JPS5985841A - Manufacture of ferrochromium - Google Patents

Manufacture of ferrochromium

Info

Publication number
JPS5985841A
JPS5985841A JP19533882A JP19533882A JPS5985841A JP S5985841 A JPS5985841 A JP S5985841A JP 19533882 A JP19533882 A JP 19533882A JP 19533882 A JP19533882 A JP 19533882A JP S5985841 A JPS5985841 A JP S5985841A
Authority
JP
Japan
Prior art keywords
amount
furnace
slag
reducing agent
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19533882A
Other languages
Japanese (ja)
Other versions
JPS6239225B2 (en
Inventor
Tsutomu Fukushima
福島 勤
Kiyoshi Kawasaki
清 川崎
Sadayuki Sasaki
佐々木 貞行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19533882A priority Critical patent/JPS5985841A/en
Publication of JPS5985841A publication Critical patent/JPS5985841A/en
Publication of JPS6239225B2 publication Critical patent/JPS6239225B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the rate of reduction to Cr and the yield of metal by controlling the amounts of a reducing agent and a slag making material to be additionally charged into a furnace and the volume of oxygen to be blown so as to make the temp. of slag and the amount of the reducing agent in the furnace close to set values for optimum operation. CONSTITUTION:Chrome ore is fed to a rotating furnace together with a reducing agent, a slag making material and oxygen, and melting and reduction are carried out. At this time, one or more among the temp. of slag in the furnace, the amount of the reducing agent in the furnace and the surface temp. of the refractories are measured, and at least one among the amount of a reducing agent to be additionally charged, the amount of a slag making material to be additionally charged, the volume of oxygen to be blown, the position of an oxygen blowing lance and the speed of rotation of the furnace is controlled so as to make said measured values close to set values required to carry out optimum operation. Thus, the rate of reduction to Cr and the yield of metal are improved.

Description

【発明の詳細な説明】 この発明は、回転炉を用いてクロム鉱石+m融還元しフ
ェロクロムを製造するバッチ方式によるフェロクロムの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ferrochrome using a batch method in which ferrochrome is produced by smelting and reducing chromium ore + m using a rotary furnace.

従来、フェロクロムの製造は、クロム鉱石をコークス等
の還元剤および石灰石等の造滓剤と共に電気炉に装入し
、電気炉精錬によって行なっていたため、精錬に大量の
電力を消費することになシ、省資源および経済性の観点
から重大な問題とされていた。
Conventionally, ferrochrome was produced by charging chromium ore into an electric furnace together with a reducing agent such as coke and a slag-forming agent such as limestone and refining it in an electric furnace, which resulted in the consumption of a large amount of electricity for refining. This was considered a serious problem from the viewpoint of resource conservation and economic efficiency.

本発明者等は、上述した問題を解決し、従来の電気炉精
錬に代るフェロクロムの製造法を開発すべく鋭意研究を
重ねた結果、回転炉を用いてクロム鉱石を溶融還元しフ
ェロクロムを製造する方法を発明し、特許出願(特願昭
56−112936号)を行なった。
The present inventors have conducted extensive research to solve the above-mentioned problems and develop a method for producing ferrochrome that can replace the conventional electric furnace smelting process. He invented a method to do this and filed a patent application (Japanese Patent Application No. 112936/1982).

この方法は、炉の軸心が水平または緩傾斜の回転炉内へ
クロム鉱石を還元剤および造滓剤と共に供給し、これに
酸素または酸素富化空気を吹込むことによシフロム鉱石
を溶融、還元する一方、前記回転炉から排出される高温
の排ガス全ロータリキルンに導き、ロータリキルン内に
おいて前記回転炉に供給するクロム鉱石を予熱するもの
で、この方法によれば、精錬のために大量の高価な電力
を消費することがなく、経済的にフェロクロムを製造し
得る。
In this method, chromium ore is fed together with a reducing agent and a slag-forming agent into a rotary furnace whose axis is horizontal or gently inclined, and chromium ore is melted by blowing oxygen or oxygen-enriched air into it. At the same time, the high-temperature exhaust gas discharged from the rotary furnace is all introduced into the rotary kiln, and the chromium ore to be supplied to the rotary furnace is preheated within the rotary kiln. According to this method, a large amount of chromium ore is Ferrochrome can be produced economically without consuming expensive electricity.

しかるに、上述した方法をバッチ方式により実施するに
当シ、実操業上回転炉における精錬過程で次のような問
題のあることがわかった。
However, when implementing the above-mentioned method in a batch system, it was found that the following problems occurred during the refining process in a rotary furnace in actual operation.

(1) クロムの還元率およびメタルの回収率スラグの
温度が1650℃以下であるとクロムの還元反応が遅れ
るのでその還元率が80〜90%と低くな9、その結果
メタルの回収率およびメタル中のクロム含有量のバラツ
キが大巾となる。
(1) Chromium reduction rate and metal recovery rate If the slag temperature is below 1650°C, the chromium reduction reaction will be delayed and the reduction rate will be as low as 80-90%.9 As a result, the metal recovery rate and metal recovery rate will be low. The variation in the chromium content inside is a major factor.

また、回転炉内における炉内還元剤の量がその層厚で5
0訪以下になると、酸素吹込み量の過剰によシ炉内の雰
囲気が弱還元性となってメタルが再酸化する結果、クロ
ム還元率およびメタル回収率が共に低下する。
In addition, the amount of in-furnace reducing agent in the rotary furnace is 5
When the temperature becomes less than 0, the atmosphere in the furnace becomes weakly reducing due to the excessive amount of oxygen blown into the furnace, and the metal is reoxidized, resulting in a decrease in both the chromium reduction rate and the metal recovery rate.

(21メタルの成分 炉内還元剤の過剰燃焼のためにメタル中に含有されるP
分の量が0.06〜0.07%と多量になり。
(P contained in the metal due to excessive combustion of the reducing agent in the furnace)
The amount is as high as 0.06-0.07%.

更に、スラグ組成が低塩基度側に移行するので、メタル
中に含有される8分の量が帆02%と多量になる。その
結果、製品(フェロクロム)を高級鋼の製造用として使
用するときに問題が生ずる。
Furthermore, since the slag composition shifts to the low basicity side, the amount contained in the metal becomes as large as 0.8% and 0.2%. As a result, problems arise when the product (ferrochrome) is used for the production of high-grade steel.

(3)  耐火物の溶損 還元期およびメタルとスラグの分離期に、回転炉の内張
シ耐大物の表面温度とスラグ温度との差が大きくなると
、前記耐火物の溶損が激しくなシ、更に、溶解時のスラ
グ組成CMFO中10〜20%)と精錬終了時の最終ス
ラグ組成(Mjl[O+20〜30%)とのMPO飽和
値が異なることからも耐火物の溶損が激しく、これらに
よって耐火物の損耗が大となる。
(3) If the difference between the surface temperature of the large lining of the rotary furnace and the slag temperature becomes large during the reduction period of the refractory melting and the separation stage of the metal and slag, the refractory will suffer severe melting loss. Furthermore, since the MPO saturation value of the slag composition at the time of melting (10 to 20% in CMFO) and the final slag composition at the end of refining (Mjl [O + 20 to 30%) is different, the erosion of the refractory is severe. This results in increased wear and tear on the refractories.

(4)  酸素吹込み量 スラグ温度は主として酸素の吹込み量に影響されるが、
炉内還元剤の量がその把握の困難によって適正でない場
合に、酸素の吹込み量を必要以上に多量となし、これに
よってスラグ温度の上昇を図ろうとするため、炉内が弱
還元性雰囲気になシやすく、その結果クロム還元率の低
下を招く。
(4) Amount of oxygen blown The slag temperature is mainly affected by the amount of oxygen blown.
If the amount of reducing agent in the furnace is not appropriate due to difficulty in ascertaining the amount, the amount of oxygen blown into the furnace is increased more than necessary in an attempt to raise the slag temperature, resulting in a weakly reducing atmosphere inside the furnace. This results in a decrease in the chromium reduction rate.

本発明者等は、上述した問題を解決すべく鋭意研究を重
ねた。その結果、上述した問題を引起すもつとも大きい
因子は、スラグ温度、耐火物表面温度とスラグ温度との
差、スラグ組成、還元剤の量および排ガスの組成である
ことがわかり、上記因子を下記のように制御すれば上記
問題は解決し得ることを知見した。
The present inventors have conducted extensive research in order to solve the above-mentioned problems. As a result, it was found that the major factors that cause the above-mentioned problems are the slag temperature, the difference between the refractory surface temperature and the slag temperature, the slag composition, the amount of reducing agent, and the composition of the exhaust gas. It has been found that the above problem can be solved if controlled in this manner.

(1)  スラグ温度制御 スラグ温度が急激に上昇すると耐火物の溶損が犬となシ
、一方スラグ潟度が低下すると溶解還元作用が遅れてク
ロム還元率が低下する。従って、スラグ温度に急激な上
昇、低下が生じないように、炉内還元剤の量、排ガスの
組成、スラグ温度および耐火物表面温度を適確に把握し
、演算処理により必要とする酸素吹込み量を求めてその
吹込量に制御し、かつ、造滓剤および還元剤の追加装入
量およびその装入速度を制御してスラグ温度を適正て保
てば、クロム還元率の向上および耐火物の溶損減少を図
ることができる。第1図は上記により制御された適正な
スラグ温度とクロム還元率との関係の一例を示す図であ
る。
(1) Slag temperature control If the slag temperature rises rapidly, the melting loss of refractories will be reduced. On the other hand, if the slag lagoonality decreases, the dissolution reduction action will be delayed and the chromium reduction rate will decrease. Therefore, in order to prevent sudden increases or decreases in slag temperature, the amount of reducing agent in the furnace, composition of exhaust gas, slag temperature, and refractory surface temperature are accurately grasped, and the required oxygen injection is determined through calculation processing. If the slag temperature is maintained at an appropriate level by determining the amount of slag and controlling the injection amount, and controlling the additional charging amount and charging speed of the slag-forming agent and reducing agent, the chromium reduction rate can be improved and refractories can be improved. It is possible to reduce erosion loss. FIG. 1 is a diagram showing an example of the relationship between the appropriate slag temperature controlled as described above and the chromium reduction rate.

(2)  耐火物表面温度制御 回転炉の内張耐火物の表面温度が溶解および還元に必要
な精錬温度以上に高温になると、耐火物の溶損量が大と
なり、一方前記必要な精錬温度より低いと原料の溶解性
が悪fヒしてクロム還元率が低下する。従って、排ガス
の組成と酸素吹込量とから適正な炉内還元剤の量を求め
、炉内還元剤を前記適正量となるように制御し、かつ、
酸素吹込み量を炉内が安定した還元性雰囲気となるよう
に制御すればスラグ温度の変動幅が小となυ、耐火物温
度とスラグ温度との差が適正範囲に維持されて、クロム
還元率の向上および耐火物の溶損減少を図ることができ
る。第2図は上記により制御された適正な耐火物表面温
度とスラグ温度との差と、スラグ温度との関係の一例を
示す図である。
(2) Refractory surface temperature control When the surface temperature of the refractory lining of the rotary furnace becomes higher than the refining temperature required for melting and reduction, the amount of erosion of the refractory increases; If it is low, the solubility of the raw material will deteriorate and the chromium reduction rate will decrease. Therefore, an appropriate amount of in-furnace reducing agent is determined from the exhaust gas composition and oxygen injection amount, and the in-furnace reducing agent is controlled to be the appropriate amount, and
If the amount of oxygen blown into the furnace is controlled to create a stable reducing atmosphere inside the furnace, the range of fluctuation in slag temperature will be small, the difference between the refractory temperature and slag temperature will be maintained within an appropriate range, and chromium reduction will be achieved. It is possible to improve the efficiency and reduce the erosion of refractories. FIG. 2 is a diagram showing an example of the relationship between the slag temperature and the difference between the appropriate refractory surface temperature controlled as described above and the slag temperature.

(3)  スラグ組成制御 スラグは、その温度が上昇すると組成が変化し、その結
果耐火物の溶損量が増大する。従って、スラグ温度、原
料の初期配合組成、炉内で燃焼消費した還元剤の量およ
び追加装入される造滓剤の量から、適正々スラグ組成を
得るための造滓剤の追加装入適正量を求め、前記適正量
となるように造滓剤を添加し、かつその添加速度を制御
すれば、スラグ温度は制御されて適正カスラグ組成が得
られ、耐火物の溶損減少を図ることができる。第3図は
上記により制御された適正なスラグ組成とスラグ温度と
の関係の一例を示す図である。
(3) Slag composition control When the temperature of slag increases, the composition changes, and as a result, the amount of erosion of refractories increases. Therefore, based on the slag temperature, the initial composition of raw materials, the amount of reducing agent burned and consumed in the furnace, and the amount of additional slag forming agent, it is determined that the additional charging of slag forming agent is appropriate in order to obtain an appropriate slag composition. By determining the amount, adding the slag forming agent to the appropriate amount, and controlling the addition rate, the slag temperature can be controlled and an appropriate slag composition can be obtained, reducing the erosion of refractories. can. FIG. 3 is a diagram showing an example of the relationship between the appropriate slag composition controlled as described above and the slag temperature.

(4)炉内還元剤量制御 炉内還元剤の量が不足すると回転炉内が弱還元性雰囲気
とガってクロム還元率の低下およびメタル回収率の減少
を招く。そこで、排ガスの組成、酸素吹込み量、還元剤
の装入量から炉内還元剤の適正量を求め、前記適正量と
なるように還元剤の追加装入量を定めれば、クロム還元
率およびメタル回収率を高めることができる。第4図は
上記により制御された適正な炉内還元剤の量とクロム還
元率との関係の一例を示す図である。
(4) Control of the amount of reducing agent in the furnace If the amount of reducing agent in the furnace is insufficient, the inside of the rotary furnace becomes a weakly reducing atmosphere, resulting in a decrease in the chromium reduction rate and metal recovery rate. Therefore, by determining the appropriate amount of reducing agent in the furnace from the exhaust gas composition, oxygen injection amount, and reducing agent charging amount, and determining the additional reducing agent charging amount to reach the above-mentioned appropriate amount, the chromium reduction rate and metal recovery rate can be increased. FIG. 4 is a diagram showing an example of the relationship between the appropriate amount of in-furnace reducing agent controlled as described above and the chromium reduction rate.

(5)  排ガスの組成制御 溶解期における排ガス中の02%が高いと炉内での酸素
の使用効率が低下する。また排ガスの組成から炉内雰囲
気の状態がわかるが、還元期において炉内が低還元雰囲
気であると、生成したメタルが再酸化する。従って、溶
解期においては、排ガスの組成を検知し、これが適正値
となるように原料温度、耐火物表面温度および排ガス組
成から酸素吹込み量を制御することにより、酸素の使用
効率を高めることができる。また還元期にセいては排ガ
ス組成が適正値となるように炉内還元剤を適正量に保ち
、かつ酸素吹込み量を制御すればスラグを適正範囲の温
度に保つことができる。第5図は上記により制御された
適正々排ガス組成とスラグ温度との関係の一例を示す図
である。
(5) Composition control of exhaust gas If the amount of 02% in the exhaust gas during the melting period is high, the efficiency of oxygen use in the furnace will decrease. Further, the state of the atmosphere inside the furnace can be determined from the composition of the exhaust gas, and if the inside of the furnace is in a low reducing atmosphere during the reduction period, the generated metal will be reoxidized. Therefore, during the melting stage, it is possible to increase the efficiency of oxygen use by detecting the composition of the exhaust gas and controlling the amount of oxygen blown from the raw material temperature, refractory surface temperature, and exhaust gas composition so that it is at an appropriate value. can. Furthermore, during the reduction period, the slag can be kept at a temperature within an appropriate range by maintaining the reducing agent in the furnace at an appropriate amount so that the exhaust gas composition is at an appropriate value, and by controlling the amount of oxygen blown into the furnace. FIG. 5 is a diagram showing an example of the relationship between the properly controlled exhaust gas composition and slag temperature as described above.

この発明は、上記知見に基づいてなされたものであって
、炉の軸心が水平または緩傾斜の回転炉内へクロム鉱石
を還元剤および造滓剤と共に供給し、これに酸素を吹込
むことによりクロム鉱石を溶融還元してフェロクロムを
製造するフェロクロムの製造方法において、前記回転炉
におけるスラグ温度、炉内還元剤量および耐火物表面温
度の少なくとも1つを測定し、前記測定値が、クロムの
高還元率、耐火物溶損の最少、酸素吹込み量および還元
剤装入量の最少の少なくとも1つの最適操業を行なうた
めの設定値と々るように、還元剤の追加装入量、造滓剤
の追加装入量、酸素吹込み量、酸素吹込みランス位置お
よび炉体回転速度の少なくとも1つを制御することに特
徴を有するものである。
This invention was made based on the above findings, and involves supplying chromium ore together with a reducing agent and a slag-forming agent into a rotary furnace whose axis is horizontal or gently inclined, and blowing oxygen into the rotary furnace. In the method for producing ferrochrome in which ferrochrome is produced by melting and reducing chromium ore, at least one of the slag temperature, the amount of reducing agent in the furnace, and the refractory surface temperature in the rotary furnace is measured, and the measured value is determined to be The additional charging amount of reducing agent, the production This method is characterized by controlling at least one of the additional charging amount of sludge agent, the amount of oxygen blown in, the position of the oxygen blown lance, and the rotational speed of the furnace body.

次に、この発明を実施するための制御システムの一例を
第6図に示すシステム図に基いて説明する。第6図に示
す如く、炉内計測機器として、スラグ浸漬連続式温度計
、スラグ浸漬バッチ式温度計、炉壁内埋込み温度計、炉
内壁表面放射型温度計、炉壁熱流計および排ガス分析計
を使用し、これらの計器によって、スラグ温度、耐火物
表面温度、排ガス組成および炉壁熱加量を測定する。
Next, an example of a control system for implementing the present invention will be explained based on the system diagram shown in FIG. As shown in Figure 6, the in-furnace measuring instruments include a slag immersion continuous thermometer, a slag immersion batch thermometer, a thermometer embedded in the furnace wall, a radiation thermometer on the surface of the furnace wall, a furnace wall heat flow meter, and an exhaust gas analyzer. These instruments measure the slag temperature, refractory surface temperature, exhaust gas composition, and furnace wall heat addition.

操業用設備計器として、酸素流量計、ランス位置測定計
、原料装入量記録計および炉体回転速度計を使用し、こ
れらの計器によって、酸素吹込み量、原料(クロム鉱石
、還元剤、造滓剤等)装入量、炉体回転速度およびラン
ス位置を測定する。
As equipment instruments for operation, we use an oxygen flow meter, lance position measuring meter, raw material charging amount recorder, and furnace body rotation speed meter. Measure the charging amount (slag agent, etc.), furnace rotation speed, and lance position.

また、初期操業条件として、原料の初期配合量、炉体温
度および原料予熱温度等を把握する。
In addition, as initial operating conditions, the initial blending amount of raw materials, furnace body temperature, raw material preheating temperature, etc. are ascertained.

上記によシ得られたスラグ温度測定値、耐火物表面温度
測定値、酸素流量と排ガス組成とから演算した還元剤消
費量と還元剤装入量との差から求めた炉内還元剤量の少
なくとも1つと、最適操業を行なうだめの設定値との差
を計算機により演算し、その演算結果に基づいて前記設
定値となるように、各種制御装置を使用し、酸素流量、
酸素吹込みランス位置、炉体回転速度、還元剤追加装入
量、回転炉保温用燃料の量、造滓剤追加装入量等の少な
くとも1つを制御するものである。
The amount of reducing agent in the furnace was determined from the difference between the amount of reducing agent consumed and the amount of reducing agent charged, which were calculated from the slag temperature measurement, refractory surface temperature measurement, oxygen flow rate, and exhaust gas composition obtained above. A computer calculates the difference between at least one set value and a set value for optimal operation, and various control devices are used to adjust the oxygen flow rate,
It controls at least one of the position of the oxygen injection lance, the rotational speed of the furnace body, the amount of additional reducing agent charged, the amount of fuel for keeping the rotary furnace warm, the amount of additional slag forming agent charged, etc.

次に、上述した制御システムによる制御手段について説
明する。
Next, the control means by the above-mentioned control system will be explained.

+I+  クロム還元率を高めるための制御スラグ浸漬
連続式温度計、スラグ浸漬バッチ式温度計、炉壁内埋込
み温度計、炉内壁表面放射型温度計および炉壁熱流計の
少なくとも1つによる測定値からスラグ温度を直接また
は間接に知シ、そして、酸素流量計または酸素積算流量
計によシ測定された酸素流量と、排ガス分析計により測
定された排ガス組成とから演算された炉内の還元剤消費
量と還元剤の装入量との差から炉内還元剤量を知り、前
記スラグ温度と前記炉内還元剤量とが、予め設定した高
還元率を得るためのスラグ温度と炉内還元剤量となるよ
うに、還元剤の追加装入量、酸素吹込み量、酸素吹込み
ランス位置および炉体回転速度の少なくとも1つを制御
する。
+I+ Control to increase the chromium reduction rate From the measured value by at least one of a slag immersion continuous type thermometer, a slag immersion batch type thermometer, a thermometer embedded in the furnace wall, a furnace wall surface radiation type thermometer, and a furnace wall heat flow meter The slag temperature is known directly or indirectly, and the reducing agent consumption in the furnace is calculated from the oxygen flow rate measured by an oxygen flow meter or oxygen integrated flow meter and the exhaust gas composition measured by an exhaust gas analyzer. The amount of reducing agent in the furnace is determined from the difference between the amount of reducing agent and the amount of reducing agent charged. At least one of the additional charging amount of the reducing agent, the oxygen injection amount, the oxygen injection lance position, and the furnace body rotation speed is controlled so that the amount of the oxygen injection is maintained.

(2)耐火物の溶損を最低にするための制御(al  
スラグ浸漬連続式温度計、スラグ浸漬バッチ式温度計、
炉壁内埋込み温度計、炉内壁表面放射型温度計の少なく
とも1つによる測定値からスラグ温度を直接または間接
に知り、前記スラグ温度から推定される適正スラグ組成
と、原料の装入実績量から算出される炉内スラグ組成と
の差が最小となるように、炉内に造滓剤を追加装入し、
これによってスラグ組成を制御する。
(2) Control to minimize erosion of refractories (al
Slag immersion continuous thermometer, slag immersion batch thermometer,
The slag temperature is directly or indirectly known from the measurement value of at least one of a thermometer embedded in the furnace wall and a radiation type thermometer on the surface of the furnace wall, and the appropriate slag composition estimated from the slag temperature and the actual amount of raw material charged are used to determine the slag temperature. Additional slag forming agent is charged into the furnace so that the difference with the calculated slag composition in the furnace is minimized.
This controls the slag composition.

(bl  スラグ浸漬連続式温度計またはスラグ浸漬バ
ッチ式温度計によシスラグ温度を測定し、一方炉壁内埋
込み温度計、炉内壁表面放射型温度計および炉体熱流量
計の少なくとも1つにより炉内耐火物表面温度を測定し
、前記スラグ温度と前記耐火物表面温度との差が予め設
定した適正範囲となるように、酸素吹込み量、酸素吹込
みランス位置および炉体回転速度の少なくとも1つを制
御し、これによって耐火物表面温度とスラグ温度との差
を適正に保つ。
(bl) The slag temperature is measured by a slag immersion continuous thermometer or a slag immersion batch thermometer, and at least one of a thermometer embedded in the furnace wall, a radiation thermometer on the surface of the furnace wall, and a furnace body heat flow meter is used to measure the slag temperature. The internal refractory surface temperature is measured, and at least one of the oxygen injection amount, oxygen injection lance position, and furnace rotation speed is measured so that the difference between the slag temperature and the refractory surface temperature is within a preset appropriate range. The difference between the refractory surface temperature and the slag temperature is thereby maintained at an appropriate level.

+31  酸素吹込み量および還元剤装入量を最少にす
るための制御 スラグ浸漬連続式温度計、スラグ浸漬バッチ式温度計、
炉壁内埋込み温度計、炉内壁表面放射型温度計および炉
壁熱流計の少なくとも1つによる測定値からスラグ温度
を直接または間接に知り、酸素流量計または酸素積算流
量計により測定された02流量と排ガス分析計によシ測
定された排ガス組成とから演算された炉内の還元剤消費
量と還元剤の装入量との差から炉内還元剤量を知り、前
記スラグ温度と前記炉内還元剤量とが、予め設定した適
正なスラグ温度、炉内還元剤量および排ガス組成を得る
だめのスラグ温度と炉内還元剤量とな13− るように、還元剤の追加装入量、酸素吹込み量、酸素吹
込みランス位置および炉体回転速度の少なくとも1つを
制御する。
+31 Controlled slag immersion continuous thermometer, slag immersion batch thermometer to minimize oxygen injection amount and reducing agent charge amount,
The slag temperature is directly or indirectly known from the measurement value by at least one of a thermometer embedded in the furnace wall, a radiation type thermometer on the surface of the furnace wall, and a furnace wall heat flow meter, and the 02 flow rate measured by an oxygen flow meter or an oxygen integrated flow meter The amount of reducing agent in the furnace is determined from the difference between the amount of reducing agent consumed in the furnace and the amount of reducing agent charged, which is calculated from the amount of reducing agent consumed in the furnace and the exhaust gas composition measured by the exhaust gas analyzer. The additional charging amount of the reducing agent, so that the amount of the reducing agent becomes the slag temperature and the amount of the reducing agent in the furnace to obtain the preset appropriate slag temperature, amount of reducing agent in the furnace, and exhaust gas composition. At least one of the oxygen injection amount, the oxygen injection lance position, and the furnace rotation speed is controlled.

上述した制御は、溶解期において、酸素吹込み量と還元
剤の追加装入量の制御を行なうことにより、排ガス組成
と炉内還元剤量とを適正値に維持することができ、また
還元期において、炉内還元剤量および造滓剤の追加装入
量と酸素吹込量の制御を行なうことにより、スラグ温度
、耐火物表面温度とスラグ温度との差およびスラグ組成
を適正値に維持することができる。更にメタル、スラグ
分離期において、炉内還元剤量、酸素吹込み量の制御に
より、炉内を還元雰囲気に維持しながら、スラグ温度、
耐火物表面温度とスラグ温度との差を適正値に維持する
ことができ、メタルとスラグとを適確に分離してメタル
回収率の向上を図ることができる。第7図は炉内還元剤
(コークス)量の制御フローの一例を示す図、第8図は
酸素吹込量の制御フローの一例を示す図である。
The above-mentioned control makes it possible to maintain the exhaust gas composition and the amount of reducing agent in the furnace at appropriate values by controlling the amount of oxygen blown in and the amount of additional reducing agent charged during the melting period. In this process, the slag temperature, the difference between the refractory surface temperature and the slag temperature, and the slag composition can be maintained at appropriate values by controlling the amount of reducing agent in the furnace, the additional charging amount of slag-forming agent, and the amount of oxygen injection. I can do it. Furthermore, during the metal and slag separation stage, the slag temperature and
The difference between the refractory surface temperature and the slag temperature can be maintained at an appropriate value, and the metal and slag can be separated appropriately to improve the metal recovery rate. FIG. 7 is a diagram showing an example of the flow of controlling the amount of reducing agent (coke) in the furnace, and FIG. 8 is a diagram showing an example of the flow of controlling the amount of oxygen blown.

次に、この発明を実施例に基づいて説明する。Next, the present invention will be explained based on examples.

14− 内径0.42 m 、外径0.76m、長さ1.4mの
大きさでマグネシアクロム煉瓦が内張すされた水平に対
し20傾斜して回転する回転炉を使用して、高炭素フェ
ロクロムを製造した。
High carbon Manufactured ferrochrome.

回転炉は炉体の一方端に原料装入口を有し、前記装入口
を通って酸素吹込み用水冷ランスが炉内に向は出没自在
に設けられている。そして、回転炉には、計測機器とし
て、炉内壁表面放射型温度計、スラグ浸漬型連続温度計
および排ガス分析計の各センサが、捷だ、操業設備計器
として、酸素流量計、ランス位置測定計、原料装入量記
録計、炉体回転速度計および炉体傾度計が設けられてい
る。更に、前記各センサと前記計器からのデータを入力
し、適正値との比較および処理を行々うための計算機が
設けられ、前記計算機による計算処理結果から、還元剤
量、スラグ温度、耐火物表面温度およびスラグ組成を適
正範囲に制御するための酸素流量調節装置、ランス位置
調節装置、還元剤追加装入量調節装置および造滓剤追加
装入量調節装置が具備されている。
The rotary furnace has a raw material charging port at one end of the furnace body, and a water-cooled lance for oxygen injection is provided in the furnace through the charging port so as to be freely retractable. The rotary furnace is equipped with various sensors such as a furnace inner wall surface radiation thermometer, a slag immersion continuous thermometer, and an exhaust gas analyzer as measurement instruments, and an oxygen flowmeter and a lance position measuring instrument as operational equipment instruments. , a raw material charging amount recorder, a furnace body rotation speed meter, and a furnace body inclinometer. Furthermore, a computer is provided for inputting data from each of the sensors and the meter, and comparing and processing the data with appropriate values, and from the calculation processing results of the computer, the amount of reducing agent, slag temperature, refractory material, etc. It is equipped with an oxygen flow rate adjustment device, a lance position adjustment device, a reducing agent additional charge amount adjustment device, and a slag forming agent additional charge amount adjustment device for controlling the surface temperature and slag composition within appropriate ranges.

上記装置を有する回転炉に、下記第1表に示す原料を供
給した後、ランスから回転炉内の原料に第1表 向けて酸素の吹付けを開始した。
After the raw materials shown in Table 1 below were supplied to the rotary furnace having the above-mentioned apparatus, oxygen was started to be sprayed from the lance toward the raw materials in the rotary furnace in the direction shown in Table 1.

溶解期における酸素吹込量は、1 、 INi/−とな
し、生成した排ガスの組成を計算機に入力して修正処理
計算し、酸素吹込み効率を向上させるための排ガス組成
中の過剰酸素量が極力少なくなるように吹込み量を制御
しながら、最大]、’a 4 Nn?/にの量の酸素を
炉内に吹込んだ。捷た、追加還元剤としてコークスを精
錬開始から12分後に約1..5に9/証装入し、かつ
、排ガス組成と酸素吹込み量から、燃焼還元剤量を逐次
算出して、炉内還元剤量が20〜30Kgに維持される
ように還元剤の追加装入量を制御した。精錬開始から2
0分後に炉内の原料は軟fヒをはじめ、団鉱fヒを経て
29分経過後に溶落した。
The amount of oxygen blown during the melting stage is 1, INi/-, and the composition of the generated exhaust gas is input into a computer and a correction process is calculated to minimize the amount of excess oxygen in the exhaust gas composition in order to improve the oxygen injection efficiency. Maximum], 'a 4 Nn? / of oxygen was blown into the furnace. 12 minutes after the start of refining coke as an additional reducing agent. .. 5 and 9, and calculate the amount of combustion reducing agent sequentially from the exhaust gas composition and the amount of oxygen blown, and add additional reducing agent so that the amount of reducing agent in the furnace is maintained at 20 to 30 kg. The input amount was controlled. From the start of refining 2
After 0 minutes, the raw materials in the furnace began to form soft f-he, then passed through briquette f-h and melted off after 29 minutes.

還元期においては、排ガス組成、スラグ温度、耐火物表
面温度、酸素流量、スラグ組成等のデータを計算機に入
力して修正処理計算し、スラグ組成、スラグ温度および
耐火物表面温度を制御するために、還元剤または造滓剤
を約1.0〜1.5胸/柵装入して酸素吹込み量を約0
.7〜0 、9 Nrr?/winに変化させながら、
炉内を還元性雰囲気に保ちつつ、スラグ温度および耐火
物表面温度とスラグ温度との差が適正範囲に維持される
ように制御した。
During the reduction period, data such as exhaust gas composition, slag temperature, refractory surface temperature, oxygen flow rate, slag composition, etc. are input into the computer and correction processing is calculated to control the slag composition, slag temperature, and refractory surface temperature. , the reducing agent or slag-forming agent is charged at approximately 1.0 to 1.5 chest/rail, and the amount of oxygen blown is approximately 0.
.. 7~0, 9 Nrr? / While changing to win,
While maintaining the inside of the furnace in a reducing atmosphere, the slag temperature and the difference between the refractory surface temperature and the slag temperature were controlled to be maintained within appropriate ranges.

メタル、スラグ分離期においては、排ガス組成スラグ温
度および耐火物表面温度のデータを計算機に入力して修
正処理計算し、スラグ温度を約1700℃に、かつ耐火
物表面温度とスラグ温度との差を140〜160℃の適
正範囲に維持するため、酸素吹込み量が0.6〜0 、
7 Nrr?/rMの間にあるように制御した。
During the metal and slag separation period, the data on the exhaust gas composition, slag temperature, and refractory surface temperature are input into a computer and a correction process is performed to adjust the slag temperature to approximately 1700°C and to calculate the difference between the refractory surface temperature and slag temperature. In order to maintain the appropriate range of 140 to 160°C, the amount of oxygen blown is 0.6 to 0.
7 Nrr? /rM.

酸素吹込み開始後60分で精錬を終了し出湯した。出湯
時に湯口部にスキンマーを設け、過剰還元剤および造滓
剤の一部を炉内に残してこれを循環使用した。
Refining was completed and hot water was tapped 60 minutes after the start of oxygen blowing. A skimmer was provided at the sprue during tapping, and a portion of the excess reducing agent and slag-forming agent were left in the furnace and used for circulation.

得られたメタル(高炭素フェロクロム)は14.4Kf
、スラグは24.2Kpで、その成分組成は第2表に示
す通りである。
The obtained metal (high carbon ferrochrome) is 14.4Kf
, the slag has a weight of 24.2 Kp, and its composition is shown in Table 2.

第2表 第9図には上述した精錬経過がグラフで、壕だ第10図
には上述した方法で精錬したときのスラグ温度および耐
火物表面温度とスラグ温度との差が、上述のような制御
を行なわない従来法と比較して示されている。
Table 2, Figure 9 shows the above-mentioned refining process as a graph, and Table 2, Figure 10, shows the slag temperature and the difference between the refractory surface temperature and the slag temperature when refining using the method described above. A comparison is shown with a conventional method without control.

また第3表には、上述した方法による操業を10チャー
ジ行なったときのメタル組成、クロム還元率、メタル回
収率、還元剤装入量、酸素吹込量および耐火物溶損量が
、上述のような制御を行なわない従来法と比較して示さ
れている。
Table 3 also shows the metal composition, chromium reduction rate, metal recovery rate, amount of reducing agent charged, amount of oxygen blown, and amount of refractory erosion when 10 charges were performed using the method described above. A comparison is shown with a conventional method that does not perform extensive control.

第3表から、本発明方法によりフェロクロムの製造を行
なえば、クロム還元率およびメタル回収率は共に高く、
還元剤装入量、酸素吹込量および耐火物溶損量は共に低
いことがわかる。
From Table 3, if ferrochrome is produced by the method of the present invention, both the chromium reduction rate and the metal recovery rate are high;
It can be seen that the amount of reducing agent charged, the amount of oxygen blown, and the amount of refractory erosion are all low.

以上述べたように、この発明方法で7エロクロムを製造
するときは、次のような優れた効果が得られる。
As described above, when 7Erochrome is produced by the method of the present invention, the following excellent effects can be obtained.

(1)  適正な炉内還元剤量、スラグ温度および炉内
還元雰囲気に制御できるので、メタル組成にバラツキ幅
が少なく、クロム還元率およびメタル回収率を安定して
向上させることができる。
(1) Since the amount of reducing agent in the furnace, the slag temperature, and the reducing atmosphere in the furnace can be controlled to be appropriate, there is little variation in metal composition, and the chromium reduction rate and metal recovery rate can be stably improved.

(21スラグ温度を適正範囲に制御できるので、炉内に
おける還元剤消費量を最少となし、しかも、スラグ組成
の制御ができるので、メタル中のPiおよびS量の低減
が可能となる。
(21) Since the slag temperature can be controlled within an appropriate range, the amount of reducing agent consumed in the furnace can be minimized, and since the slag composition can be controlled, it is possible to reduce the amounts of Pi and S in the metal.

(3) スラグ温度および耐火物表面温度とスラグ温度
との差を適正範囲に制御でき、かつ、造滓剤の適量の追
加装入によシスラグ組成を制御できるので、耐火物の溶
損量を最低にすることができる。
(3) Since the slag temperature and the difference between the refractory surface temperature and the slag temperature can be controlled within appropriate ranges, and the syslag composition can be controlled by adding an appropriate amount of slag-forming agent, the amount of erosion of the refractory can be reduced. can be the lowest.

(4)  炉内還元剤量を適確に把握できるので、必要
最少限の酸素吹込み量でスラグ温度および炉内19− 雰囲気の制御が可能となる結果、酸素使用量の低減が可
能となる。
(4) Since the amount of reducing agent in the furnace can be accurately determined, it is possible to control the slag temperature and the atmosphere in the furnace with the minimum necessary oxygen injection amount, making it possible to reduce the amount of oxygen used. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は適正なスラグ温度とクロム還元率との関係の一
例を示す図、第2図は適正な耐火物表面温度とスラグ温
度との差と、スラグ温度との関係の一例を示す図、第3
図は適正なスラグ組成とスラグ温度との関係の一例を示
す図、第4図は適正な炉内還元剤量とクロム還元率との
関係の一例を示す図、第5図は適正な排ガス組成とスラ
グ温度との関係の一例を示す図、第6図はこの発明を実
施するための制御システムの一例を示すブロック図、第
7図は炉内還元剤(コークス)量の制御フローの一例を
示すブロック図、第8図は酸素吹込み量の制御フローの
一例を示すブロック図、第9図はこの発明による精錬経
過の一例を示すグラフ、第10図はこの発明により精錬
したときのスラグ温度および耐火物表面温度とスラグ温
度との差を従来法と比較して示すグラフである。 21− (%)連写副V口O(1)酉酊、ctc=Y第3図 呵 開(分) イ耳づ 第4図 時間(分)
Figure 1 is a diagram showing an example of the relationship between appropriate slag temperature and chromium reduction rate, Figure 2 is a diagram showing an example of the relationship between the difference between the appropriate refractory surface temperature and slag temperature, and slag temperature, Third
Figure 4 shows an example of the relationship between the appropriate slag composition and slag temperature, Figure 4 shows an example of the relationship between the appropriate amount of reducing agent in the furnace and chromium reduction rate, and Figure 5 shows the relationship between the appropriate exhaust gas composition. Fig. 6 is a block diagram showing an example of a control system for carrying out the present invention, and Fig. 7 shows an example of the control flow for the amount of reducing agent (coke) in the furnace. FIG. 8 is a block diagram showing an example of the control flow of the amount of oxygen blown, FIG. 9 is a graph showing an example of the refining progress according to the present invention, and FIG. 10 is the slag temperature when refining according to the present invention. and is a graph showing the difference between the refractory surface temperature and the slag temperature in comparison with a conventional method. 21- (%) Continuous shooting sub-V mouth O (1) Drunkenness, ctc=Y Figure 3 2 Opening (minutes) Iomizu Figure 4 Time (minutes)

Claims (1)

【特許請求の範囲】 (1;  炉の軸心が水平または緩傾斜の回転炉内へク
ロム鉱石を還元剤および造滓剤と共に供給し、これに酸
素を吹込むことによりクロム鉱石を溶融還元してフェロ
クロムを製造するフェロクロムの製造方法において、 前記回転炉におけるスラグ温度、炉内還元剤量および耐
火物表面温度の少なくとも1つを測定し、前記測定値が
予め定めた最適操業を行なうための設定値となるように
、還元剤の追加装入量、造滓剤の追加装入量、酸素吹込
み量、酸素吹込みランス位置および炉体回転速度の少な
くとも1つを制御することを特徴とするフェロクロムの
製造方法。 (2) 前記最適操業を行なうための設定値が、クロム
の高還元率を得るためのスラグ温度と炉内還元剤量であ
ることを特徴とする特許請求の範囲第(1)項に記載の
フェロクロムの製造方法。 (3) 前記最適操業を行なうための設定値が、耐火物
の溶損を最少にするためのスラグ組成であることを特徴
とする特許請求の範囲第(11項に記載のフェロクロム
の製造方法。 (4) 前記最適操業を行なうための設定値が、耐火物
の溶損を最少にするための耐火物表面温度とスラグ温度
との差であることを特徴とする特許請求の範囲第(11
項に記載のフェロクロムの製造方法。 (5少  前記最適操業を行なうための設定値が、酸素
吹込み量および還元剤装入量を最少にするためのスラグ
温度と炉内還元剤量であることを特徴とする特許請求の
範囲第(1)項に記載のフェロクロムの製造方法。
[Claims] (1) Chromium ore is supplied together with a reducing agent and a slag-forming agent into a rotary furnace whose axis is horizontal or gently inclined, and the chromium ore is melted and reduced by blowing oxygen into the rotary furnace. In the method for producing ferrochrome, in which at least one of the slag temperature, the amount of reducing agent in the furnace, and the refractory surface temperature in the rotary furnace is measured, and the measurement value is set to perform a predetermined optimal operation. The method is characterized by controlling at least one of the additional charging amount of the reducing agent, the additional charging amount of the sludge forming agent, the oxygen injection amount, the oxygen injection lance position, and the furnace body rotation speed so that the A method for producing ferrochrome. (2) The set values for performing the optimum operation are the slag temperature and the amount of reducing agent in the furnace to obtain a high reduction rate of chromium. The method for producing ferrochrome according to (3) the set value for optimal operation is a slag composition for minimizing melting loss of refractories. The method for producing ferrochrome according to item 11. (4) The set value for performing the optimum operation is a difference between a refractory surface temperature and a slag temperature to minimize melting loss of the refractory. Claim No. (11)
The method for producing ferrochrome as described in section. (5) The set values for performing the optimum operation are the slag temperature and the amount of reducing agent in the furnace to minimize the amount of oxygen blown and the amount of reducing agent charged. The method for producing ferrochrome according to item (1).
JP19533882A 1982-11-09 1982-11-09 Manufacture of ferrochromium Granted JPS5985841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19533882A JPS5985841A (en) 1982-11-09 1982-11-09 Manufacture of ferrochromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19533882A JPS5985841A (en) 1982-11-09 1982-11-09 Manufacture of ferrochromium

Publications (2)

Publication Number Publication Date
JPS5985841A true JPS5985841A (en) 1984-05-17
JPS6239225B2 JPS6239225B2 (en) 1987-08-21

Family

ID=16339507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19533882A Granted JPS5985841A (en) 1982-11-09 1982-11-09 Manufacture of ferrochromium

Country Status (1)

Country Link
JP (1) JPS5985841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005829A1 (en) * 1987-02-02 1988-08-11 Nippon Kokan Kabushiki Kaisha Process for producing low-carbon ferrochromium
JPH01215950A (en) * 1988-01-05 1989-08-29 Middelburg Steel & Alloys Pty Ltd Desulfurization of ferrochromium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201833A (en) * 1988-02-05 1989-08-14 Sony Corp Objective lens driving device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005829A1 (en) * 1987-02-02 1988-08-11 Nippon Kokan Kabushiki Kaisha Process for producing low-carbon ferrochromium
JPH01215950A (en) * 1988-01-05 1989-08-29 Middelburg Steel & Alloys Pty Ltd Desulfurization of ferrochromium
JPH0563541B2 (en) * 1988-01-05 1993-09-10 Midorubaagu Suchiiru Ando Aroi

Also Published As

Publication number Publication date
JPS6239225B2 (en) 1987-08-21

Similar Documents

Publication Publication Date Title
SK147397A3 (en) Process for melting of metal materials in a shaft furnace
JPS5985841A (en) Manufacture of ferrochromium
US3089766A (en) Controlled chemistry cupola
RU2825329C1 (en) Method of blast-furnace melting of titanium-containing raw material
US20230151448A1 (en) Method for detecting fluctuation of solidified layer and method for operating blast furnace
JPS6318012A (en) Method for controlling flow rate of oxygen for refining for metallurgical refining furnace
JPS59113159A (en) Method for refining high chromium alloy by melting and reduction
JPS6169944A (en) Manufacture by melting and reducing of ferrochrome
JPS6389610A (en) Blowing method for converter
JP2897363B2 (en) Hot metal production method
JP2897362B2 (en) Hot metal production method
JPS63176407A (en) Production of molten iron
JP2875376B2 (en) Method and apparatus for producing hot metal containing chromium
JP3450168B2 (en) Blast furnace pulverized coal injection operation method
SU981363A1 (en) Method for blast furnace smelting using magnesial-aluminia slags
JPH11209815A (en) Blowing method for molten stainless steel in converter
SU1742338A1 (en) Method for determining moment for pouring molten metal from converter
JPH0873914A (en) Production of molten steel in vertical scrap melting furnace
JPH0681015A (en) Operation of blast furnace
JPH03197612A (en) Method for refining molten metal
Kaporulin et al. Rational Thermal Preparation of the Hearth When Blowing in a Blast Furnace
JPS59140350A (en) Method for operating melting and reducing furnace
JPH05239522A (en) Production of molten iron
JPH02185910A (en) Method for controlling blowing in converter
JPS5941494B2 (en) Method for smelting metal sulfide ore