JP2006233312A - Method for controlling blowing in converter - Google Patents

Method for controlling blowing in converter Download PDF

Info

Publication number
JP2006233312A
JP2006233312A JP2005053289A JP2005053289A JP2006233312A JP 2006233312 A JP2006233312 A JP 2006233312A JP 2005053289 A JP2005053289 A JP 2005053289A JP 2005053289 A JP2005053289 A JP 2005053289A JP 2006233312 A JP2006233312 A JP 2006233312A
Authority
JP
Japan
Prior art keywords
blowing
vector
converter
solvent
past
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005053289A
Other languages
Japanese (ja)
Other versions
JP4561405B2 (en
Inventor
Ken Inoue
謙 井上
Kengo Akio
賢吾 秋生
Hiroshi Mizuno
浩 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005053289A priority Critical patent/JP4561405B2/en
Publication of JP2006233312A publication Critical patent/JP2006233312A/en
Application granted granted Critical
Publication of JP4561405B2 publication Critical patent/JP4561405B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling blowing in a converter with which the prediction of flux quantity for matching components in molten steel to the target values, can accurately be performed. <P>SOLUTION: When the flux quantity in the control of blowing in the converter is decided, a blowing conditional vector composed of physical quantities etc., indicating the peculiarity of blowing in the converter, is decided and the past blowing actual result vector resembled to the planned blowing conditional vector, is selected from the past blowing actual result data-base. A flux quantity calculating model for assuming the flux quantity is made based on the selected blowing actual result vector, and the flux quantity predicting value for the planned blowing condition is calculated from the flux quantity calculating model. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、転炉吹錬の処理終了時の溶鋼温度、各成分を終点目標値に合致せしめる転炉吹錬制御方法に関するものである。   The present invention relates to a converter blowing control method in which the molten steel temperature at the end of the converter blowing process and each component are matched with the end point target values.

従来、転炉の吹錬における媒溶剤(石灰分)量計算は、C,P,Si,Mnなどの溶鋼成分を目標値に一致させるため、スタティックな物質収支計算から精錬反応に必要な媒溶剤量を求めていた。しかしながら、上記計算で求めた媒溶剤量に基づく転炉吹錬制御では、操業変動や経時変化が十分にモデルに表現できないため、十分な制御性能を得ることができない、すなわち溶鋼成分を目標値になかなか一致させることができないでいた。   Conventionally, the calculation of the amount of solvent (lime content) in the blowing of converters is necessary for the refining reaction from the static material balance calculation in order to match the molten steel components such as C, P, Si, and Mn to the target values. I was asking for the amount. However, in the converter blowing control based on the amount of solvent obtained in the above calculation, the operational fluctuations and changes over time cannot be expressed sufficiently in the model, so that sufficient control performance cannot be obtained, that is, the molten steel component is set to the target value. It was difficult to match.

これに対して、例えば特許文献1のように学習項などを用いて理論式を補正する方法が開示されている。スタティックモデルによる計算を、例えばx1,x2,…,xnを吹錬条件とすると、媒溶剤量yはこれら吹錬条件の関数、すなわち関数f(x1,x2,…,xn)で記述できる(以下の(1)式)ものであるとする。 On the other hand, for example, as disclosed in Patent Document 1, a method of correcting a theoretical formula using a learning term or the like is disclosed. The calculation by the static model, for example x 1, x 2, ..., when the x n and blowing conditions, medium solvent content y is a function of these blowing conditions, i.e. the function f (x 1, x 2, ..., x n ) Can be described by the following expression (1).

y = f(x1,x2,…,xn) ・・・(1)
この方法は、実績によるモデル補正項Δaを(1)式に付加し、以下の(2)式のように書き直すものである。
y = f (x 1 , x 2 , ..., x n ) (1)
In this method, a model correction term Δa based on results is added to the equation (1) and rewritten as the following equation (2).

y = f(x1,x2,…,xn,Δa) ・・・(2)
そして、上記学習項Δaを吹錬終了毎に更新するようにしている。
特開2000−309817号公報
y = f (x 1 , x 2 , ..., x n , Δa) (2)
The learning term Δa is updated every time blowing is completed.
JP 2000-309817 A

しかしながら、上記特許文献1記載の技術では、学習項Δaによる補正は直前の吹錬実績による補正が中心であるため、吹錬条件が大きく異なる場合などでは、計算される媒溶剤量の誤差が大きく、十分な転炉吹錬制御性能を発揮できないという問題がある。     However, in the technique described in Patent Document 1, the correction based on the learning term Δa is centered on the correction based on the previous blowing performance, and therefore, when the blowing conditions are greatly different, the error of the calculated amount of solvent is large. There is a problem that sufficient converter blowing control performance cannot be exhibited.

本発明は、上記課題を解決するためになされたものであり、溶鋼成分を目標値に一致させるための媒溶剤量予測を正確に行うことができる転炉吹錬制御方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a converter blowing control method capable of accurately predicting the amount of solvent for making molten steel components coincide with target values. And

本発明の請求項1に係る発明は、転炉吹錬制御における媒溶剤量決定に際して、転炉吹錬の特徴を表す物理量などからなる吹錬条件ベクトルを定め、過去の吹錬実績データベースから、実施予定の吹錬条件ベクトルに類似した過去の吹錬実績ベクトルを選択し、この選択された吹錬実績ベクトルに基づき媒溶剤量を推定する媒溶剤量算出モデルをつくり、この媒溶剤量算出モデルから実施予定の吹錬条件のための媒溶剤量予測値を算出することを特徴とする転炉吹錬制御方法である。   In the invention according to claim 1 of the present invention, when determining the amount of solvent in the converter blowing control, a blowing condition vector consisting of physical quantities representing the characteristics of converter blowing is determined, and from the past blowing record database, Select a past blowing performance vector similar to the planned blowing condition vector, and create a solvent amount calculation model for estimating the amount of solvent based on the selected blowing performance vector. From this, it is a converter blowing control method characterized in that a predicted amount of solvent for the blowing conditions to be implemented is calculated.

また本発明の請求項2に係る発明は、転炉吹錬制御における媒溶剤量決定に際して、転炉吹錬の特徴を表す物理量などからなる吹錬条件ベクトルを定め、過去の吹錬実績データベースから、実施予定の吹錬条件ベクトルに類似した過去の吹錬実績ベクトルを選択し、この選択された吹錬実績ベクトルと実施予定の吹錬条件ベクトルとの距離に応じた重み係数を求め、この重み係数を用いた媒溶剤量実績の荷重和から実施予定の吹錬条件のための媒溶剤量予測値を算出することを特徴とする転炉吹錬制御方法である。   Further, in the invention according to claim 2 of the present invention, when determining the amount of the solvent in the converter blowing control, a blowing condition vector consisting of a physical quantity representing the characteristics of the converter blowing is determined, and a past blowing record database is used. Then, a past blowing performance vector similar to the scheduled blowing condition vector is selected, and a weighting coefficient corresponding to the distance between the selected blowing performance vector and the scheduled blowing condition vector is obtained. It is a converter blowing control method characterized in that a predicted solvent amount for a blowing condition to be implemented is calculated from a load sum of actual solvent amount using a coefficient.

また本発明の請求項3に係る発明は、請求項1または請求項2に記載の転炉吹錬制御方法において、実施予定の吹錬条件ベクトルに類似した過去の吹錬実績ベクトルの選択は、実施予定の吹錬条件ベクトルと過去の吹錬実績ベクトルとの差のノルムを算出して、この算出されたノルムが小さい順に選ぶことを特徴とする転炉吹錬制御方法である。   Further, in the invention according to claim 3 of the present invention, in the converter blowing control method according to claim 1 or 2, selection of a past blowing performance vector similar to a scheduled blowing condition vector is A converter blowing control method characterized in that a norm of a difference between a scheduled blowing condition vector and a past blowing performance vector is calculated, and the calculated norm is selected in ascending order.

さらに本発明の請求項4に係る発明は、請求項1または請求項3に記載の転炉吹錬制御方法において、前記媒溶剤量算出モデルは、前記選択された吹錬実績ベクトルに基づく回帰式モデルであることを特徴とする転炉吹錬制御方法である。   The invention according to claim 4 of the present invention is the converter blowing control method according to claim 1 or claim 3, wherein the solvent amount calculation model is a regression equation based on the selected blowing performance vector. It is a converter blowing control method characterized by being a model.

本発明によれば、直前の吹錬の影響だけでなく、吹錬条件の類似した過去の吹錬群から予測を行うようにしたので、媒溶剤計算が正確に行われ、溶鋼成分精度の向上が期待でき、製品の品質が向上する。さらに、これによって耐火物の延命効果、2次精錬の負荷低減などの効果も得られる。   According to the present invention, not only the effect of the previous blowing but also the prediction from past blowing groups with similar blowing conditions, the solvent calculation is accurately performed and the molten steel component accuracy is improved. Can improve product quality. Furthermore, this also provides the effect of extending the life of the refractory and reducing the load of secondary refining.

前述のようにこれまでの転炉吹錬前に実施される媒溶剤量決定は、溶鋼およびスラグ中の物質収支の計算を中心に行われてきた。媒溶剤量計算は、スラグ中に存在するP2O5濃度と溶鋼中に存在するP濃度の平衡式、転炉内に投入したP量の保存則、およびスラグ量推定式により算出される。 As described above, the determination of the amount of the solvent to be carried out before the converter blowing is performed mainly on the calculation of the material balance in the molten steel and slag. The solvent amount calculation is calculated by an equilibrium equation of the P 2 O 5 concentration present in the slag and the P concentration present in the molten steel, a conservation law of the P amount charged into the converter, and a slag amount estimation equation.

本発明は、媒溶剤量を直接計算する近似モデルを作成する方法であり、この際、計算対象の吹錬と類似した過去の吹錬を集め、その集まった実績から適切なモデルを構築する。本発明では、このモデル構築とその学習方法のひとつを与えるものであり、その手法は、吹錬条件の近傍を定めてその近傍で成立するモデルをその都度構築するという手法をとる。   The present invention is a method for creating an approximate model for directly calculating the amount of solvent, and in this case, past blowing similar to the calculation target blowing is collected, and an appropriate model is constructed from the collected results. In the present invention, this model construction and one of its learning methods are given. The technique is a technique in which the neighborhood of the blowing condition is determined and a model established in the neighborhood is constructed each time.

本発明を実施するための最良の形態について、以下図面および数式を参照して説明を行う。図1は、本発明に係る処理手順例を示したフローチャートである。
まず、吹錬の特徴を表す物理量(溶銑温度、溶銑量、溶銑成分、目標成分など)からなるn次元の吹錬条件ベクトルX(要素xi)を定める(ステップS01)。
The best mode for carrying out the present invention will be described below with reference to the drawings and mathematical expressions. FIG. 1 is a flowchart showing an example of a processing procedure according to the present invention.
First, an n-dimensional blowing condition vector X (element x i ) consisting of physical quantities (feet temperature, hot metal amount, hot metal component, target component, etc.) representing the characteristics of blowing is determined (step S01).

X = (x1,x2,x3,・・・,xn) ・・・・・(3)
次に、所定期間のデータが保存してある吹錬実績データベースから、類似データを抽出する処理を行う。このためまず、吹錬条件ベクトルXの各項目xiの平均μi、および標準偏差σi(i=1〜n)を、吹錬実績データベースから算出する(ステップS02)。次に、以下の(4)式に示す変換にて、正規化ベクトルXj’を作る(ステップS03)。
X = (x 1 , x 2 , x 3 , ..., x n ) (3)
Next, a process of extracting similar data from a blowing performance database in which data for a predetermined period is stored is performed. Therefore, first, the average μ i of each item x i of the blowing condition vector X and the standard deviation σ i (i = 1 to n) are calculated from the blowing performance database (step S02). Next, a normalized vector X j ′ is created by the conversion shown in the following equation (4) (step S03).

xi j’=(xi−μi)/σi ・・・・・(4)
そして、これから実施する吹錬条件ベクトルX0を作り、(4)式に示す変換と同様に(μii)を用いて正規化された吹錬条件ベクトルX0’を作る。このとき、処理終了時の溶鋼温度、成分などの物理量は目標値を用い、各副原料(石灰、ドロマイト、コークス、鉄鉱石、Mn鉱石など)は投入予定量を用いる。
x i j '= (x i −μ i ) / σ i (4)
Then, a blowing condition vector X 0 to be executed from now is created, and a normalized blowing condition vector X 0 ′ is created using (μ i , σ i ) in the same manner as the transformation shown in the equation (4). At this time, the physical values such as the molten steel temperature and components at the end of the treatment use the target values, and the auxiliary raw materials (lime, dolomite, coke, iron ore, Mn ore, etc.) use the scheduled input amounts.

以上の準備の後、これから実施する正規化された吹錬条件ベクトルX0’に類似した正規化ベクトルXj’を、過去の実績データベースから抽出する(ステップS04)。類似度合いの決め方は、Xj’の各項目xi j’の大きさが所定範囲に入るなど、さまざまな手法が考えられる。類似度をベクトルの較差のノルムで定義するものの手法について、以下に説明する。 After the above preparation, a normalized vector X j ′ similar to the normalized blowing condition vector X 0 ′ to be implemented is extracted from the past performance database (step S04). Various methods can be considered for determining the degree of similarity, such as the size of each item x i j ′ of X j ′ falling within a predetermined range. A method of defining the similarity by the norm of the vector difference will be described below.

まず、これから実施する吹錬の正規化ベクトルX0'を基準にし、データベースの正規化ベクトルXj’との偏差ΔX'を、以下の(5)式にて計算する。 First, a deviation ΔX ′ from the normalized vector X j ′ of the database is calculated by the following equation (5) with reference to the normalized vector X 0 ′ of blowing that will be performed.

ΔX'=Xj’−X0' ・・・・・(5)
そして、偏差ΔX'のノルムを、以下の(6)式にて計算する。
ΔX ′ = X j ′ −X 0 ′ (5)
Then, the norm of the deviation ΔX ′ is calculated by the following equation (6).

Figure 2006233312
Figure 2006233312

また、個々の項目ごとに重みを持たせるため、個々に重み係数wi(i=1,・・・,n)を導入した以下の(7)式に示すノルムでも良い。 Further, in order to give weight to each item, the norm shown in the following equation (7) in which weight coefficients w i (i = 1,..., N) are individually introduced may be used.

Figure 2006233312
Figure 2006233312

ここで例示したノルム以外のノルムや距離関数(一例を後述)などが種々考えられるが、それらを適用してもよい。   Various norms and distance functions (an example will be described later) other than the norm exemplified here may be considered, but they may be applied.

そして、データの近傍数kを定めて、|ΔXj'|の小さいものからk個の過去の実績データを集めるようにして、類似データを抽出する。なお、近傍数kは、赤池の情報量基準、予測誤差、クロスバリデーション法などで定めるようにしてもよい。 Then, by determining the number of neighbors k of the data, similar data is extracted by collecting k past performance data from the smallest | ΔX j ′ |. The number of neighbors k may be determined by Akaike's information criterion, prediction error, cross-validation method, or the like.

次に、集めた類似吹錬のデータを用いて、媒溶剤量を算出するモデルを作る(ステップS05)。媒溶剤量を求めるモデルは、物質収支計算をベースにしており、さまざまな形式が考えられるが、一例として各項目による回帰式モデルを紹介する。
媒溶剤量をHdとすると、以下の(8)式に示すように各項目の一次式として与えるものである。
Next, a model for calculating the amount of solvent is created using the collected similar blowing data (step S05). The model for determining the amount of solvent is based on the material balance calculation, and various forms are possible. As an example, we introduce a regression model for each item.
Assuming that the amount of solvent is Hd, it is given as a primary expression for each item as shown in the following expression (8).

Hd=f(x1,x2,・・・,xn)
≒a1*x1+a2*x2+・・・+an*xn+b0・・・・・(8)
ここで、上記近似式の係数a1,a2,・・・,an,b0 は、X0の近傍データとして集めたデータX1〜Xkを用いて、最小二乗法などで求めるようにする。このように求めた係数は、元になるデータとして、これから実施する吹錬データに類似するデータを用いているため、媒溶剤量Hdの推定精度を高めることができる。
Hd = f (x 1 , x 2 , ..., x n )
≒ a 1 * x 1 + a 2 * x 2 + ... + a n * x n + b 0 (8)
Here, the coefficients a 1 , a 2 ,..., A n , b 0 in the above approximate expression are obtained by the least square method or the like using the data X 1 to X k collected as the neighborhood data of X 0. To. Since the coefficient obtained in this manner uses data similar to the blowing data to be performed from now on as the original data, the estimation accuracy of the solvent amount Hd can be increased.

これから実施する吹錬のベクトルX0に対する媒溶剤量Hd0の推定値は、上記(8)式の回帰式にX0の各項目x0を代入することで得ることができる。 Estimate of medium solvent amount Hd 0 for the vector X 0 of blowing implementing now can be obtained by substituting each item x 0 of X 0 to regression equation (8).

次に示す方法は、上述した媒溶剤量算出モデルを用いるものではなく、これから実施する吹錬のベクトルX0と各近傍データの距離である|ΔXj’|を用いる方法である。 The following method does not use the above-described solvent amount calculation model but uses | ΔX j '| which is the distance between the blowing vector X 0 to be performed and each neighboring data.

近傍データベクトルとし、てX1,X2,・・・,Xkが得られているとする。このときX0と各ベクトルとの距離d1,d2,・・・,dkが(9)式のように得られる。 Assume that X 1 , X 2 ,..., X k are obtained as neighborhood data vectors. At this time, distances d 1 , d 2 ,..., D k between X 0 and each vector are obtained as shown in equation (9).

dj=|ΔXj’| ・・・・(9)
ここで、dj の内、最大のものをdmax とする((10)式)。
d j = | ΔX j '| (9)
Here, d max is the maximum of d j (Equation (10)).

dmax=max(d1,d2,・・・,dk) ・・・・(10)
また、各djを用いた重み係数kjを、以下の(11)式で定義する。
d max = max (d 1 , d 2 ,..., d k ) (10)
Further, the weighting coefficient k j using each d j is defined by the following equation (11).

Figure 2006233312
Figure 2006233312

各Xjに対応する媒溶剤量実績を、Hdjとする。このときX0に対する媒溶剤量予測値Hd0を、以下の(12)式で与える。 The actual solvent amount corresponding to each X j is Hd j . The medium solvent amount prediction value Hd 0 for the time X 0, given by the following equation (12).

Figure 2006233312
Figure 2006233312

以上のような処理・演算手順により、過去の類似実績をもとにした吹錬時の媒溶剤量の正確な推定が可能になる。 The above processing / calculation procedure makes it possible to accurately estimate the amount of solvent during blowing based on past similar results.

本発明に係る処理手順例を示したフローチャートである。It is the flowchart which showed the example of the process sequence which concerns on this invention.

符号の説明Explanation of symbols

S01 吹錬条件ベクトルXの定義
S02 平均μi、標準偏差σiの算出
S03 正規化ベクトルX’への変換
S04 X0’に類似したデータXj’を過去の実績データベースから抽出
S05 類似データを用いて媒溶剤量算出モデルの作成
S06 モデルとX0を用いて媒溶剤量予測値Hd0の算出
S01 Definition of blowing condition vector X S02 Calculation of mean μ i and standard deviation σ i S03 Conversion to normalized vector X ′ Extract data X j ′ similar to S04 X 0 ′ from past performance database S05 Similar data Using the S06 model and X 0 to calculate the solvent / solvent amount prediction value Hd 0

Claims (4)

転炉吹錬制御における媒溶剤量決定に際して、転炉吹錬の特徴を表す物理量などからなる吹錬条件ベクトルを定め、過去の吹錬実績データベースから、実施予定の吹錬条件ベクトルに類似した過去の吹錬実績ベクトルを選択し、この選択された吹錬実績ベクトルに基づき媒溶剤量を推定する媒溶剤量算出モデルをつくり、この媒溶剤量算出モデルから実施予定の吹錬条件のための媒溶剤量予測値を算出することを特徴とする転炉吹錬制御方法。 When deciding the amount of solvent in converter blowing control, a blowing condition vector consisting of physical quantities representing the characteristics of converter blowing is determined, and past similar to the scheduled blowing condition vector is determined from the past blowing performance database. A medium solvent amount calculation model is established for estimating the amount of solvent based on the selected blowing performance vector, and the medium for the blowing condition to be implemented is determined from the medium amount calculation model. A converter blowing control method, wherein a predicted solvent amount is calculated. 転炉吹錬制御における媒溶剤量決定に際して、転炉吹錬の特徴を表す物理量などからなる吹錬条件ベクトルを定め、過去の吹錬実績データベースから、実施予定の吹錬条件ベクトルに類似した過去の吹錬実績ベクトルを選択し、この選択された吹錬実績ベクトルと実施予定の吹錬条件ベクトルとの距離に応じた重み係数を求め、この重み係数を用いた媒溶剤量実績の荷重和から実施予定の吹錬条件のための媒溶剤量予測値を算出することを特徴とする転炉吹錬制御方法。 When deciding the amount of solvent in converter blowing control, a blowing condition vector consisting of physical quantities representing the characteristics of converter blowing is determined, and past similar to the scheduled blowing condition vector is determined from the past blowing performance database. A weighting coefficient corresponding to the distance between the selected blowing performance vector and the planned blowing condition vector, and from the load sum of the solvent amount performance using this weighting coefficient. A converter blowing control method, characterized by calculating a predicted solvent amount for a blowing condition to be implemented. 請求項1または請求項2に記載の転炉吹錬制御方法において、
実施予定の吹錬条件ベクトルに類似した過去の吹錬実績ベクトルの選択は、実施予定の吹錬条件ベクトルと過去の吹錬実績ベクトルとの差のノルムを算出して、この算出されたノルムが小さい順に選ぶことを特徴とする転炉吹錬制御方法。
In the converter blowing control method according to claim 1 or 2,
The selection of the past blowing performance vector similar to the scheduled blowing condition vector is performed by calculating the norm of the difference between the scheduled blowing condition vector and the past blowing performance vector. A converter blowing control method characterized by selecting in ascending order.
請求項1または請求項3に記載の転炉吹錬制御方法において、
前記媒溶剤量算出モデルは、前記選択された吹錬実績ベクトルに基づく回帰式モデルであることを特徴とする転炉吹錬制御方法。
In the converter blowing control method of Claim 1 or Claim 3,
The converter blowing method according to claim 1, wherein the solvent amount calculation model is a regression model based on the selected blowing performance vector.
JP2005053289A 2005-02-28 2005-02-28 Converter blowing control method Expired - Fee Related JP4561405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053289A JP4561405B2 (en) 2005-02-28 2005-02-28 Converter blowing control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053289A JP4561405B2 (en) 2005-02-28 2005-02-28 Converter blowing control method

Publications (2)

Publication Number Publication Date
JP2006233312A true JP2006233312A (en) 2006-09-07
JP4561405B2 JP4561405B2 (en) 2010-10-13

Family

ID=37041291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053289A Expired - Fee Related JP4561405B2 (en) 2005-02-28 2005-02-28 Converter blowing control method

Country Status (1)

Country Link
JP (1) JP4561405B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167365A (en) * 2011-01-28 2012-09-06 Jfe Steel Corp Quicklime concentration prediction apparatus, and blowing control method
JP2013181216A (en) * 2012-03-01 2013-09-12 Jfe Steel Corp Method and apparatus for controlling blowing treatment of molten iron
JP2013181215A (en) * 2012-03-01 2013-09-12 Jfe Steel Corp Method and apparatus for controlling blowing treatment of molten iron
CN111881993A (en) * 2020-08-03 2020-11-03 长沙有色冶金设计研究院有限公司 Operation mode multilayer grading matching optimization method for copper matte converting process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309817A (en) * 1999-02-22 2000-11-07 Nisshin Steel Co Ltd Converter blowing method
JP2004059954A (en) * 2002-07-25 2004-02-26 Jfe Steel Kk Method for controlling converter blowing
JP2004059955A (en) * 2002-07-25 2004-02-26 Jfe Steel Kk Method for controlling converter blowing
JP2005036289A (en) * 2003-07-16 2005-02-10 Kobe Steel Ltd Model parameter decision method and program therefor, and model prediction method and program therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309817A (en) * 1999-02-22 2000-11-07 Nisshin Steel Co Ltd Converter blowing method
JP2004059954A (en) * 2002-07-25 2004-02-26 Jfe Steel Kk Method for controlling converter blowing
JP2004059955A (en) * 2002-07-25 2004-02-26 Jfe Steel Kk Method for controlling converter blowing
JP2005036289A (en) * 2003-07-16 2005-02-10 Kobe Steel Ltd Model parameter decision method and program therefor, and model prediction method and program therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167365A (en) * 2011-01-28 2012-09-06 Jfe Steel Corp Quicklime concentration prediction apparatus, and blowing control method
JP2013181216A (en) * 2012-03-01 2013-09-12 Jfe Steel Corp Method and apparatus for controlling blowing treatment of molten iron
JP2013181215A (en) * 2012-03-01 2013-09-12 Jfe Steel Corp Method and apparatus for controlling blowing treatment of molten iron
CN111881993A (en) * 2020-08-03 2020-11-03 长沙有色冶金设计研究院有限公司 Operation mode multilayer grading matching optimization method for copper matte converting process
CN111881993B (en) * 2020-08-03 2024-04-12 长沙有色冶金设计研究院有限公司 Operation mode multilayer hierarchical matching optimization method for copper matte converting process

Also Published As

Publication number Publication date
JP4561405B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
WO2020152993A1 (en) Design assistance method for metal material, prediction model generation method, metal material manufacturing method, and design assistance device
JP4561405B2 (en) Converter blowing control method
JP4093934B2 (en) Model parameter determination method and program thereof, model prediction method and program thereof
KR102348892B1 (en) Molten metal component estimation apparatus, molten metal component estimation method, and molten metal manufacturing method
JP5853723B2 (en) Phosphorus concentration prediction device and blowing control method
JP4998661B2 (en) Converter blowing end point control method
JP7147326B2 (en) Component concentration calculation device and component concentration calculation method
JP2007052739A (en) Method and device for generating model, method and device for predicting state, and method and system for adjusting state
CN110373510B (en) Molten steel quality narrow window control method and system based on bimodal switching
JP5821656B2 (en) Quick lime concentration prediction device and blowing control method
Liu et al. Black box operation optimization of basic oxygen furnace steelmaking process with derivative free optimization algorithm
JP5682131B2 (en) Steel material prediction device
JP7159677B2 (en) Operating condition calculation device and operating condition calculation method
Sala et al. Hybrid static-sensory data modeling for prediction tasks in basic oxygen furnace process
JP3912215B2 (en) Converter blowing control method
Meradi et al. Prediction of bath temperature using neural networks
JP6844565B2 (en) Neural network device and program
JP5635464B2 (en) Apparatus for calculating auxiliary material input amount for converter and method thereof
KR20210116578A (en) The operation result prediction method, the learning method of a learning model, the operation result prediction apparatus, and the learning apparatus of a learning model
JP4055704B2 (en) Mn amount adjustment method in converter blowing
JP2014209274A (en) Calculation device and calculation method
JP3882705B2 (en) Converter blowing control method
Hashimoto et al. An Operator Behavior Model for Thermal Control of Blast Furnace
JP2023114592A (en) Operational calculation device and operational calculation method
JP5211600B2 (en) Industrial process control method and apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20060921

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A621 Written request for application examination

Effective date: 20071025

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090914

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Effective date: 20091127

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20100223

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100426

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100719

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130806

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees