JP4421314B2 - Determination of slag amount in hot metal refining - Google Patents

Determination of slag amount in hot metal refining Download PDF

Info

Publication number
JP4421314B2
JP4421314B2 JP2004017232A JP2004017232A JP4421314B2 JP 4421314 B2 JP4421314 B2 JP 4421314B2 JP 2004017232 A JP2004017232 A JP 2004017232A JP 2004017232 A JP2004017232 A JP 2004017232A JP 4421314 B2 JP4421314 B2 JP 4421314B2
Authority
JP
Japan
Prior art keywords
slag
amount
treatment
hot metal
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004017232A
Other languages
Japanese (ja)
Other versions
JP2005206923A (en
Inventor
正信 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004017232A priority Critical patent/JP4421314B2/en
Publication of JP2005206923A publication Critical patent/JP2005206923A/en
Application granted granted Critical
Publication of JP4421314B2 publication Critical patent/JP4421314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、転炉精錬などのように精錬容器に溶銑及び固体鉄源を装入し、フラックスの添加と酸素吹き込みを行う溶銑の精錬でのスラグ量の決定方法に関し、特に脱Pを行った後に一旦スラグを排出させ、引き続き脱C精錬を行う溶銑の精錬でのスラグ量の決定方法に関する。
The present invention relates to a method for determining the amount of slag in the refining of hot metal in which hot metal and solid iron source are charged into a refining vessel such as converter refining, and flux is added and oxygen is blown, and in particular, de-P is performed. The present invention relates to a method for determining the amount of slag in hot metal refining , in which slag is once discharged and de-C refining is subsequently performed.

従来より、高炉で製造された溶銑を精錬して溶鋼を製造する方法として、溶銑予備処理と転炉精錬を組み合わせたプロセスが一般的に採用されている。かかるプロセスは、前段の溶銑予備処理では主に脱Pあるいは脱硫を行い、後段の転炉精錬では主に脱C、昇熱を行うもので、特に溶銑の脱P機能を強化すると共に転炉における精錬負荷を軽減するために実用化されたものであり、機能分割型の精錬方式(いわゆる分割精錬法)を重視するものである。   Conventionally, as a method for producing molten steel by refining hot metal produced in a blast furnace, a process combining hot metal pretreatment and converter refining has been generally employed. Such a process mainly performs de-P or desulfurization in the preceding hot metal pretreatment, and mainly performs de-C and heat-up in the subsequent converter refining. In particular, in the converter, the de-P function of hot metal is strengthened. It has been put to practical use in order to reduce the refining load, and places importance on the functional division type refining method (so-called divided refining method).

しかし、この分割精錬法は独立した予備処理工程を持たなければならないために、その専用設備、要員、資材に要する費用が嵩むこと、また全体の精錬時間が長くなり、熱ロスも大きいため溶鋼の生産性が低いことなど、プロセス全体としてのコスト、生産性に少なからず問題がある。   However, since this split refining method must have an independent pretreatment process, the cost of dedicated equipment, personnel, and materials increases, and the overall refining time becomes longer, and the heat loss is also large, so the molten steel There are not a few problems with the cost and productivity of the entire process, such as low productivity.

このような分割精錬法における問題を解消する有力なプロセスとして前記の溶銑予備処理設備を持たずに転炉による精錬のみで所望の溶鋼を製造するいわゆるダブルスラグ法(あるいは中間排滓法)が開発されている。この精錬プロセスの概要はその名の通り、転炉に溶銑及びスクラップを装入し、これにフラックスの添加と酸素吹き込みにより脱P処理を行って所定のP含有量(P,S含有量)に低減させた後、生成したスラグを排出、すなわち中間排滓し、炉体を正立させた後、引き続き脱C処理を行い、生成したスラグを残したまま出鋼を行い、この同一転炉に次のチャージの溶銑及びスクラップを装入して同様にフラックスの添加と酸素吹き込みにより脱P(あるいは脱硫、脱P)処理を行う方法(特許文献1、特許文献2、特許文献3など)である。   The so-called double slag method (or intermediate slag method) has been developed to produce the desired molten steel only by refining by a converter without having the hot metal pretreatment facility as an effective process to solve such problems in the division refining method. Has been. The outline of this refining process is, as its name suggests, hot metal and scrap are charged into the converter and subjected to de-P treatment by adding flux and blowing oxygen to a predetermined P content (P, S content). After the reduction, the generated slag is discharged, that is, the intermediate evacuated, the furnace body is set upright, and then the de-C treatment is performed, and the steel is discharged while leaving the generated slag. This is a method (Patent Document 1, Patent Document 2, Patent Document 3, etc.) in which hot metal and scrap of the next charge are charged and flux is added and oxygen is blown in the same manner. .

この方法によれば、溶銑予備処理のための設備費、人件費及びフラックスなどの諸資材の費用を削減でき、また精錬時間を短縮でき、さらに熱ロスを少なくできるなどのすぐれた効果が提供される。   According to this method, it is possible to reduce the cost of various materials such as equipment costs, labor costs and flux for the hot metal pretreatment, reduce the refining time, and further reduce the heat loss. The

ところで、このダブルスラグ法における脱P処理では、発明者等の実験によれば、スラグの脱P能が充分にある所定の条件(総投入酸素量(脱Si除く)≧9Nm3/溶銑t、かつ、塩基度=1.0〜3.0)を満たした範囲においては、操業条件によっては微妙には変化するものの一般に[P]=0.030%以上の領域では酸素供給律速であることが分かった。さらに0.030%以下まで[P]を低下させるためには、溶銑中のP供給が律速となって効率が低下することになる。従って、前半の脱P処理では、低C/Sかつ高速脱P処理を狙って、酸素供給律速領域である[P]=0.030%までで脱P処理を一旦中止し、脱P後スラグを排滓し、その後、仕上げ脱Pを含む脱C処理を実施することが全体の操業効率を高める上で極めて有利となる。   By the way, in the de-P treatment in the double slag method, according to experiments by the inventors, predetermined conditions (total input oxygen amount (excluding de-Si)) ≧ 9 Nm 3 / molten metal t, and In the range satisfying basicity = 1.0 to 3.0), although it slightly changes depending on the operating conditions, it is generally found that the oxygen supply rate is limited in the region of [P] = 0.030% or more. It was. Furthermore, in order to reduce [P] to 0.030% or less, the P supply in the hot metal becomes the rate-determining and the efficiency is lowered. Therefore, in the first half of the de-P process, the de-P process is temporarily stopped until [P] = 0.030%, which is the oxygen supply rate-determining region, aiming at a low C / S and high-speed de-P process. It is extremely advantageous to improve the overall operation efficiency by carrying out the de-C treatment including finishing de-P after that.

こうした操業形態においては通常の脱P処理における副原料投入計算にて考えている「P分配比」は不要であり、Pの物質収支を元にスラグ中の(P25)が目標値(=平衡値)以下に希釈されるに足る最小限のスラグ量(ミニマムスラグ量)を決定することが重要となる。そして、実際の脱P処理ではこのミニマムスラグ量を下限として且つこのミニマムスラグ量より僅かに多めのスラグ量を上限とした脱Pスラグ量の範囲を維持して操業を行えば、効率的な脱Pを実施できると同時に全体のスラグ発生量すなわちトータルスラグ発生量(脱P後スラグ排出量+脱C後スラグ発生量)及び系外へのスラグ排出量(脱P後スラグ排出量+脱C後スラグ発生量−前チャージスラグ残し量)最小限に抑えることができるのである。 In such a mode of operation, the “P distribution ratio” considered in the calculation of the auxiliary material input in the normal de-P treatment is unnecessary, and the (P 2 O 5 ) in the slag is the target value (based on the P material balance). = Equilibrium value) It is important to determine the minimum amount of slag (minimum slag amount) sufficient to be diluted below. In actual de-P treatment, if the operation is carried out while maintaining the de-P slag amount range with this minimum slag amount as the lower limit and slightly larger than this minimum slag amount as the upper limit, efficient de-P At the same time that P can be implemented, the total slag generation amount, that is, the total slag generation amount (the amount of slag discharged after de-P + the amount of slag generated after de-C) and the amount of slag discharged outside the system (the amount of slag discharged after P-depletion + post-C The amount of slag generated—the amount of remaining pre-charge slag) can be minimized.

しかし、前述の中間排滓法に関する従来技術にあってはいずれもかかる中間排滓法の特異な操業形態には着目、開示するところが無く、且つ脱Pスラグ量を最小限にする考え方も無いため、全体として効率の高い十分な精錬方法とはいえないものであった。
特開平4−72007号公報 特開平5−140627号公報 特開平5−247511号公報
However, none of the prior arts related to the above-mentioned intermediate waste disposal method pay attention to and disclose the specific operation mode of such intermediate waste disposal method, and there is no way of minimizing the amount of de-P slag. As a whole, it was not an efficient and sufficient refining method.
Japanese Patent Laid-Open No. 4-72007 Japanese Patent Laid-Open No. 5-140627 JP-A-5-247511

本発明はかかる従来の背景、事情に鑑み、目標とする脱Pを有効且つ確実に達成すると共に且つ精錬後のスラグ発生量の合計を極力抑制し、全体として高い効率で溶鋼を製造することが可能な溶銑の精錬でのスラグ量の決定方法を提供することをその課題としてなされたものである。
In view of the conventional background and circumstances, the present invention achieves target de-P effectively and reliably, and suppresses the total amount of slag generation after refining as much as possible, and produces molten steel with high efficiency as a whole. An object of the present invention is to provide a method for determining the amount of slag in the refining of possible hot metal.

本発明の請求項1は、精錬容器に溶銑及び固体鉄源を装入するとともに、これにフラックスの添加と酸素吹き込みを行って所定のP含有量まで低減させる脱P処理を行った後、生成したスラグを排出し、引き続き脱C処理を行ない、且つ前記脱P処理の際に、脱珪に必要な酸素を除く総供給酸素量を9Nm3/溶銑t以上とするとともにスラグの塩基度(
CaO/SiO2)を1.0〜3.0の範囲で行う溶銑の精錬におけるスラグ量の決定方法
であって、前記脱P処理の際のスラグ量を、式1,式2を用いて決定することを特徴とする溶銑の精錬でのスラグ量の決定方法を提案するものである。
According to claim 1 of the present invention, the hot metal and the solid iron source are charged into the smelting vessel, and after the de-P treatment is performed to reduce the P content by adding flux and blowing oxygen, The slag was discharged and subsequently de-C treatment was performed, and during the de-P treatment, the total oxygen supply amount excluding oxygen necessary for desiliconization was set to 9 Nm 3 / molten iron or more and slag basicity (
This is a method for determining the amount of slag in the refining of hot metal in which CaO / SiO 2 ) is in the range of 1.0 to 3.0, and the amount of slag during the de-P treatment is determined using Equations 1 and 2. We propose a method for determining the amount of slag in hot metal refining.

脱Pスラグ量=M(kg/溶銑t)〜M+10(kg/溶銑t) ・・・式1
M=(インプットP−脱P処理後溶銑P)×2.29
÷目標とする脱P後スラグ中(P25)濃度 ・・・式2
ただし、式2の目標とする脱P後スラグ中(P 2 5 )濃度は、3〜5質量%)
本発明の請求項2は、前記式1の脱Pスラグ量及び式2のインプットPの計算に際しては、添加される地金に付着しているスラグ量及びスラグ中のPをも考慮することを特徴とする請求項1に記載の溶銑の精錬でのスラグ量の決定方法を提案するものである。
P-free slag amount = M (kg / molten metal t) to M + 10 (kg / molten metal t) Formula 1
M = (input P-melting iron P after de-P treatment) × 2.29
÷ Target (P 2 O 5 ) concentration in slag after de-P: Formula 2
( However, the target (P 2 O 5 ) concentration in the slag after de-P targeted by Formula 2 is 3 to 5% by mass)
Claim 2 of the present invention considers the amount of slag adhering to the added metal and the P in the slag in calculating the de-P slag amount of Equation 1 and the input P of Equation 2. The method for determining the amount of slag in the refining of hot metal according to claim 1 is characterized.

本発明の請求項3は、前チャージのスラグを残して利用し、そのスラグ残し量を前記式1を用いて調整することを特徴とする請求項1又は2に記載の溶銑の精錬でのスラグ量の決定方法を提案するものである。 According to a third aspect of the present invention, the slag in the refining of hot metal according to claim 1 or 2 is characterized in that the slag of the previous charge is used while remaining, and the amount of the slag remaining is adjusted using the formula 1. A method for determining the quantity is proposed.

本発明によれば、ダブルスラグ法(中間排滓法)に基づく溶銑の精錬において、溶銑の目標とする脱P処理を有効且つ確実に実施することができ、しかも全体のスラグの発生量及び系外へのスラグ排出量を最小限に抑制することができ、このため造滓剤、特に高価な塩基性造滓剤の使用量を削減することが可能となり、因って高い効率で溶鋼の製造を行うことが可能となる。   According to the present invention, in the hot metal refining based on the double slag method (intermediate slag method), it is possible to effectively and reliably carry out the de-P treatment targeted for the hot metal, and the total amount of slag generated and the system The amount of slag discharged to the outside can be suppressed to the minimum, which makes it possible to reduce the use of iron making agents, especially expensive basic iron making agents, and therefore to produce molten steel with high efficiency. Can be performed.

先ず、本発明では、脱P、脱C精錬の前半の脱P処理においは、スラグの脱P能が充分にある条件すなわち総投入酸素量(脱Si除く)≧9Nm3/溶銑t、かつ、塩基度=1.0〜3.0の条件で、[P]を約0.030%(0.025〜0.035%)まで低減させる高速脱Pを行う。その後精錬を一旦中断し、溶銑を炉内に残したまま生成した脱Pスラグを排出し、ついで脱C処理を行い脱Cと仕上げ脱P(0.030%未満の目標[P])を行う。   First, in the present invention, in the de-P treatment in the first half of de-P and de-C refining, the slag is sufficiently de-P-capable, that is, the total input oxygen amount (excluding de-Si) ≧ 9 Nm 3 / molten iron t and the base Under the condition of degree = 1.0 to 3.0, high-speed de-P is performed to reduce [P] to about 0.030% (0.025 to 0.035%). After that, refining is interrupted, and the generated de-P slag is discharged while the molten iron remains in the furnace. Then, de-C treatment is performed to de-C and finish de-P (target [P] less than 0.030%). .

この脱P処理における操業形態は酸素供給律速であることから、P分配を考慮せずにPの物質収支に基づいて脱P後のスラグ中の(P25)が目標とする値以下に希釈される最小限のスラグ量すなわちミニマムスラグ量を算出、決定し、このミニマムスラグ量を下限とし且つこのミニマムスラグ量より僅かに多めのスラグ量を上限とした脱Pスラグ量の範囲を維持して操業を行う。 Since the operation mode in this de-P treatment is oxygen supply-controlled, (P 2 O 5 ) in the slag after de-P is less than the target value based on the mass balance of P without considering P distribution. Calculate and determine the minimum amount of slag to be diluted, that is, the minimum slag amount, and maintain the range of de-P slag amount with the minimum slag amount as the lower limit and the slag amount slightly higher than the minimum slag amount as the upper limit. To operate.

そして、具体的にはこのミニマムスラグ量をMとすると、脱Pスラグ量は下記の式1及び2によって決定される。   Specifically, when the minimum slag amount is M, the de-P slag amount is determined by the following equations 1 and 2.

脱Pスラグ量=M(kg/溶銑t)〜M+10(kg/溶銑t)
・・・式1
M=(インプットP−脱P処理後溶銑P)×2.29÷
目標とする脱P後スラグ中(P25)濃度・・・式2
このMよりも多いスラグを使用しても、それによって処理後溶銑[P]はさらに低下するということはなく、スラグ中(P2O5)が低下してスラグ排出量が増加するのみとなってしまう。逆に、Mより少ないスラグを使用した場合、脱P処理で充分な脱Pができなくなってしまい、後半の脱C処理でのスラグ発生量が増加する。脱P吹錬の塩基度が1.0〜2.0程度なのに対し、脱C吹錬の塩基度は3.5〜4.0程度の高塩基度操業であるため、同量のPを除去するにも倍程度のスラグが必要となる。従って、脱Pスラグ量をこのMに近い値に維持して操業を行わなければ、いずれにしても目標[P]を達成する効率的な脱Pが困難となると共に、全体のスラグ発生量が増大する不利を生じる。
P-free slag amount = M (kg / molten metal t) to M + 10 (kg / molten metal t)
... Formula 1
M = (input P-melting iron P after de-P treatment) × 2.29 ÷
Target (P 2 O 5 ) concentration in slag after de-P: Formula 2
Even if more slag than M is used, the post-treatment hot metal [P] is not further lowered, and the amount of slag is increased only by reducing the amount of slag (P2O5). On the other hand, when less slag than M is used, sufficient de-P cannot be performed by the de-P process, and the amount of slag generated in the latter de-C process increases. Since the basicity of de-P blowing is about 1.0-2.0, the basicity of de-C blowing is high basicity operation of about 3.5-4.0, so the same amount of P is removed. In order to do this, about twice as much slag is required. Therefore, unless the operation is performed while maintaining the de-P slag amount at a value close to M, efficient de-P to achieve the target [P] will be difficult anyway, and the total slag generation amount will be reduced. Increased disadvantages.

本発明では実際の操業を考えた場合、後述の実施例により明らかにするが、脱Pスラグ量を式1の如く、M(kg/溶銑t)を下限としてこれに10(kg/溶銑t)を加えた値を上限とすれば、この範囲に現実的にスラグ量をコントロールすることが可能であり、これにより上記脱P目標を確実に達成でき、スラグ発生量を効果的に減少させることができる。   In the present invention, when actual operation is considered, it will be clarified by an example described later. The amount of P slag is expressed by Equation 1, and M (kg / molten metal t) is set as a lower limit to 10 (kg / molten metal t). If the upper limit is the value added, it is possible to realistically control the slag amount within this range, thereby reliably achieving the above-mentioned P removal target and effectively reducing the slag generation amount. it can.

次に、式1、2により脱Pスラグ量を決定する際の、具体的な算出方法について説明する。
1)インプットP=溶銑量×溶銑[P]+冷銑量×冷銑[P]+スクラップ量×スクラップ[P]+地金付着スラグ量×付着スラグ(P)+前チャージスラグ量×前チャージスラグ(P)+溶銑鍋残留スラグ量×鍋残留スラグ(P)
・・・式3
インプットPは溶銑中に入ってくるPで、原則として上式によりに計算するが、上記以外の他の副原料などから混入するPがある場合はこれを含めて計算しても良いものである。
Next, a specific calculation method when determining the amount of de-P slag by Equations 1 and 2 will be described.
1) Input P = amount of hot metal x hot metal [P] + amount of hot metal x cold iron [P] + amount of scrap x scrap [P] + amount of slag adhering to slag x amount of adhering slag (P) + amount of precharge slag x precharge Slag (P) + hot metal pan residual slag amount x pan residual slag (P)
... Formula 3
The input P is P that enters the hot metal, and is calculated according to the above formula in principle. However, if there is P mixed from other auxiliary materials other than the above, it may be calculated including this. .

ここでスクラップ量は地金中の鉄分を含む鉄屑の鉄分量をいう。また、地金付着スラグ量は転炉の炉口部に付着あるいは、取鍋に連続鋳造後に残存した地金と一体となって存在するスラグの量を指し、溶銑鍋残留スラグ量は溶銑鍋中の溶銑上のスラグを除滓後に残留したスラグが転炉に溶銑を装入した際に同時に装入されてしまうスラグの量をいう。前チャージスラグ量は前チャージの精錬(脱C処理)後に残留し、今回のチャージの脱Pスラグとして活用されるスラグ量を示す。なお、従来、インプットPの計算に当っては特に地金付着スラグは考慮されていなかった。   Here, the amount of scrap refers to the amount of iron scrap containing iron in the metal. In addition, the amount of slag adhering to the metal bar refers to the amount of slag that is attached to the furnace mouth of the converter or remains in the ladle after the continuous casting. This refers to the amount of slag that is charged at the same time when the slag remaining after removing the slag on the hot metal is charged into the converter. The previous charge slag amount remains after the previous charge refining (de-C treatment) and indicates the amount of slag that is used as the de-P slag for the current charge. Conventionally, in the calculation of the input P, the metal adhesion slag has not been taken into consideration.

スラグ、スクラップなどのP濃度は毎チャージ測定すればより正確に計算できるが、別途測定した代表値を用いることで十分効果が得られる。
2)脱P処理後の溶銑中P=脱P処理後溶銑量×脱P処理後目標[P]
・・・式4
ここで脱P処理後目標Pは操業条件により酸素供給律速の領域が変化するためこの値も0.025〜0.035%と変化するが、通常は0.030%の固定値を用いる。
3)脱Pスラグ量=Σ(各副原料、スラグ又は主原料)×[(%CaO+(%SiO2)]÷55% ・・・式5
また、ここで(SiO2)は下式のように、計算される。
The P concentration of slag, scrap, etc. can be calculated more accurately by measuring each charge, but a sufficient effect can be obtained by using a representative value measured separately.
2) P in hot metal after de-P treatment = amount of hot metal after de-P treatment x target after de-P treatment [P]
... Formula 4
Here, since the target P after de-P treatment changes in the oxygen supply rate-limiting region depending on the operating conditions, this value also changes from 0.025 to 0.035%, but normally a fixed value of 0.030% is used.
3) De-P slag amount = Σ (each auxiliary material, slag or main material) × [(% CaO + (% SiO 2 )] ÷ 55% Formula 5
Here, (SiO 2 ) is calculated as in the following equation.

(SiO2)=溶銑量×溶銑[Si]×2.14+冷銑量×冷銑[Si]×2.14+スクラップ量×スクラップ[Si]×2.14+地金付着スラグ量+前チャージスラグ量×(SiO2)+溶銑鍋残留スラグ量×(SiO2)+造滓材投入量×(SiO2) ・・・式5-2
なお、上記SiO2の濃度測定に関してもP濃度の場合と同様に代表値を用いることができる。
(SiO 2 ) = Amount of hot metal × Hot metal [Si] × 2.14 + Amount of cold metal × Cold iron [Si] × 2.14 + Amount of scrap × Scrap [Si] × 2.14 + Amount of slag adhering to metal + Amount of precharge slag X (SiO 2 ) + hot metal ladle residual slag amount x (SiO 2 ) + iron making material input x (SiO 2 ) Formula 5-2
It should be noted that the representative value can be used for the measurement of the SiO 2 concentration as in the case of the P concentration.

この脱Pスラグ量の算出においても、地金付着スラグ量については従来全く考慮されておらず、このため脱P不良や無駄なスラグ量の発生原因になっていた。特に、溶鋼鍋の地金に付着したスラグは連鋳スラグや造塊スラグで構成され、その塩基度が2.5〜3.5となっており、脱P処理におけるスラグの塩基度(1.0〜2.0)より高いことから、これを考慮せずにスラグ量を決めた場合には滓化不良によるP外れや、生石灰の過剰使用によるスラグ発生量の増大を招くことになる。本発明では地金付着スラグ量を脱Pスラグ量の算定に厳密に加味することで、さらに脱Pの精度を高めると同時にスラグの発生量を必要最小限にとどめることができる。   In the calculation of the amount of de-P slag, the amount of slag adhering to the metal has not been considered at all in the past, and this has been a cause of de-P failure and the generation of wasteful slag. In particular, the slag adhering to the metal bar of the molten steel pan is composed of continuous cast slag or ingot slag, and its basicity is 2.5 to 3.5, and the slag basicity (1. Therefore, if the amount of slag is determined without taking this into consideration, it will lead to a loss of P due to poor hatching and an increase in the amount of slag generated due to excessive use of quicklime. In the present invention, by strictly adding the amount of slag adhering to the base metal to the calculation of the de-P slag amount, it is possible to further improve the accuracy of de-P and at the same time minimize the generation amount of slag.

また、ここで地金付着スラグ量については脱P処理によって溶解する量を加味して決めることが望ましい。ダブルスラグ法(中間排滓法)での脱P処理は短時間で低温であるため、特に溶解しにくい地金付着スラグがこの処理期間に全てが溶解せず、一部未溶解のまま残る場合がある。そして、このような場合は予め、使用される地金付着スラグの大きさや形状、さらに装入状態などを加味してその付着スラグの溶解量を推定し、その溶解率を全量にかけた値を地金付着スラグ量として用いる。溶解率の推定に当っては、過去のチャージの溶解状況の実績に基づいて行うと良い。
3)目標とする脱P後スラグ中(P25)濃度=3〜5% ・・・式6
この目標脱P後スラグ量(P25)濃度は本件発明においては平衡値に近い値にする考え方から3〜5%とする。すなわち、この値が3%未満では高速での脱Pが不十分となるし、一方、実際の転炉脱Pでは5%を越えるレベルにはなかなか到達しないからである。
Further, here, the amount of slag adhering to the metal is desirably determined in consideration of the amount dissolved by the de-P treatment. Since the de-P treatment in the double slag method (intermediate evacuation method) is a low temperature in a short time, the slag that is difficult to dissolve is not completely dissolved during this treatment period, and some remains undissolved There is. In such a case, the amount of adhesion slag is estimated in advance by taking into account the size and shape of the metal adhesion slag to be used and the state of charging, and a value obtained by multiplying the dissolution rate by the total amount is ground. Used as gold adhesion slag amount. The dissolution rate may be estimated based on past charge dissolution results.
3) Target post-P removal slag (P 2 O 5 ) concentration = 3-5% Formula 6
The slag amount after target de-P (P 2 O 5 ) concentration is set to 3 to 5% in the present invention from the viewpoint of making the value close to the equilibrium value. That is, if this value is less than 3%, de-P at a high speed becomes insufficient, while actual converter de-P does not easily reach a level exceeding 5%.

以上により、式2のM(ミニマムスラグ量)の値を求め、この値から式1の脱Pスラグ量の範囲が決定され、この範囲にスラグ量を維持して脱P処理を行うことで本発明の課題を達成できることになる。   As described above, the value of M (minimum slag amount) in Equation 2 is obtained, the range of the de-P slag amount in Equation 1 is determined from this value, and the de-P process is performed while maintaining the slag amount in this range. The object of the invention can be achieved.

そして、脱Pスラグ量が式1の範囲を満たすべく、式5の変動要素を調整してやれば良い。特にこの中で、造滓剤についてはコストの面を考慮してできる限り少量とすべきであることから、比較的調整代が大きい変動要素として前チャージスラグ量や地金付着スラグ量を調整して用いることが有利である。すなわち、前チャージスラグ量はその量が多く、且つ出鋼時の排滓量を調整することでそのスラグ残し量を容易に調整できる。しかし、前チャージスラグの使用量が多くなった場合は脱P後のスラグ中の(P25)濃度が薄くなり、結果としてスラグ排出量が多くなることから、脱Pスラグ量が前式1のM以上であっても式1を満たす最適な量となるように調整すべきである。 Then, the fluctuation element of Expression 5 may be adjusted so that the amount of de-P slag satisfies the range of Expression 1. In particular, the amount of anti-fouling agent should be as small as possible in consideration of cost. Therefore, the amount of precharge slag and the amount of slag adhering to the metal is adjusted as a variable factor with a relatively large adjustment allowance. It is advantageous to use them. That is, the amount of pre-charge slag is large, and the amount of residual slag can be easily adjusted by adjusting the amount of waste discharged during steelmaking. However, when the amount of the precharge slag increases, the (P 2 O 5 ) concentration in the slag after de-P is reduced, resulting in an increase in slag discharge. Adjustment should be made so that the optimum amount satisfying the expression 1 is satisfied even if it is 1 or more of M.

なお、Siの高い溶銑を対象とする処理では、塩基度が低下するためM(ミニマムスラグ量)の値を大きく上回った脱Pスラグ量の発生を回避すべく、脱P処理時の塩基度をミニマムの1程度に調整して操業することが好ましい。
[実施例]
(1)ミニマムスラグ量=50Kg/溶銑tの場合の実施例1〜7
先ず、本実施例における対象鋼種のPの製品規格すなわち最終脱C処理後の溶鋼中のP濃度としては表1に示す通り、その上限が0.025%、目標が0.020%のものを選定した。
In the treatment for hot metal containing high Si, since the basicity is lowered, the basicity during the de-P treatment is set to avoid the occurrence of the de-P slag amount greatly exceeding the value of M (minimum slag amount). It is preferable to operate by adjusting to about 1 of the minimum.
[Example]
(1) Examples 1 to 7 in the case of minimum slag amount = 50 kg / molten iron t
First, as shown in Table 1, the product standard of P of the target steel type in this example, that is, the P concentration in the molten steel after the final de-C treatment, is such that the upper limit is 0.025% and the target is 0.020%. Selected.

500Kg高周波炉により銑鉄(500Kg)を溶解して、溶銑を調整し、これを溶銑鍋に装入した(一部、成分調整のため試薬を追加投入した)。調整されたこの溶銑の成分を表2に示す。   Molten iron (500 Kg) was melted with a 500 Kg high-frequency furnace to adjust the hot metal, and this was charged into the hot metal pan (partially, additional reagents were added to adjust the ingredients). The adjusted hot metal components are shown in Table 2.

そこで脱P処理後の溶銑の目標Pを0.030%として前記式4より同処理後のPを求め、一方、本処理で使用される前チャージスラグ、地金付着スラグなどの予定投入量などから前記式3のインプットPを算出し、さらに目標脱P後スラグ(P2O5)濃度を4%として前記式2から求められるミニマムスラグ量すなわちMを求め、式1より脱Pスラグ量の範囲を決定した。このときのMは50Kg/溶銑t、従って脱Pスラグ量の範囲は50〜60Kg/溶銑tであった。そして、この脱Pスラグ量の範囲から前記式5に基づいて、生石灰、軽ドロ(軽焼ドロマイト)、生ドロ(生ドロマイト)などの高価な塩基性の造滓剤の使用量を最小限とすべく再計算を行い、主に前チャージスラグの残し量を調整することとした。地金付着スラグ量の取り扱いについては過去の経験に基づいてその溶解率から滓化係数(ai)を決定して計算した。ここで、使用される前チャージスラグ及び各種地金に付着したスラグの組成を表3に示す。   Therefore, the target P of hot metal after P removal treatment is set to 0.030%, and P after the same treatment is obtained from the above equation 4. On the other hand, the pre-charge amount such as pre-charge slag and metal adhesion slag used in this treatment, etc. From the above equation, the input P in equation 3 is calculated, and the target slag (P2O5) concentration after target de-P is set to 4% to obtain the minimum slag amount obtained from equation 2, that is, M, and the range of the de-P slag amount is determined from equation 1. did. At this time, M was 50 kg / molten metal t, and therefore the range of the amount of de-slagging P was 50-60 kg / molten metal t. And based on the above-mentioned formula 5 from the range of the de-P slag amount, the usage amount of expensive basic faux-making agents such as quick lime, light doro (lightly burned dolomite), and raw doro (raw dolomite) is minimized. Recalculation was performed as much as possible, and the remaining amount of the previous charge slag was mainly adjusted. The handling of the amount of slag adhered to the metal was calculated by determining the hatching coefficient (ai) from the dissolution rate based on past experience. Here, the composition of the slag adhering to the pre-charge slag and various bullion used is shown in Table 3.

このようなスタティック計算により決定された前チャージスラグ、地金付着スラグ、及び造滓剤などに基づき、前記溶銑をスクラップ、地金を入れ置きした500Kg上底吹き試験転炉に装入して生石灰などの造滓剤、鉄鉱石を投入しながら5分間の脱P処理(吹錬)を行った。なお、酸素は全て上吹きとし、同時に攪拌用としてN2ガスを底吹きした。このときの各実施例における諸条件並びに処理後の成分、温度などを表4、表5に示す。 Based on the precharge slag, slag adhering slag, and slagging agent determined by such static calculation, the hot metal is put into a 500 kg top bottom blowing test converter in which scrap and bullion are placed, and quick lime is added. The de-P treatment (blowing) was performed for 5 minutes while adding the iron making agent and iron ore. Note that all oxygen was blown up, and at the same time, N 2 gas was blown at the bottom for stirring. Tables 4 and 5 show various conditions in each example, components after treatment, temperature, and the like.

また、これらにおけるインプットPを表6、表7に、アウトプットP及びミニマムスラグ量を表8、表9に、脱Pスラグの組成、脱Pスラグ量を表10、表11にそれぞれ示す。   In addition, Tables 6 and 7 show the input P, Table 8 and Table 9 show the output P and the minimum slag amount, and Tables 10 and 11 show the composition of the de-P slag and the de-P slag amount, respectively.

次いで、脱P処理終了後、溶銑を出湯することなく、転炉を炉前側へ傾動して脱Pスラグを排滓した。その後、転炉を正立させて、さらに造滓材(生石灰、軽ドロ、生ドロ、珪石)、鉄鉱石を投入しながら、気体酸素を上吹きして脱C処理(吹錬)を11分間行った。底吹きガスは脱P処理同様にN2ガスを用いた。また、吹錬末期に、ダイナミック制御を行い、目標温度・[C]へ調整した。本脱C処理の諸条件並びに成分、吹止め温度、脱Cスラグの組成、脱Cスラグ量を表12、表13、表14に示す。 Next, after completion of the de-P treatment, the converter was tilted to the front side of the furnace without discharging hot metal, and the de-P slag was discharged. After that, the converter was set upright, and further demineralization treatment (blowing) was performed for 11 minutes by blowing up gaseous oxygen while adding slagging material (quick lime, light mushroom, mushroom, silica) and iron ore. went. N 2 gas was used as the bottom blowing gas in the same manner as the de-P treatment. At the end of blowing, dynamic control was performed to adjust the target temperature to [C]. Tables 12, 13, and 14 show the various conditions and components of the de-C treatment, the blowing temperature, the de-C slag composition, and the de-C slag amount.

さらに、各実施例による全体のスラグ発生量すなわちトータルスラグ発生量(脱Pスラグ排滓量+脱Cスラグ発生量)及び系外へのスラグ排出量(脱Pスラグ排滓量+脱Cスラグ発生量−前チャージスラグ残し量)の調査結果、また製造された溶鋼のP規格上限に対する外れの有無の調査結果を表15、表16に示す。   Furthermore, the total slag generation amount, that is, the total slag generation amount (de-P slag discharge amount + de-C slag generation amount) and the slag discharge amount outside the system (de-P slag discharge amount + de-C slag generation) Table 15 and Table 16 show the investigation results of the amount-precharge slag remaining amount) and the investigation results on whether or not the manufactured molten steel is deviated from the P standard upper limit.

また、比較のため、同試験転炉を用いて本実施例と同一溶銑を本発明のような脱P処理時のミニマムスラグ量を考慮せずに通常のスタティック計算により操業条件を決定した従来のダブルスラグ法にて脱P処理、脱C処理を同一処理時間で行った場合の各処理の諸条件並びに処理後の結果を本実施例と共に各表に比較例1−1〜1−3及び比較例2−1〜2−3として併記した。ここで、表11の脱Pスラグ量の値から知れるように、比較例1の群(1〜3)は本発明に規定する脱Pスラグ量(50〜60Kg/溶銑t)を下回る例であり、比較例2の群(1〜3)はこれを越える例である。   In addition, for comparison, the same hot metal as in this example was used in the same test converter, and the operating conditions were determined by ordinary static calculation without considering the minimum slag amount during de-P treatment as in the present invention. Comparative Examples 1-1 to 1-3 and Comparative Tables 1-1 to 1-3 show the conditions of each treatment and the results after the treatment when the de-P treatment and the de-C treatment are performed in the same treatment time by the double slag method. It was written together as Examples 2-1 to 2-3. Here, as can be seen from the value of the de-P slag amount in Table 11, the group (1 to 3) of Comparative Example 1 is an example that is less than the de-P slag amount (50 to 60 Kg / molten iron t) defined in the present invention. The group (1-3) of the comparative example 2 is an example exceeding this.

表15、表16から本実施例が比較例に比べて、トータルスラグ発生量及び系外へのスラグ排出量がかなり減少していることが分る。一方、脱C処理後の溶鋼中のPは本実施例の場合は何れも規格上限を満足しているが、比較例の一部(比較例1−1)はその上限を外れたものが存在している。また、表4より、本実施例による脱P処理での生石灰などの造滓剤の使用量も比較例より少量であることも知れる。   From Tables 15 and 16, it can be seen that the total slag generation amount and the slag discharge amount outside the system are considerably reduced in this example compared to the comparative example. On the other hand, P in the molten steel after de-C treatment satisfies the upper limit of the standard in this example, but some of the comparative examples (Comparative Example 1-1) are out of the upper limit. is doing. Moreover, it is also known from Table 4 that the amount of the use of a fossilizing agent such as quicklime in the de-P treatment according to this example is smaller than that of the comparative example.

そして、本発明者らはこのミニマムスラグ量=50Kg/溶銑tのケースについてさらに他の比較例についての実験を追加し、これらを含め脱P処理における脱Pスラグ量とトータルスラグ排出量との関係を整理した。この結果を図1に示す。さらに、追加実験した結果を含めた比較例1及び2と本実施例のP規格上限外れ率の関係を図2に示す。   Further, the present inventors added an experiment for another comparative example for the case of this minimum slag amount = 50 kg / molten iron t, and the relationship between the de-P slag amount and the total slag discharge amount in the de-P process including these cases. Arranged. The result is shown in FIG. Furthermore, the relationship between the comparative examples 1 and 2 including the result of the additional experiment and the P standard upper limit off-rate of this example is shown in FIG.

図1より、脱Pスラグ量を50〜60Kg/溶銑tの範囲に維持して脱P処理を行った本発明の場合はトータルスラグ排出量を最小限にできることが容易に判明する。また、図2より、50Kg/溶銑t未満の脱Pスラグ量で実施した比較例1ではさらにP規格の上限を外れたものがかなりの割合で発生していることが分る。   From FIG. 1, it is easily found that the total slag discharge amount can be minimized in the case of the present invention in which the de-P treatment is performed while maintaining the de-P slag amount in the range of 50 to 60 kg / molten iron t. In addition, it can be seen from FIG. 2 that in Comparative Example 1 carried out at a de-P slag amount of less than 50 kg / molten iron, a significant percentage of the material deviates from the upper limit of the P standard.

両図からミニマムスラグ量を下限とし且つこのミニマムスラグ量より僅かに多めのスラグ量を上限とした脱Pスラグ量の範囲を維持して脱P操業を行う本発明の優れた効果を伺い知ることができるのである。   From both figures, we will know the excellent effect of the present invention that performs the de-P operation while maintaining the range of the de-P slag amount with the minimum slag amount as the lower limit and the slag amount slightly larger than the minimum slag amount as the upper limit. Can do it.

これまでの実施例は、ミニマムスラグ量が50Kg/溶銑tの場合であるが、さらに同ミニマムスラグ量が60Kg/溶銑t及び40Kg/溶銑tの場合の実施例に挙げ、本発明の効果をより明確に検証する。
(2)ミニマムスラグ量=60Kg/tの場合の実施例1〜2
前記実施例と同様にしてMが60Kg/溶銑t、従って脱Pスラグ量の範囲が60〜70Kg/溶銑tの場合における、脱P処理、脱C処理をダブルスラグ法により実施した。このときの諸条件、処理結果を表17〜24に示す。また、脱P処理時のミニマムスラグ量を考慮しなかった比較例1−1〜1−2及び比較例2−1〜2−2についても同各表に併記した。ここで、表22の脱Pスラグ量の値から知れるように、比較例1の群(1〜2)は本発明に規定する脱Pスラグ量(50〜60Kg/溶銑t)を下回る例であり、比較例2の群(1〜2)はこれを越える例である。
(3)ミニマムスラグ量=40Kg/tの場合の実施例1〜2
前記実施例と同様にしてMが40Kg/溶銑t、従って脱Pスラグ量の範囲が40〜50Kg/溶銑tの場合における、脱P処理、脱C処理をダブルスラグ法により実施した。このときの諸条件、処理結果を表26〜33に示す。また、脱P処理時のミニマムスラグ量を考慮しなかった比較例1−1〜1−2及び比較例2−1〜2−2についても同各表に併記した。ここで、表31の脱Pスラグ量の値から知れるように、比較例1の群(1〜2)は本発明に規定する脱Pスラグ量(40〜50Kg/溶銑t)を下回る例であり、比較例2の群(1〜2)はこれを越える例である。
The examples so far are the cases where the minimum slag amount is 50 kg / molten metal t, but the examples of the cases where the minimum slag amounts are 60 kg / molten iron t and 40 kg / molten metal t are further given the effects of the present invention. Clearly verify.
(2) Examples 1-2 in the case of minimum slag amount = 60 kg / t
In the same manner as in the above example, the de-P treatment and the de-C treatment were carried out by the double slag method when M was 60 kg / molten iron t, and therefore the range of de-P slag amount was 60 to 70 kg / mol t. Various conditions and processing results at this time are shown in Tables 17-24. Further, Comparative Examples 1-1 to 1-2 and Comparative Examples 2-1 to 2-2, which did not consider the amount of minimum slag during the P removal treatment, are also shown in the tables. Here, as can be seen from the value of the de-P slag amount in Table 22, the group (1-2) of Comparative Example 1 is an example that is less than the de-P slag amount (50-60 kg / molten iron t) specified in the present invention. The group (1-2) of Comparative Example 2 is an example exceeding this.
(3) Examples 1 and 2 in the case of minimum slag amount = 40 kg / t
The de-P treatment and de-C treatment were carried out by the double slag method when M was 40 kg / molten iron t and thus the range of de-P slag amount was 40-50 kg / mol t. Conditions and processing results at this time are shown in Tables 26 to 33. Further, Comparative Examples 1-1 to 1-2 and Comparative Examples 2-1 to 2-2, which did not consider the amount of minimum slag during the P removal treatment, are also shown in the tables. Here, as can be seen from the value of the de-P slag amount in Table 31, the group (1-2) of Comparative Example 1 is an example that is less than the de-P slag amount (40-50 kg / molten iron t) defined in the present invention. The group (1-2) of Comparative Example 2 is an example exceeding this.

上述した、(2)(3)の実施例及びその比較例の結果を示した表25、表33から、ミニマムスラグ量が60Kg/溶銑t及び40Kg/溶銑tの場合においても(1)の50Kg/溶銑tの場合と同様に、本発明の場合は比較例に比してトータルスラグ発生量及びスラグ排出量を減少させることができ、且つ溶鋼中のP規格の上限値を十分に満たす結果が得られることが分る。   From Table 25 and Table 33 showing the results of the above-described examples of (2) and (3) and the comparative example, 50 kg of (1) even when the minimum slag amount is 60 kg / mol t and 40 kg / mol t. As in the case of hot metal t, in the case of the present invention, the total slag generation amount and slag discharge amount can be reduced as compared with the comparative example, and the result that the upper limit value of the P standard in the molten steel is sufficiently satisfied You can see that it is obtained.

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314

Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314
Figure 0004421314

図1はミニマムスラグ量が50Kg/溶銑tの場合の脱P処理における、本発明の実施例及び比較例の結果ついて脱Pスラグ量とトータルスラグ排出量との関係を図示したグラフである。FIG. 1 is a graph illustrating the relationship between the de-P slag amount and the total slag discharge amount in the de-P process when the minimum slag amount is 50 kg / molten iron t, and the results of the examples and comparative examples of the present invention. 図2はミニマムスラグ量が50Kg/溶銑tの場合の脱P処理における、本発明の実施例及び比較例の結果ついてP規格上限外れ率を図示したグラフである。FIG. 2 is a graph illustrating the P standard upper limit deviation rate regarding the results of the examples of the present invention and the comparative example in the de-P treatment when the minimum slag amount is 50 kg / molten iron t.

Claims (3)

精錬容器に溶銑及び固体鉄源を装入するとともに、これにフラックスの添加と酸素吹き込みを行って所定のP含有量まで低減させる脱P処理を行った後、生成したスラグを排出し、引き続き脱C処理を行ない、且つ前記脱P処理の際に、脱珪に必要な酸素を除く総供給酸素量を9Nm3/溶銑t以上とするとともにスラグの塩基度(CaO/SiO2)を1.0〜3.0の範囲で行う溶銑の精錬におけるスラグ量の決定方法であって、
前記脱P処理の際のスラグ量を、式1,式2を用いて決定することを特徴とする溶銑の精錬でのスラグ量の決定方法。

脱Pスラグ量=M(kg/溶銑t)〜M+10(kg/溶銑t) ・・・式1
M=(インプットP−脱P処理後溶銑P)×2.29
÷目標とする脱P後スラグ中(P25)濃度 ・・・式2
(ただし、式2の目標とする脱P後スラグ中(P25)濃度は、3〜5質量%)
The hot metal and the solid iron source are charged into the smelting vessel, and flux is added and oxygen is blown into the smelting vessel to reduce the P content to a predetermined level. After that, the generated slag is discharged and continuously removed. When the C treatment is performed and the de-P treatment is performed, the total supply oxygen amount excluding oxygen necessary for desiliconization is set to 9 Nm 3 / molten iron or more and the slag basicity (CaO / SiO 2 ) is 1.0. A method for determining the amount of slag in the refining of hot metal performed in the range of ~ 3.0,
A method for determining the amount of slag in the refining of hot metal, wherein the amount of slag in the de-P treatment is determined using Equations 1 and 2.

P-free slag amount = M (kg / molten metal t) to M + 10 (kg / molten metal t) Formula 1
M = (input P-melting iron P after de-P treatment) × 2.29
÷ Target (P 2 O 5 ) concentration in slag after de-P: Formula 2
(However, the target (P 2 O 5 ) concentration in the slag after de-P targeted by Formula 2 is 3 to 5% by mass)
前記式1の脱Pスラグ量及び式2のインプットPの計算に際しては、添加される地金に付着しているスラグ量及びスラグ中のPをも考慮することを特徴とする請求項1に記載の溶銑の精錬でのスラグ量の決定方法。   2. The calculation of the de-P slag amount of Equation 1 and the input P of Equation 2 also takes into account the amount of slag adhering to the added metal and P in the slag. To determine the amount of slag in the refining of hot metal. 前チャージのスラグを残して利用し、そのスラグ残し量を前記式1を用いて調整することを特徴とする請求項1又は2に記載の溶銑の精錬でのスラグ量の決定方法。 The method for determining the amount of slag in the refining of hot metal according to claim 1 or 2, wherein the slag of the previous charge is used while remaining, and the amount of the remaining slag is adjusted using the formula 1.
JP2004017232A 2004-01-26 2004-01-26 Determination of slag amount in hot metal refining Expired - Fee Related JP4421314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017232A JP4421314B2 (en) 2004-01-26 2004-01-26 Determination of slag amount in hot metal refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017232A JP4421314B2 (en) 2004-01-26 2004-01-26 Determination of slag amount in hot metal refining

Publications (2)

Publication Number Publication Date
JP2005206923A JP2005206923A (en) 2005-08-04
JP4421314B2 true JP4421314B2 (en) 2010-02-24

Family

ID=34902138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017232A Expired - Fee Related JP4421314B2 (en) 2004-01-26 2004-01-26 Determination of slag amount in hot metal refining

Country Status (1)

Country Link
JP (1) JP4421314B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6702420B2 (en) * 2016-07-27 2020-06-03 日本製鉄株式会社 Dust weight estimation method and waste weight estimation device
TW202100494A (en) * 2019-03-15 2021-01-01 日商日本製鐵股份有限公司 Method of producing phosphatic fertilizer rawmaterial
JP7469716B2 (en) 2021-01-15 2024-04-17 日本製鉄株式会社 Converter refining method

Also Published As

Publication number Publication date
JP2005206923A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
CN103361461B (en) A kind of converter smelting soft steel phosphorus content on-line prediction control method
JP6314484B2 (en) Hot metal dephosphorization method
JP4421314B2 (en) Determination of slag amount in hot metal refining
JP4937828B2 (en) Blowing method of molten steel
JP3575304B2 (en) Converter steelmaking method
JP2005015889A (en) Method for preventing effluence of slag in converter
CN106498113A (en) A kind of converter smelting process of 82B steel
JP2016132809A (en) Dephosphorization method for molten iron
JP2001115205A (en) Method for dephosphorizing molten iron
JPS62158810A (en) Method for determining main material charging quantity in converter operation
JP2010280942A (en) Method for manufacturing low-phosphorus stainless steel
JP2000109924A (en) Method for melting extra-low sulfur steel
JP6167802B2 (en) Hot metal refining method
JP7248195B2 (en) Converter steelmaking method
JP7477797B2 (en) Converter refining method
JP5874578B2 (en) High-speed blowing method for converters
JP6992513B2 (en) How to prevent melting damage of gas blowing lance
RU2145356C1 (en) Method of converter melting with use of prereduced materials
JPH08157923A (en) Method for decision of charging quantity of main raw material for converter
KR20060035274A (en) Method for manufacturing molten steel for galvanized steel plate
JPH0533029A (en) Method for deciding charging quantity of main raw material in converter operation
JP6627433B2 (en) Cold recycling method
JP4826307B2 (en) Melting method of high phosphorus steel
CN117210636A (en) Method for converting high-silicon molten iron by converter
JP2873729B2 (en) Deoxidation refining method of chromium-containing molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4421314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees