JP5874578B2 - High-speed blowing method for converters - Google Patents

High-speed blowing method for converters Download PDF

Info

Publication number
JP5874578B2
JP5874578B2 JP2012179813A JP2012179813A JP5874578B2 JP 5874578 B2 JP5874578 B2 JP 5874578B2 JP 2012179813 A JP2012179813 A JP 2012179813A JP 2012179813 A JP2012179813 A JP 2012179813A JP 5874578 B2 JP5874578 B2 JP 5874578B2
Authority
JP
Japan
Prior art keywords
blowing
concentration
cao
less
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012179813A
Other languages
Japanese (ja)
Other versions
JP2014037570A (en
Inventor
脩司 上原
脩司 上原
武 谷垣
武 谷垣
正俊 大塚
正俊 大塚
加藤 亮
亮 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012179813A priority Critical patent/JP5874578B2/en
Publication of JP2014037570A publication Critical patent/JP2014037570A/en
Application granted granted Critical
Publication of JP5874578B2 publication Critical patent/JP5874578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

溶銑予備脱燐処理を行っていない溶銑から溶鋼を製造する上底吹き転炉の吹錬方法であって、より具体的には吹錬時間が13分以下という短時間で、吹錬終了後の溶鋼中P濃度が0.020質量%以下の溶鋼を効率良く製造することができる、転炉の高速吹錬方法に関する。   It is a blowing method of an upper bottom blowing converter for producing molten steel from hot metal that has not been subjected to hot metal preliminary dephosphorization treatment. More specifically, the blowing time is a short time of 13 minutes or less, The present invention relates to a high-speed blowing method for a converter, which can efficiently produce molten steel having a P concentration of 0.020% by mass or less in molten steel.

近年、鉄鋼製造方法を高能率かつ高効率化するために、溶銑予備脱燐処理が多用されるようになってきた。その場合、溶銑から溶鋼を製造するために、溶銑を脱珪・脱燐するための溶銑予備処理炉とその溶銑予備処理された溶銑を脱炭するための脱炭炉との2炉が必要となる。但し、処理を2炉に分けることで反応効率は格段に向上し、溶銑予備処理炉も脱炭炉もその処理時間は13分間以下などの高速処理が普通に行われている。   In recent years, hot metal preliminary dephosphorization has come to be frequently used in order to improve the efficiency and efficiency of steel production methods. In that case, in order to produce molten steel from hot metal, two furnaces are required: a hot metal pretreatment furnace for desiliconizing and dephosphorizing the hot metal and a decarburization furnace for decarburizing the hot metal that has been pretreated with the hot metal. Become. However, by dividing the treatment into two furnaces, the reaction efficiency is remarkably improved, and the hot metal pretreatment furnace and the decarburization furnace are normally subjected to high-speed treatment such as 13 minutes or less.

しかし、溶銑から溶鋼を製造するために、必ず2炉を使用しなければならない訳ではないし、操業上の都合によってそのように2炉を用いることができない場合もある。そのような場合においても、溶銑から溶鋼を製造するに際して、近年の高能率かつ高効率化に合わせるべく、転炉での処理時間(溶銑を脱珪・脱燐・脱炭処理するための上吹き酸素供給時間)を13分間以下などの短時間で行うことができる吹錬方法が望まれていた。   However, in order to produce molten steel from hot metal, it is not always necessary to use two furnaces, and there are cases where such two furnaces cannot be used due to operational reasons. Even in such a case, when manufacturing molten steel from hot metal, in order to meet the recent high efficiency and high efficiency, the processing time in the converter (the top blowing for desiliconizing, dephosphorizing and decarburizing the hot metal) There has been a demand for a blowing method capable of performing (oxygen supply time) in a short time such as 13 minutes or less.

溶銑予備脱燐処理を行っていない溶銑を用いた上底吹き転炉での吹錬を実施する場合、転炉では脱炭反応の進行と共に脱燐反応も進行させる必要がある。脱燐反応は、炉内に装入したCaOを融解・滓化させて形成される塩基性スラグと溶銑との反応によって進行する。   When carrying out blowing in an upper-bottom blowing converter using hot metal that has not been subjected to hot metal preliminary dephosphorization treatment, it is necessary for the converter to advance the dephosphorization reaction as the decarburization reaction proceeds. The dephosphorization reaction proceeds by a reaction between the basic slag formed by melting and hatching CaO charged in the furnace and the molten iron.

しかし純粋なCaOは融点が2000℃以上であり、出鋼温度が大まかに1600〜1700℃程度である転炉では融解・滓化が困難である。CaOの滓化が不十分であれば要求される脱燐能を獲得できず成分外れとなる弊害が生じる。   However, pure CaO has a melting point of 2000 ° C. or higher, and it is difficult to melt and hatch in a converter having a steel output temperature of about 1600 to 1700 ° C. If the hatching of CaO is insufficient, the required dephosphorization ability cannot be obtained, resulting in a detrimental effect that removes the components.

更に、転炉高能率化のために吹錬時間を短縮していくとCaOの融解・滓化にかける時間も短縮されてしまうため、脱燐率が低下してしまうという問題も発生する。   Furthermore, if the blowing time is shortened to increase the efficiency of the converter, the time required for melting and hatching CaO is also shortened, which causes a problem that the dephosphorization rate decreases.

特開2011−038156JP2011-038156

I.CaO滓化を促進し、脱燐能を確保する目的でホタル石が使用されている。ホタル石の主成分であるCaFによってCaOの融点が低下し、滓化率が向上する。しかしこの方法では排出スラグ中にFが混入するため、環境保護の観点からスラグのリサイクルが困難となってしまう。
II. 特開2011−38156では、溶銑予備脱燐処理を行った溶銑を用いて、吹錬終了後のスラグ中Al濃度=3.5%以下、塩基度=4.0以上6.0以下にして転炉吹錬を高能率化する方法が示されている。但しこの方法は溶銑予備脱燐処理を行った溶銑を使用しており、溶銑中[Si]が0.01%以下となっている。そのためこの方法をそのまま予備溶銑脱燐を行っていない溶銑での転炉吹錬に適用すると、塩基度の確保に必要なCaO量が増大することや、スラグ量の増大による鉄歩留の悪化などによるコスト悪化が顕著となる。
I. Fluorite is used for the purpose of promoting CaO hatching and ensuring dephosphorization ability. CaF 2 which is the main component of fluorite lowers the melting point of CaO and improves the hatching rate. However, in this method, since F is mixed in the discharged slag, it is difficult to recycle the slag from the viewpoint of environmental protection.
II. In Japanese Patent Application Laid-Open No. 2011-38156, using hot metal that has been subjected to hot metal preliminary dephosphorization treatment, the Al 2 O 3 concentration in the slag after completion of blowing is 3.5% or less, and the basicity is 4.0 or more and 6. A method of increasing the efficiency of converter blowing to 0 or less is shown. However, this method uses hot metal that has been subjected to hot metal preliminary dephosphorization treatment, and [Si] in the hot metal is 0.01% or less. Therefore, if this method is applied as it is to converter blowing in hot metal that has not been subjected to preliminary hot metal dephosphorization, the amount of CaO necessary to ensure basicity will increase, and the iron yield will deteriorate due to the increase in slag amount, etc. Cost deterioration due to

本発明は、従来滓化促進剤として使用されていたホタル石を使用せず滓化率を向上させ、さらに高能率化のための吹錬時間短縮にも対応して脱燐能を確保する事を目的とする。   The present invention improves the hatching rate without using fluorite that has been used as a conventional hatching accelerator, and further ensures dephosphorization capability in response to shortening the blowing time for higher efficiency. With the goal.

本発明の要旨は、次の通りである。
(1)溶銑予備脱燐処理を行っていない溶銑から溶鋼を製造する上底吹き転炉の吹錬方法であって、質量%で溶銑中[Si]濃度=0.40%以上0.60%以下の溶銑を対象として、式(I)により算出した装入塩基度=3.0以上4.0以下とし、かつ、炉内に投入するAl源にCaO−Al複酸化物を用いることによって、吹錬終了後スラグ中Al質量濃度=4.0%以上6.0%以下となるように調整すること、ホタル石を使用しないこと、ならびに、吹錬終了後の溶鋼中[C]濃度=0.05質量%以下、溶鋼温度=1630℃以上1690℃以下に調整することによって、吹錬時間が13分以下で、吹錬終了後の溶鋼中P濃度が0.020質量%以下の溶鋼を製造することを特徴とする転炉の高速吹錬方法。
The gist of the present invention is as follows.
(1) Blowing method of an upper bottom blown converter for producing molten steel from molten iron that has not been subjected to hot metal preliminary dephosphorization treatment, and the [Si] concentration in molten metal at 0.40% to 0.60% in molten metal For the following hot metal, the charging basicity calculated by the formula (I) is set to 3.0 or more and 4.0 or less, and CaO—Al 2 O 3 double oxidation is added to the Al 2 O 3 source to be charged into the furnace. By using the product, adjusting the Al 2 O 3 mass concentration in the slag to 4.0% or more and 6.0% or less after the end of blowing , not using fluorite , and after the end of blowing [C] concentration in molten steel = 0.05 mass% or less, molten steel temperature = 1630 ° C or more and 1690 ° C or less, so that the blowing time is 13 minutes or less, and the P concentration in the molten steel after blowing is 0 . High-speed blowing of converters characterized by producing molten steel of less than 0.020 mass% Law.

装入塩基度=(炉内に投入するCaO質量)/(炉内に装入する溶銑中のSi質量×2.14+炉内に投入するSiO質量)
・・・(I)
Charge basicity = (CaO mass charged into the furnace) / (Si mass in hot metal charged into the furnace × 2.14 + SiO 2 mass charged into the furnace)
... (I)

吹錬時間と吹錬終了後[P]の関係を示すグラフである。It is a graph which shows the relationship between blowing time and [P] after completion | finish of blowing.

転炉吹錬において吹錬を行う際に脱燐反応を起こす目的で、一般的に生石灰が使用されるが、前述したとおり純粋なCaOの融点は2000℃以上であり、吹錬中の最高温度が1700℃程度の転炉吹錬ではCaOの滓化は容易ではない。   Quick lime is generally used for the purpose of causing a dephosphorization reaction at the time of blowing in the converter, but as described above, the melting point of pure CaO is 2000 ° C. or higher, and the highest temperature during the blowing. However, it is not easy to hatch CaO by converter blowing at about 1700 ° C.

CaOの滓化が不十分となると脱燐反応に寄与するスラグ中CaO濃度の上昇が抑制されるため、脱燐能が確保できず成分外れとなる可能性が上昇し、操業に不具合が発生してしまう。   If the CaO hatching is insufficient, the increase in CaO concentration in the slag that contributes to the dephosphorization reaction is suppressed, so the possibility of dephosphorization cannot be ensured and the components may be removed, causing problems in operation. End up.

また、転炉吹錬において吹錬時間の短縮を行うには、送酸速度を向上させれば良い。炉内への酸素供給、及び集塵設備さえ増強していけば送酸速度の上昇は可能となる。   Moreover, what is necessary is just to improve an acid-feeding speed | rate in order to shorten the blowing time in converter blowing. If the oxygen supply into the furnace and the dust collection facilities are increased, the acid delivery rate can be increased.

しかし、実際に吹錬時間を短縮していくとCaOの滓化に要する時間も短縮されてしまうため、CaO滓化率が低下し、脱燐能が低下してしまう。   However, if the blowing time is actually shortened, the time required for the hatching of CaO is also shortened, so the CaO hatching rate is lowered and the dephosphorization ability is lowered.

Alを添加すると、スラグ構成成分の多元化の観点からCaOの融点を降下させることが可能となるため、CaO滓化率の向上が可能となる。 If Al 2 O 3 is added, the melting point of CaO can be lowered from the viewpoint of diversification of the slag constituent components, so that the CaO hatching rate can be improved.

そこで吹錬時間の短縮によるCaO滓化率の低下を、Al添加によってCaOの融点を降下させることにより補い、短時間吹錬と脱燐能の両立を果たすための吹錬条件について調査を行った。以下、予備脱燐処理を行っていない溶銑を用いた、吹錬時間13分以下とする短時間転炉吹錬において、脱燐能を確保するための各吹錬条件について記す。 Therefore, the reduction in CaO hatching rate due to the shortening of the blowing time was compensated by lowering the melting point of CaO by adding Al 2 O 3 , and the blowing conditions for achieving both short-time blowing and dephosphorization ability were investigated. Went. Hereinafter, each blowing condition for ensuring the dephosphorization ability in the short-time converter blowing using the hot metal not subjected to the preliminary dephosphorization treatment and having a blowing time of 13 minutes or less will be described.

1.溶銑中[Si]濃度
本発明では予備脱燐処理を行っていない溶銑を使用し、質量%で溶銑中のSi濃度=0.40%以上0.60%以下とする。
1. [Si] concentration in hot metal In the present invention, hot metal that has not been subjected to preliminary dephosphorization treatment is used, and the Si concentration in the hot metal is 0.40% to 0.60% in mass%.

後に述べる装入塩基度との兼ね合いもあるが、溶銑Si濃度が0.40%未満となるとスラグ量が確保できなくなるため、硅石や橄欖岩などを用いて溶銑Si濃度が0.40%相当になるようにSiO源を投入して調整する。SiO源を投入せずに吹錬を行うと所定の吹錬終了後溶鋼中P濃度(0.020質量%以下)を得るための装入塩基度が高くなりすぎ、CaO融点が著しく上昇するため滓化不良となり易くなってしまう。 Although there is a balance with the charging basicity described later, since the amount of slag cannot be secured when the molten iron Si concentration is less than 0.40%, the molten iron Si concentration is equivalent to 0.40% using meteorites or rocks. The SiO 2 source is charged and adjusted so that When blowing without supplying the SiO 2 source, the basicity of charging to obtain a P concentration (0.020% by mass or less) in the molten steel becomes too high after completion of the predetermined blowing, and the CaO melting point is remarkably increased. Therefore, it becomes easy to become a hatching defect.

溶銑Si濃度が0.60%を超えると、所定の脱燐を進めるための塩基度を確保するに必要なCaO量が、所要塩基度の低下を考慮しても増大してしまうため、コスト悪化が顕著となってしまう。コスト悪化をさけるためにCaOを減らし、塩基度を下げ過ぎるとスロッピングなどの操業の弊害となる問題が発生してしまう。   If the hot metal Si concentration exceeds 0.60%, the amount of CaO necessary to secure the basicity for proceeding with the predetermined dephosphorization will increase even if the reduction in the required basicity is taken into account. Becomes prominent. If CaO is reduced in order to avoid cost deterioration and the basicity is lowered too much, problems that cause adverse effects such as slipping will occur.

2.装入塩基度
安定的に所定の吹錬終了後溶鋼中P濃度(0.020質量%以下)を得るため、装入塩基度は3.0以上4.0以下とする。
2. Charge basicity To obtain a P concentration (0.020% by mass or less) in the molten steel after the completion of predetermined blowing, the charge basicity is set to 3.0 or more and 4.0 or less.

装入塩基度を3.0未満とするとCaO滓化率は上昇させやすくなるが、スラグ中CaO濃度が低くなるため脱燐能が低下してしまう。   When the charging basicity is less than 3.0, the CaO hatching rate is easily increased, but the dephosphorization ability is lowered because the CaO concentration in the slag is lowered.

また、装入塩基度が4.0を超えると、塩基度上昇によってスラグの融点が上昇し、CaO滓化率が悪化し脱燐反応に寄与するCaO量が却って減少してしまうため結果的に脱燐能が低下してしまう。   In addition, if the charging basicity exceeds 4.0, the melting point of slag increases due to the increase in basicity, the CaO hatching rate deteriorates, and the amount of CaO contributing to the dephosphorylation reaction decreases on the contrary. Dephosphorization ability will fall.

本発明における装入塩基度は、式(I)で求めることができる。
装入塩基度=(炉内に投入するCaO質量)/(炉内に装入する溶銑中のSi質量×2.14+炉内に投入するSiO質量)
・・・(I)
The charging basicity in the present invention can be determined by the formula (I).
Charge basicity = (CaO mass charged into the furnace) / (Si mass in hot metal charged into the furnace × 2.14 + SiO 2 mass charged into the furnace)
... (I)

3.吹錬終了後の溶鋼中[C]濃度
吹錬終了後の溶鋼中[C]濃度は0.05%以下とする。
3. [C] concentration in molten steel after completion of blowing The [C] concentration in molten steel after completion of blowing is 0.05% or less.

本発明においては吹錬時間(上吹き酸素の供給時間)を13分間以下とするため、上吹き酸素の供給速度を溶銑1トン当たり3.0〜5.0Nm/minとする必要があるが、このような高速吹錬において溶鋼およびスラグを撹拌して諸反応を促進するために、底吹きガスの供給速度を溶銑1トン当たり0.02〜0.20Nm/minとすることが適当である。 In the present invention, in order to set the blowing time (supply time of top blowing oxygen) to 13 minutes or less, it is necessary to set the top blowing oxygen supply rate to 3.0 to 5.0 Nm 3 / min per ton of hot metal. In order to promote the various reactions by stirring the molten steel and slag in such high-speed blowing, it is appropriate that the feed rate of the bottom blowing gas is 0.02 to 0.20 Nm 3 / min per ton of hot metal. is there.

このような条件において吹錬終了後の溶鋼中[C]濃度が0.05%を超えると、上吹き酸素と溶鋼中[C]との反応率が未だ比較的に高く、FeOの生成量が少なくなってしまう。スラグ中のFeOはCaOを多量に投入されたスラグの融点降下の他に、脱燐反応におけるPの酸化反応にも寄与しているため、吹錬終了後の溶鋼中[C]濃度が高くスラグ中FeO濃度が低い場合には、13分間以下の吹錬で安定的に所定の溶鋼中P濃度(0.020質量%以下)を得ることができない。   Under such conditions, when the [C] concentration in the molten steel after completion of blowing exceeds 0.05%, the reaction rate between the top blown oxygen and the molten steel [C] is still relatively high, and the amount of FeO produced is high. It will decrease. FeO in the slag contributes to the oxidation reaction of P in the dephosphorization reaction in addition to the melting point drop of the slag in which a large amount of CaO is added. Therefore, the [C] concentration in the molten steel after the completion of blowing is high. When the medium FeO concentration is low, a predetermined P concentration in molten steel (0.020 mass% or less) cannot be stably obtained by blowing for 13 minutes or less.

4.出鋼(溶鋼)温度
出鋼温度は1630℃以上1690℃以下とする。
4). Steel output (molten steel) temperature The steel output temperature is 1630 ° C or higher and 1690 ° C or lower.

出鋼温度が1630℃未満となると二次精錬工程に持ち越す熱源が少なく、二次精錬設備での昇熱コストや耐火物コストの悪化を招き、溶鋼処理時間も長くなるため好ましくない。   When the steel output temperature is less than 1630 ° C., there are few heat sources that are carried over to the secondary refining process, which leads to deterioration in heat-up costs and refractory costs in the secondary refining equipment, and the molten steel treatment time becomes long.

出鋼温度が1690℃を超えると、脱燐反応の平衡定数が低下するため、脱燐能が低下してしまう。
本発明の特徴であるスラグ中Al濃度調整について記す。
When the steel output temperature exceeds 1690 ° C., the equilibrium constant of the dephosphorization reaction is lowered, so that the dephosphorization ability is lowered.
The adjustment of the Al 2 O 3 concentration in the slag, which is a feature of the present invention, will be described.

5.吹錬終了後スラグ中(Al)濃度
吹錬終了後スラグ中(Al)濃度は4.0%以上6.0%以下とする。
5). Blowing after the end of the slag (Al 2 O 3) Concentration blowing closes in slag (Al 2 O 3) concentration is 6.0% or less than 4.0%.

吹錬終了後スラグ中(Al)濃度を4.0%未満とすると、13分以下という短時間吹錬においてCaOの滓化が確保できず、脱燐能が低下してしまう。 When the concentration of (Al 2 O 3 ) in the slag is less than 4.0% after the end of blowing, the hatching of CaO cannot be ensured in the short time blowing of 13 minutes or less, and the dephosphorization ability decreases.

吹錬終了後スラグ中(Al)濃度を4.0〜6.0%とすると、Al添加によるCaOの融点降下が顕著となるため、CaOの滓化が促進され脱燐反応に寄与するスラグ中CaO濃度が上昇し脱燐反応が促進される。 When blowing after the end slag (Al 2 O 3) is the concentration to 4.0 to 6.0%, since the melting point depression of CaO due to Al 2 O 3 added is significant, slag formation of CaO is promoted dephosphorization The CaO concentration in the slag that contributes to the reaction increases and the dephosphorization reaction is promoted.

ただし、転炉の炉形状や送酸速度、排ガスの空塔速度などの影響により変化するが、Al濃度が6.0%を超えるとスロッピングが発生してしまう危険性があるため、実際には吹錬終了後スラグ中(Al)濃度は4.0〜6.0%とする必要がある。 However, it varies depending on the shape of the converter, the acid feed rate, the exhaust gas superficial velocity, etc., but if the Al 2 O 3 concentration exceeds 6.0%, there is a risk that slipping may occur. In practice, the concentration of (Al 2 O 3 ) in the slag after the end of blowing must be 4.0 to 6.0%.

また、本発明に係るスラグ中Al濃度調整にはCaO−Al複酸化物を使用することが肝要である。本発明においてCaO−Al複酸化物とは、CaOが30〜60%、Alが30〜60%であって、CaOとAlとの比(CaO/Al)が0.5〜2.0であるプリメルト化合物を70%以上含有し、その他の不純物成分としてMgOやSiO等を含有する物質である。 In addition, it is important to use a CaO—Al 2 O 3 double oxide for adjusting the Al 2 O 3 concentration in the slag according to the present invention. In the present invention, the CaO—Al 2 O 3 double oxide means that CaO is 30 to 60% and Al 2 O 3 is 30 to 60%, and the ratio of CaO and Al 2 O 3 (CaO / Al 2 O 3 ) A substance containing 70% or more of a pre-melt compound having a value of 0.5 to 2.0 and MgO, SiO 2 or the like as other impurity components.

Al単体では融点が約2000℃であるのに対して、CaO−Al複酸化物は融点が約1200℃であり吹錬初期(約1300℃)から容易に融解させることが出来る。これにより、確実に(%Al)を上昇させることが可能となる。 The melting point of Al 2 O 3 alone is about 2000 ° C., whereas CaO—Al 2 O 3 double oxide has a melting point of about 1200 ° C. and can be easily melted from the initial stage of blowing (about 1300 ° C.). I can do it. Thereby, (% Al 2 O 3 ) can be reliably increased.

また、低融点であることを活かし、吹錬開始時にCaO−Al複酸化物を投入することで吹錬初期からカバースラグの形成を促進し、ダスト及びスピッチングの防止にもつなげる事ができる。 In addition, taking advantage of the low melting point, by introducing CaO-Al 2 O 3 complex oxide at the start of blowing, cover slag formation is promoted from the early stage of blowing, and it can be used to prevent dust and spitting. Can do.

従来の知見においては、スラグ中Al濃度を含ませるとスロッピングを助長することが知られている。スロッピングは転炉からスラグ及び溶銑の流出をもたらし、操業の弊害となるため好ましくない。しかし、本発明ではスラグ中Al濃度を4.0〜6.0%程度としてもスロッピングを起こすことが無かった。スロッピングのメカニズムには様々な要因が絡んでいるが、基本的には脱炭反応に伴うCOガスの発生速度とスラグの粘度のバランスによってスロッピングが起こるか否かが決定されると考えられている。 In the conventional knowledge, it is known that the inclusion of the Al 2 O 3 concentration in the slag promotes slopping. Slopping is not preferable because it causes slag and hot metal to flow out of the converter, resulting in adverse operations. However, in the present invention, even when the Al 2 O 3 concentration in the slag is about 4.0 to 6.0%, there is no slopping. Various factors are involved in the mechanism of slopping, but basically it is considered that whether or not slopping occurs is determined by the balance between CO gas generation rate and slag viscosity accompanying decarburization reaction. ing.

本発明では、Al源としてCaO−Al複酸化物を使うことでCaO−Al複酸化物が速やかに溶融し液相スラグを形成すること、更に送酸速度が比較的速くスラグ中T.Feが上昇し易い状況であることにより、CaOの滓化が従来知見よりも速く進行していると考えられる。これにより、スロッピングが起こり易いスラグの粘度となる実塩基度領域を従来より早く通過するためスロッピング発生を抑制できるものと考えられる。 In the present invention, by forming a CaO-Al 2 O 3 composite oxide is rapidly melted liquid phase slag by using a CaO-Al 2 O 3 mixed oxide as Al 2 O 3 source, further oxygen-flow-rate Relatively fast during slag It is considered that the hatching of CaO proceeds faster than the conventional knowledge due to the situation where Fe is likely to rise. Accordingly, it is considered that the occurrence of slopping can be suppressed because it passes through the actual basicity region where the viscosity of the slag, which is likely to cause slopping, is reached faster than before.

実塩基度は、式(II)で求めることができる。
実塩基度=(溶融スラグ中CaO重量)/(溶融スラグ中SiO質量)
・・・(II)
The actual basicity can be obtained by the formula (II).
Actual basicity = (CaO weight in molten slag) / (SiO 2 mass in molten slag)
... (II)

以上に示す吹錬方法により、予備脱燐処理を行っていない溶銑を用いた、吹錬時間13分以下とする短時間転炉吹錬において、脱燐能を確保することが可能となる。この方法を用いれば、スラグ成分にFを含まないため、排出スラグのリサイクルが可能となる。また、本発明の装入塩基度は特開2011−38156に示される装入塩基度(吹錬終了後のスラグ成分での塩基度が4.0〜6.0であるため、装入塩基度はさらに高くなる。)よりも低いため、副原料コスト及び鉄歩留の悪化が抑制される。   By the blowing method shown above, it is possible to ensure the dephosphorization ability in the short-time converter blowing using the hot metal that has not been subjected to the preliminary dephosphorization treatment and having a blowing time of 13 minutes or less. If this method is used, since F is not included in the slag component, the exhaust slag can be recycled. Further, the charging basicity of the present invention is the charging basicity shown in JP-A-2011-38156 (because the basicity in the slag component after completion of blowing is 4.0 to 6.0, Therefore, the secondary material cost and the iron yield are prevented from deteriorating.

(1)溶銑条件
溶銑予備脱硫処理のため、機械撹拌式脱硫装置(KR)を通した溶銑を使用した。溶銑を上底吹き転炉に注銑する前にスクラップ30〜50tonを炉内投入し、その後KR後のカントバック分析に基づく主な成分が質量%で[C]=4.4〜4.8%、[Si]=0.4〜0.6%、[Mn]=0.1〜0.3%、[P]=0.11〜0.15%、溶銑温度=1300〜1400℃の溶銑240〜260tonを注銑した。ただし、スクラップと溶銑を合わせて270〜290tonとなるように調整している。
(1) Hot metal conditions For hot metal preliminary desulfurization treatment, hot metal passed through a mechanical stirring desulfurizer (KR) was used. Before pouring the hot metal into the top-bottom converter, 30 to 50 tons of scrap was put into the furnace, and the main component based on the cant back analysis after KR was mass% [C] = 4.4 to 4.8. %, [Si] = 0.4 to 0.6%, [Mn] = 0.1 to 0.3%, [P] = 0.11 to 0.15%, hot metal temperature = 1300 to 1400 ° C. 240 to 260 tons were poured. However, the scrap and the molten iron are adjusted so as to be 270 to 290 ton.

(2)炉内投入副原料
スクラップ及び溶銑を装入後、上吹きランスから溶銑への酸素吹きつけを開始した。底吹きガスにCOを用いてその流量を0.04〜0.10Nm/min/tに調整し、酸素流量を3.5〜4.3Nm/min/tで吹きつけ開始した直後に少量のドロマイトを装入し、装入塩基度=3.0〜4.0となるように適量の生石灰を投入した。炉内への入熱と出熱のバランスはスケール(酸化鉄)を用いて調整した。
(2) In-furnace auxiliary materials After charging scrap and hot metal, oxygen blowing from the top blowing lance to the hot metal was started. Immediately after the flow rate was adjusted to 0.04 to 0.10 Nm 3 / min / t using CO 2 as the bottom blowing gas and the oxygen flow rate was started to be blown at 3.5 to 4.3 Nm 3 / min / t. A small amount of dolomite was charged, and an appropriate amount of quicklime was added so that the charging basicity was 3.0 to 4.0. The balance between heat input into and out of the furnace was adjusted using a scale (iron oxide).

(3)スラグ中Al濃度調整
スラグ中Al濃度調整にはCaO−Al複酸化物を使用した。CaO−Al複酸化物はスラグ中Al濃度が質量%で4.0%以上6.0%以下となるように計量し、吹錬開始直後に転炉内に投入した。
(3) During the concentration of Al 2 O 3 adjusting slag in the concentration of Al 2 O 3 adjusted slag using CaO-Al 2 O 3 composite oxide. The CaO—Al 2 O 3 double oxide was weighed so that the Al 2 O 3 concentration in the slag was 4.0% or more and 6.0% or less by mass%, and was put into the converter immediately after the start of blowing.

(4)吹錬
溶鋼中[C]濃度が0.05%以下となるように酸素を吹き込み、出鋼温度1630℃以上1690℃以下として出鋼し、取鍋に溶鋼を移してから溶鋼をサンプリングし溶鋼成分を測定した。吹錬制御は、装入物質収支に基づくスタティック制御と、吹錬中にサブランスを用いて測定し修正するダイナミック制御とを併用して行った。
(4) Blowing Oxygen was blown into the molten steel so that the [C] concentration was 0.05% or less, and the steel was discharged at a temperature of 1630 ° C or higher and 1690 ° C or lower, and the molten steel was sampled after transferring the molten steel to the ladle. The molten steel component was measured. Blowing control was performed using both static control based on the charge balance and dynamic control that is measured and corrected using a sublance during blowing.

上記処理の結果、溶鋼中成分が質量%で[C]=0.03〜0.05%、[Si]=0.01%以下、[Mn]=0.08〜0.15%となった。   As a result of the above treatment, the components in the molten steel were [C] = 0.03 to 0.05%, [Si] = 0.01% or less, and [Mn] = 0.08 to 0.15% in mass%. .

溶鋼成分中[P]については図1に示す。比較のために、転炉内にAl源を積極的には投入せず、それ以外の条件については本発明の要件を満たして、スラグ中Al濃度が1.0〜2.0%となった従来吹錬方法と、本発明に係る要件を全て満たして、スラグ中Al濃度を4.0〜6.0%に調整したものとをプロットしている。 [P] in the molten steel component is shown in FIG. For comparison, the Al 2 O 3 source is not actively fed into the converter, and the other conditions satisfy the requirements of the present invention, and the Al 2 O 3 concentration in the slag is 1.0-2. The conventional blowing method which became 0.0% and the one which satisfied all the requirements according to the present invention and adjusted the Al 2 O 3 concentration in the slag to 4.0 to 6.0% are plotted.

全体としての傾向は、吹錬時間が短縮されるにつれて吹錬終了後[P]が高くなっていることが分かる。しかし、例えば吹錬時間を約11分間とした例について、スラグ中Al濃度が1.0〜2.0%となった従来例が吹錬終了後[P]=0.020〜0.025%程度となっていたのに対して、本発明を適用してスラグ中Al濃度を4.0〜6.0%程度に調整した例では吹錬終了後[P]=0.015%程度まで低下していた。 As a whole, it can be seen that [P] becomes higher after the end of blowing as the blowing time is shortened. However, for an example in which the blowing time is about 11 minutes, for example, the conventional example in which the Al 2 O 3 concentration in the slag becomes 1.0 to 2.0% after the end of the blowing [P] = 0.020 to 0 In the example in which the present invention was applied to adjust the Al 2 O 3 concentration in the slag to about 4.0 to 6.0%, [P] = 0 after completion of the blowing It was reduced to about .015%.

この調査例では、従来吹錬方法でも本発明方法でも、スロッピングやスピッティングが問題になることは無かった。   In this research example, neither the conventional blowing method nor the method of the present invention caused slopping or spitting.

この本発明例では、吹錬時間を13分以下としても吹錬後の溶鋼中P濃度は0.020%以下になっていて、吹錬時間が10分間程度まではスロッピングやスピッティングも問題とはならずに、高能率で高効率な吹錬を行うことができることが確認された。   In this example of the present invention, even if the blowing time is 13 minutes or less, the P concentration in the molten steel after blowing is 0.020% or less, and slopping and spitting are also problems until the blowing time is about 10 minutes. However, it was confirmed that high-efficiency and high-efficiency blowing can be performed.

Claims (1)

溶銑予備脱燐処理を行っていない溶銑から溶鋼を製造する上底吹き転炉の吹錬方法であって、質量%で溶銑中[Si]濃度=0.40%以上0.60%以下の溶銑を対象として、式(I)により算出した装入塩基度=3.0以上4.0以下とし、かつ、炉内に投入するAl源にCaO−Al複酸化物を用いることによって、吹錬終了後スラグ中Al質量濃度=4.0%以上6.0%以下となるように調整すること、ホタル石を使用しないこと、ならびに、吹錬終了後の溶鋼中[C]濃度=0.05質量%以下、溶鋼温度=1630℃以上1690℃以下に調整することによって、吹錬時間が13分以下で、吹錬終了後の溶鋼中P濃度が0.020質量%以下の溶鋼を製造することを特徴とする転炉の高速吹錬方法。
装入塩基度=(炉内に投入するCaO質量)/(炉内に装入する溶銑中のSi質量×2.14+炉内に投入するSiO質量)
・・・(I)
A method of blowing an upper-bottom blowing converter for producing molten steel from molten iron that has not been subjected to hot metal preliminary dephosphorization treatment, wherein the molten iron has a [Si] concentration of 0.40% to 0.60% in molten metal. The basicity calculated by the formula (I) is set to 3.0 or more and 4.0 or less, and a CaO—Al 2 O 3 double oxide is used as an Al 2 O 3 source to be introduced into the furnace. By adjusting the Al 2 O 3 mass concentration in the slag to 4.0% or more and 6.0% or less after completion of the blowing , not using fluorite , and in the molten steel after the blowing [C] Concentration = 0.05% by mass or less, Molten steel temperature = 1630 ° C. or more and 1690 ° C. or less, so that the blowing time is 13 minutes or less and the P concentration in the molten steel after the blowing is 0.020 mass. A high-speed blowing method for a converter, characterized by producing molten steel of less than 10%.
Charge basicity = (CaO mass charged into the furnace) / (Si mass in hot metal charged into the furnace × 2.14 + SiO 2 mass charged into the furnace)
... (I)
JP2012179813A 2012-08-14 2012-08-14 High-speed blowing method for converters Active JP5874578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012179813A JP5874578B2 (en) 2012-08-14 2012-08-14 High-speed blowing method for converters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179813A JP5874578B2 (en) 2012-08-14 2012-08-14 High-speed blowing method for converters

Publications (2)

Publication Number Publication Date
JP2014037570A JP2014037570A (en) 2014-02-27
JP5874578B2 true JP5874578B2 (en) 2016-03-02

Family

ID=50285931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179813A Active JP5874578B2 (en) 2012-08-14 2012-08-14 High-speed blowing method for converters

Country Status (1)

Country Link
JP (1) JP5874578B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379976B2 (en) * 2014-10-14 2018-08-29 新日鐵住金株式会社 Converter operation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841321B2 (en) * 1978-06-16 1983-09-12 川崎製鉄株式会社 Synthetic flux injection refining method in oxygen bottom-blown converter
JPH02232313A (en) * 1989-03-06 1990-09-14 Taiyo Giken Kogyo Kk Dephosphorizing agent for molten steel
JP3194212B2 (en) * 1994-03-07 2001-07-30 新日本製鐵株式会社 Converter steelmaking method
JP2001262215A (en) * 2000-03-23 2001-09-26 Kawasaki Steel Corp Refining method in converter
JP2006274349A (en) * 2005-03-29 2006-10-12 Sumitomo Metal Ind Ltd Method for refining steel

Also Published As

Publication number Publication date
JP2014037570A (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP5408369B2 (en) Hot metal pretreatment method
JP5418733B2 (en) Hot metal refining method
JP2007051350A (en) Method for producing low sulfur steel
JP5807720B2 (en) Hot metal refining method
JP6222490B2 (en) Hot phosphorus dephosphorization method
JP5408379B2 (en) Hot metal pretreatment method
JP2018178260A (en) Converter steelmaking process
JP5874578B2 (en) High-speed blowing method for converters
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP6135449B2 (en) How to use generated slag
JP2014189838A (en) Desulfurization treatment method of molten steel
JP2008063610A (en) Method for producing molten steel
JP2018188730A (en) Converter steelmaking process
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP7248195B2 (en) Converter steelmaking method
JP2016180161A (en) Method for refining copper
JP2016079462A (en) Method for refining hot pig iron
JP6167802B2 (en) Hot metal refining method
JP7211557B2 (en) Molten iron smelting method
JP5979017B2 (en) Hot metal refining method
JP5447554B2 (en) Dephosphorization method for hot metal
JP2007119813A (en) Method for refining molten iron
JP6627642B2 (en) How to reduce iron ore
JP2009249666A (en) Dephosphorization refining method for molten iron
JP6947374B2 (en) Cast iron refining method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R151 Written notification of patent or utility model registration

Ref document number: 5874578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350