margin. At this time, based on the blowout [Mn] predicted from the amount of Mn ore input to the converter or the amount of iron Mn ore, the amount of alloy iron related to Mn should be accurately calculated in the calculation of the amount of alloy iron input in 4 Thus, the accuracy of the main ingredient blending amount is also improved.
[0022]
In the above description, when decarburization treatment and / or dephosphorization treatment is performed in a series of treatments, after dephosphorization treatment, once decarburized and again decarburization treatment and / or dephosphorization treatment is performed. 2 or FIG. 3, it is possible to calculate the main raw material blending amount with high accuracy by considering the waste after the dephosphorization process in each calculation of FIG. In addition, the dephosphorization process before and after excretion includes a case where independent calculation is performed in the form of dephosphorization process calculation 8 as shown in FIG.
[0023]
As described above, the present invention determines the blowout [C] in the blowout [C] prediction calculation as well as the main raw material blending calculation model , and uses this blowout [C] to predict the steel output temperature. Calculate the steel output temperature in the calculation, and further use the blowout [C] and the steel output temperature to calculate the input amount of the secondary raw material in the converter secondary raw material input amount calculation, the blowout [C], Using the steel output temperature and auxiliary raw material input amount, the iron alloy input amount is calculated by calculation of the iron alloy input amount, and the iron balance calculation and calorie balance calculation in the converter are performed using these calculation results. Therefore, it is possible to accurately calculate the amount of steel output and the temperature of steel output at the time of steel output from the converter. That is, by using the main raw material blending method of the present invention, the converter steel output temperature can be accurately estimated and calculated, and the main raw material blend of the converter can be made appropriate. Therefore, blowing can be performed without using an expensive heat increasing material such as carbonaceous material or FeSi or without adding a large amount of coolant such as iron ore or scale.
[0024]
As a result, it is possible to suppress a decrease in energy efficiency without causing a decrease in productivity and an increase in heat dissipation due to the extension of the blowing time. In addition, it is not necessary to use an increased amount of CaO source such as quick lime for adjusting the basicity, and heat loss is not increased, and further, iron yield and Mn yield are not reduced. Also, the iron oxide concentration (% T.Fe) in the furnace slag does not increase excessively, resulting in a decrease in iron yield and Mn yield, and an increase in the rate of melting of converter refractories. However, it is possible to suppress a decrease in converter furnace life.
[0025]
Further, by learning the iron balance and the heat balance, it is possible to cope with changes with time such as changes in the converter furnace volume.
[0026]
By applying the above calculation model and optimizing the heat balance in the converter, the steel grades with high cost merit and high Mn component specifications are positively given a thermal margin, and carbonaceous or FeSi is expensive. The amount of Mn ore used can be increased without using a heat material, or without adding a large amount of coolant such as iron ore or scale to reduce the Mn yield.
[0027]
【Example】
Next, an example of actual operation will be described. As a comparative example, blending main raw materials with a conventional computer model in a process in which hot metal that has undergone desiliconization and dephosphorization treatment using a 280-ton mixing car is loaded together with scrap into a 240-ton top-bottom blowing converter. FIG. 5 shows the result of the main raw material blending based on the calculation result, and FIG. 6 shows the result of applying the calculation result of the present invention as an example. These show the heat margin in the converter in terms of hot metal mixing ratio (HMR), and it is sufficient if the target heat margin can be secured with small variations. Here, the target thermal margin is a thermal margin sufficient to input Mn ore corresponding to the Mn standard, and in the examples, the hot metal content was 1.8%. In addition, if phosphorus is not reduced to below the upper limit of phosphorus for crude steel in the dephosphorization process in the pretreatment stage, it is necessary to dephosphorize again in the converter stage. It is necessary to further secure a sufficient heat margin for supplying a coolant such as scale or iron ore necessary for hatching the ironmaking material.
[0028]
When FIG. 5 and FIG. 6 are compared, the variation can be reduced according to the present invention with respect to the target thermal margin (see FIG. 6). As a result, as shown in Table 1, a large amount of Mn ore could be blended, and the amount of iron oxide-based coolants such as scale and iron ore and heat-generating materials such as FeSi and graphite could be reduced.
[0029]
[Table 1]
Figure 0004807895
[0030]
【The invention's effect】
As is apparent from the above description, according to the present invention, the amount of steel output from the converter can be accurately estimated and calculated, and the temperature of the steel output from the converter can be accurately estimated to calculate the main raw material composition in the converter. Can be. Therefore, blowing can be performed without using an expensive heat-up material such as carbonaceous material or FeSi, or without adding a large amount of coolant such as iron ore or scale. In addition, by learning the iron balance and heat balance, it is possible to cope with changes over time such as changes in the converter furnace volume.
[0031]
In addition, the steel grades with high Mn component specifications, which have high cost merit, have positive thermal margins, without using expensive heat-up materials such as carbonaceous or FeSi, or coolants such as iron ore and scales. The amount of Mn ore used can be expanded without increasing the amount of Mn and reducing the yield of Mn.
[0032]
As a result of the above, the energy consumption minimum is obtained by organically combining the calculation models for various conditions at the main raw material blending stage to calculate the main raw material blending amount, and performing the main raw material distribution based on this. It becomes possible to carry out the converter blowing.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of computer equipment for controlling the amount of main raw material of a converter by a computer.
FIG. 2 is a diagram for explaining the procedure for calculating the amount of main raw material according to the present invention.
FIG. 3 is a diagram showing a reference example in a case where the individual calculations 1 to 6 shown in FIG. 2 are used as a part of the main raw material blend amount calculation.
FIG. 4 is a diagram for explaining a main raw material blending amount calculation procedure in which a dephosphorization calculation is added in the main raw material blending amount calculation according to the present invention.
FIG. 5 is a diagram showing an actual value of thermal margin in a main raw material blending calculation by a conventional calculation model as a comparative example.
FIG. 6 is a diagram showing an actual value of heat margin in main raw material blending calculation by a calculation model according to the present invention which is an example.
[Explanation of symbols]
1 ... Blow [C] prediction calculation, 2 ... Steel output temperature prediction calculation, 3 ... Converter auxiliary material input calculation, 4 ... Alloy iron input calculation, 5 ... Converter iron balance calculation, 6 ... Converter heat balance Calculation, 7 ... Main raw material blending calculation, 8 ... Dephosphorization processing calculation.

Claims (2)

装入溶銑温度が1250〜1350℃、[C]:3.5〜4.5質量%、[Si]:0.10質量%以下、[P]:0.005〜0.050質量%である、転炉装入前の溶銑段階で事前に脱りん処理した熱余裕のない溶銑を、70〜350t規模の上底吹き型転炉に装入して脱炭処理および/または脱りん処理を行うに際して、溶銑、スクラップ、冷銑という主原料の配合計算を計算機を用いて制御するにあたり、
吹止[C]予測計算において、吹止[C]を決定し、この吹止[C]を使用して出鋼温度予測計算において出鋼温度を計算し、さらに、前記吹止[C]と出鋼温度を使用して、転炉副原料投入量計算で副原料の投入量を計算し、前記吹止[C]、前記出鋼温度、副原料投入量を使用して、合金鉄投入量計算で合金鉄投入量を計算し、
これらの計算結果を用いて転炉での鉄収支計算と熱量収支計算を行い、
その鉄収支計算および熱量収支計算と、主原料配合計算との間で一回以上のデータの授受を行って精度よく主原料の配合計算をして主原料を配合することを特徴とする転炉の主原料配合方法。
The molten iron temperature is 1250 to 1350 ° C., [C]: 3.5 to 4.5 mass%, [Si]: 0.10 mass% or less, and [P]: 0.005 to 0.050 mass%. In addition, the hot metal that has been dephosphorized in advance in the hot metal stage before the charging of the converter is charged into a 70-350t scale upper bottom blowing converter and subjected to decarburization and / or dephosphorization. At the time of controlling the blending calculation of the main raw materials such as hot metal, scrap, and cold iron using a computer,
In the blowout [C] prediction calculation, the blowout [C] is determined, and using this blowout [C], the outgoing steel temperature is calculated in the outgoing steel temperature prediction calculation, and further, the blowout [C] Using the steel output temperature, calculate the auxiliary material input amount in the converter auxiliary material input amount calculation, and use the blowout [C], the steel output temperature, the auxiliary material input amount, and the alloy iron input amount Calculate the iron alloy input by calculation,
Using these calculation results, iron balance calculation and calorie balance calculation in the converter,
A converter characterized in that the main raw material is blended by accurately performing the main raw material blending calculation by transferring data at least once between the iron balance calculation and calorie balance calculation and the main raw material blending calculation. The main raw material blending method.
上底吹き型転炉にて脱りん処理した後、脱りんスラグを排滓した後に炉内に残った、温度が1250〜1350℃、 [C]:3.5〜4.5質量%、[Si]:0.10質量%以下、[P]:0.005〜0.050質量%の熱余裕のない溶銑を、再び、脱炭処理および/または脱りん処理を行うに際しての、請求項1に記載の転炉の主原料配合方法。After dephosphorization treatment in the top-bottom blown converter, after dephosphorization slag was removed, the temperature remained in the furnace was 1250 to 1350 ° C., [C]: 3.5 to 4.5 mass%, [ Si]: 0.10 wt% or less, [P]: 0.005 to 0.050 mass% with no thermal margin molten iron again, the time of performing decarburization and / or dephosphorization treatment claim 1 The main raw material mixing method of the converter described in 1.
JP32958299A 1999-11-19 1999-11-19 Converter main raw material blending method Expired - Lifetime JP4807895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32958299A JP4807895B2 (en) 1999-11-19 1999-11-19 Converter main raw material blending method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32958299A JP4807895B2 (en) 1999-11-19 1999-11-19 Converter main raw material blending method

Publications (2)

Publication Number Publication Date
JP2001152228A JP2001152228A (en) 2001-06-05
JP4807895B2 true JP4807895B2 (en) 2011-11-02

Family

ID=18222971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32958299A Expired - Lifetime JP4807895B2 (en) 1999-11-19 1999-11-19 Converter main raw material blending method

Country Status (1)

Country Link
JP (1) JP4807895B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484717B2 (en) * 2005-01-21 2010-06-16 株式会社神戸製鋼所 How to operate steelmaking equipment
JP2010248550A (en) * 2009-04-14 2010-11-04 Daido Steel Co Ltd Method for blending scrap
JP5821656B2 (en) * 2011-01-28 2015-11-24 Jfeスチール株式会社 Quick lime concentration prediction device and blowing control method
JP2013133536A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Method for producing molten steel
JP6331601B2 (en) * 2014-04-03 2018-05-30 新日鐵住金株式会社 Blowing control method in steelmaking converter.
CN106964271B (en) * 2017-05-16 2022-12-23 山东钢铁股份有限公司 Iron ore-containing powder composite batching system and method

Also Published As

Publication number Publication date
JP2001152228A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
CN110129517B (en) Method for smelting high-silicon iron water based on converter duplex method to improve dephosphorization rate of desiliconization furnace
JP5954551B2 (en) Converter steelmaking
CN108913837A (en) A kind of high scrap ratio smelting process of converter
CN109321704B (en) Smelting method for reducing phosphorus content of smelting final slag by slag splashing furnace protection
JP4807895B2 (en) Converter main raw material blending method
JP4790489B2 (en) Converter steelmaking
JP3575304B2 (en) Converter steelmaking method
JP3705170B2 (en) Hot phosphorus dephosphorization method
KR20050024963A (en) Method for Refinig Molten Pig Iron in Converter
JPH07310110A (en) Production of stainless steel
JP4484717B2 (en) How to operate steelmaking equipment
JP3486886B2 (en) Steelmaking method using two or more converters
JPS62158810A (en) Method for determining main material charging quantity in converter operation
JP4497942B2 (en) Converter operation method
JP4421314B2 (en) Determination of slag amount in hot metal refining
JP4080679B2 (en) Hot phosphorus dephosphorization method
JP2015010267A (en) Method and apparatus for blowing control
JPH0142323B2 (en)
JP7248195B2 (en) Converter steelmaking method
WO2022154023A1 (en) Converter-refining method
JP4048010B2 (en) Method for estimating phosphorus equilibrium in converters and hot metal pretreatment vessels.
JPH059538A (en) Converter steelmaking method for charging molten iron obtd. by melting cold pig iron or the like
JP5159029B2 (en) Operation method of converter facilities
JP5283309B2 (en) Operation method of converter facilities
JP3924058B2 (en) Converter steelmaking method using dephosphorized hot metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4807895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term