JPH0873914A - Production of molten steel in vertical scrap melting furnace - Google Patents

Production of molten steel in vertical scrap melting furnace

Info

Publication number
JPH0873914A
JPH0873914A JP20642294A JP20642294A JPH0873914A JP H0873914 A JPH0873914 A JP H0873914A JP 20642294 A JP20642294 A JP 20642294A JP 20642294 A JP20642294 A JP 20642294A JP H0873914 A JPH0873914 A JP H0873914A
Authority
JP
Japan
Prior art keywords
carbonaceous material
furnace
tuyere
molten steel
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20642294A
Other languages
Japanese (ja)
Inventor
Hideji Takeuchi
秀次 竹内
Yukio Takahashi
幸雄 高橋
Nagayasu Bessho
永康 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20642294A priority Critical patent/JPH0873914A/en
Publication of JPH0873914A publication Critical patent/JPH0873914A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE: To obtain molten steel having low carbon concn. with a small scales apparatus without almost using the electric power by using a cupola type scrap melting furnace, filling a refractory block in the space from a blast tuyere surface to the furnace bottom and forming a carbonaceous material-filled layer having a specific height at the upper part from the tuyere surface. CONSTITUTION: The refractory block 5 having low carbon content is filled in the space from the blast tuyere 4 surface to the furnace bottom of the cupola type scrap melting furnace 1 having a molten steel tapping hole 2 at the lower end, a raw material charging hole 3 at the upper part and the heat tuyere 4 at the lower part. Then, the carbonaceous material-filled layer 6 is formed to the height H (m) from the blasting tuyere 4 to the upper surface of the carbonaceous material filled layer defined by H<=0.8D from the blast tuyere 4 surface upward. Wherein, D is the inner diameter (m) of the melting furnace 1 and the average diameter (m) of the used carbonaceous material of coke, etc., is preferably <=100mm. A layer 7 filled by mixing the ferro-scrap and the carbonaceous material is formed at the upper part of the carbonaceous material-filled layer 6. By this method, the steel having <=2% carbon concn. can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄スクラップ等の鉄
源材料をコ−クス等の含炭素材料により溶解して溶鋼を
得る竪型スクラップ溶解炉の操業方法に関する。なお、
本発明で「溶鋼」というのは、炭素を2重量%以下含む
溶融鉄合金と定義する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a vertical scrap melting furnace in which an iron source material such as iron scrap is melted with a carbon-containing material such as coke to obtain molten steel. In addition,
In the present invention, "molten steel" is defined as a molten iron alloy containing 2% by weight or less of carbon.

【0002】[0002]

【従来の技術】従来から溶鋼は、高炉により製造された
炭素濃度4.3〜4.7%の溶銑を転炉などで純酸素の
供給により脱炭精錬をして得るか、もしくは鉄スクラッ
プをア−ク電気炉により加熱溶解して得る方法が一般的
であった。一方、同じく鉄スクラップを原料とする溶解
法であっても、例えばキュポラでは、この鉄スクラップ
をコ−クス等の含炭素材料(以下、炭材と称す)の燃焼
発熱により溶解するが、その際は炭素が溶湯に溶解して
炭素濃度が3〜4%の溶銑を得、この溶銑は主として鋳
物用に用いられる。
2. Description of the Related Art Conventionally, molten steel is obtained by decarburizing and refining molten iron having a carbon concentration of 4.3 to 4.7% produced by a blast furnace in a converter or the like by supplying pure oxygen, or iron scrap. A common method is to obtain the product by heating and melting it in an arc electric furnace. On the other hand, even in the melting method using iron scrap as a raw material, for example, in cupola, this iron scrap is melted by the combustion heat of a carbon-containing material such as coke (hereinafter referred to as carbonaceous material). Is melted in the molten metal to obtain hot metal having a carbon concentration of 3 to 4%, and this hot metal is mainly used for castings.

【0003】また、同じく鉄スクラップを原料とする溶
解法として、るつぼ型誘導炉による方法もあるが、これ
も主として鋳物用の溶銑あるいは溶鋼を製造する方法で
ある。以上の各方法を(1)鉄源の種類、(2)製造さ
れる溶湯の種類により整理すると表1のようになる。
Similarly, as a melting method using iron scrap as a raw material, there is a method using a crucible type induction furnace, which is also a method for producing molten pig iron or molten steel mainly for casting. Table 1 below summarizes the above methods according to (1) type of iron source and (2) type of molten metal to be produced.

【0004】[0004]

【表1】 ──────────────────────────────────── 溶製方法 鉄源主原料 製造される溶湯と炭素濃度 ──────────────────────────────────── 転炉 鉄鉱石を還元して得た溶銑 溶鋼 0.05〜1.5% 電気炉 鉄スクラップ 溶鋼 0.05〜1.5% キュポラ 鉄スクラップ 溶銑 3〜4% 誘導炉(鋳物用) 鉄スクラップ 溶銑 3〜4%又は溶鋼 〜1.5 ──────────────────────────────────── すなわち鉄源材料からの各種溶銑・溶鋼溶製方法のう
ち、転炉法は大量生産には優れ、世界中で行われている
プロセスであるが、主原料が高炉溶銑であり、転炉設備
のみならず高炉、コ−クス炉、鉄鉱石の前処理設備(焼
結炉、ペレット設備)、その他周辺設備が必要であり、
大規模な設備投資と広大な工場敷地が必要である。
[Table 1] ──────────────────────────────────── Melting method Iron source Main raw material Manufactured Molten metal and carbon concentration ──────────────────────────────────── Converter converter Obtained by reducing iron ore Hot metal Molten steel 0.05 to 1.5% Electric furnace Iron scrap Molten steel 0.05 to 1.5% Cupola Iron scrap Molten iron 3 to 4% Induction furnace (for casting) Iron scrap Molten iron 3 to 4% or Molten steel to 1.5 ──────────────────────────────────── That is, various molten pig iron and molten steel production methods from iron source materials Among them, the converter method is excellent in mass production and is a process that is carried out all over the world.However, the main raw material is blast furnace hot metal, and not only converter equipment but also blast furnace, coke furnace, and iron ore pretreatment. Equipment (sintering furnace, Tsu capital equipment), it is necessary to other peripheral equipment,
Large-scale capital investment and vast factory grounds are required.

【0005】また、電気炉法は、小規模の設備で溶鋼が
得られる点で優れるが、電力価格が高い我が国において
は、溶鋼価格が高くなり経済的なプロセスではない。ま
た、電力供給が不安定ないわゆる開発途上国では、溶解
エネルギ−を電力に依存するプロセスは、操業の安定性
の点で不利である。誘導炉による溶解も同様に電力エネ
ルギ−を使用する点で、電気炉と同じ欠点を持つのに加
え、設備的に小規模にならざるを得ず、生産能力として
も例えば最大数t/hr程度である。
The electric furnace method is excellent in that molten steel can be obtained with a small-scale facility, but in Japan where the electric power price is high, the molten steel price is high and it is not an economical process. Also, in so-called developing countries where the power supply is unstable, the process of relying on the melting energy for power is disadvantageous in terms of operational stability. In addition, melting in an induction furnace has the same drawbacks as an electric furnace in that it also uses electric energy, and in addition to being small in terms of equipment, the production capacity is, for example, a maximum of several t / hr. Is.

【0006】一方、キュポラは電力をほとんど使用せ
ず、かつ小規模の設備で溶湯が得られるので、上述の他
プロセスの持つ欠点はない。しかし、一般的なキュポラ
で得られる溶湯は炭素濃度が3〜4%の溶銑であり、鋳
物製造には問題ないが鋼製品を製造することはできなか
った。そこで、例えば特開昭61−84309号公報に
開示されているようにキュポラで製造した溶銑をキュポ
ラに接続した転炉で酸素供給によって精錬し、最終製品
として溶鋼を得る2段のプロセス(Duplex Pr
ocess)が発案された。しかし、2段のプロセスは
操業が複雑になり、設備投資も大きくなる問題点があっ
た。
On the other hand, since the cupola uses almost no electric power and the molten metal can be obtained with a small-scale facility, it does not have the drawbacks of the other processes described above. However, the molten metal obtained by a general cupola is a hot metal having a carbon concentration of 3 to 4%, and although there is no problem in casting production, steel products could not be produced. Therefore, for example, as disclosed in Japanese Patent Laid-Open No. 61-84309, a two-stage process (Duplex Pr) for refining molten pig iron produced by cupola by oxygen supply in a converter connected to the cupola to obtain molten steel as a final product
process) was invented. However, the two-step process has a problem that the operation becomes complicated and the capital investment becomes large.

【0007】以上述べたように、小規模設備により電力
をほとんど使用せず溶鋼を得る手段はこれまで存在しな
かった。
As described above, there has been no means for obtaining molten steel by using a small-scale facility with almost no electric power.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決し、小規模設備により電力をほとんど使用せず
炭素濃度が2%以下の溶鋼を得る方法を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide a method for obtaining molten steel having a carbon concentration of 2% or less by using a small-scale facility and using almost no electric power. .

【0009】[0009]

【課題を解決するための手段】本発明は、上記の課題を
解決する手段として、鉄源材料を含炭素材料により溶解
するキュポラ型のスクラップ溶解炉を用いて溶鋼を溶製
する方法を提案する。すなわち、キュポラ型のスクラッ
プ溶解炉の操業方法において、送風用羽口面から炉底ま
での間に耐火物塊を充填し、羽口面から上方には下式
H、により規定される高さまでは炭材充填層が形成され
るようにすることを特徴とする竪型スクラップ溶解炉に
よる溶鋼製造方法である。
As a means for solving the above problems, the present invention proposes a method for melting molten steel using a cupola-type scrap melting furnace that melts an iron source material with a carbon-containing material. . That is, in the operation method of the cupola-type scrap melting furnace, the refractory mass is filled between the blast tuyere surface and the furnace bottom, and the height above the tuyere surface is defined by the following formula H. A method for producing molten steel by means of a vertical scrap melting furnace, characterized in that a carbonaceous material packed layer is formed.

【0010】H≦0.8D ここで、 H:送風羽口から炭材充填層上面までの高さ(m)、 D:溶解炉の炉内径(m)、 上記の方法において、使用するコ−クス等の炭材の平均
径が100mm以下であると好適である。
H ≦ 0.8D where H: height from blower tuyere to upper surface of carbon material packed bed (m), D: furnace inner diameter of melting furnace (m), the coefficient used in the above method It is preferable that the average diameter of the carbonaceous material such as coix is 100 mm or less.

【0011】[0011]

【作用】本発明の趣旨を明確にするため、本発明で用い
た図1に示すキュポラ型スクラップ溶解炉の概略図を用
いて説明する。キュポラ型スクラップ溶解炉1は下端に
出湯口2、上部に原材料投入口3、下部に送風羽口4を
備えている。また、炭素含有量の少ない耐火物塊5が水
平羽口4から炉底の間に予め充填されることが本発明の
要点の第1である。
In order to clarify the gist of the present invention, description will be given with reference to the schematic view of the cupola type scrap melting furnace shown in FIG. 1 used in the present invention. The cupola-type scrap melting furnace 1 is provided with a tap hole 2 at the lower end, a raw material inlet 3 at the upper part, and a blower tuyere 4 at the lower part. Further, the first point of the present invention is that the refractory mass 5 having a low carbon content is pre-filled between the horizontal tuyere 4 and the furnace bottom.

【0012】この耐火物塊5は溶鋼の流れに浸食されに
くく、かつ炭素含有量の少ないものを選ぶ必要がある。
例えば焼成ドロマイトレンガ、高アルミナ質レンガ等で
あり、マグクロレンガ等が使用できる。炉内の羽口4か
ら上方に炭材の充填層6を形成する。通常はコ−クスを
用いてコ−クスベッドと呼ばれる充填層である。また、
焼成しない成形コ−クスや土状黒鉛塊、石炭塊、あるい
はこれらの粉状のものを単独であるいは混合して塊状に
成形(成団)したものも利用できる。図中に示したHと
Dがそれぞれ羽口面から炭材の充填層6の上面までの高
さと炉内径に相当する。このHとDとの関係を H≦0.8D、 に制御することが本発明の要点の第2である。
It is necessary to select the refractory mass 5 that is not easily corroded by the flow of molten steel and has a low carbon content.
For example, fired dolomite bricks, high-alumina bricks, etc., such as magcro bricks can be used. A filling layer 6 of carbonaceous material is formed above the tuyere 4 in the furnace. Usually, it is a packed bed called coke bed using coke. Also,
It is also possible to use a molded coke which is not fired, a lump of earth-like graphite, a lump of coal, or a powder of these, which are singly or mixed to form a lump (form). H and D shown in the figure correspond to the height from the tuyere surface to the upper surface of the carbon material filling layer 6 and the furnace inner diameter, respectively. The second point of the present invention is to control the relationship between H and D such that H ≦ 0.8D.

【0013】炭材充填層6の上方に投入された鉄スクラ
ップと炭材とが混合して充填されている層7が形成され
ている。この層7中の鉄スクラップは炉内を下降しなが
ら加熱され、炭材充填層6の上面近傍の位置で溶解し、
液滴となって炭材充填層6を滴下し、最下部の耐火物塊
5を通過して出湯孔から排出される。一方、層7の部分
の炭材も同様に下降し、炭材充填層6の上面に達する。
この炭材充填層6中の炭材は送風中の酸素により常に酸
化(燃焼)され、COあるいはCO2 となって消費され
る。従って、投入する炭材供給速度と送風流量のバラン
スを調整することにより、図中の炭材充填層の高さHを
制御することができる。
Above the carbonaceous material-filled layer 6, there is formed a layer 7 in which the iron scrap and the carbonaceous material charged are mixed and filled. The iron scrap in this layer 7 is heated while descending in the furnace, and is melted at a position near the upper surface of the carbon material-filled layer 6,
The carbonaceous material-filled layer 6 becomes droplets, passes through the refractory mass 5 at the bottom, and is discharged from the tap hole. On the other hand, the carbonaceous material in the layer 7 portion also descends and reaches the upper surface of the carbonaceous material-filled layer 6.
The carbonaceous material in the carbonaceous material packed bed 6 is constantly oxidized (combusted) by oxygen in the blown air and consumed as CO or CO 2 . Therefore, the height H of the carbonaceous material packed bed in the figure can be controlled by adjusting the balance between the supplied carbonaceous material supply rate and the air flow rate.

【0014】この高さHは特開平2−235987号公
報に示されているベッドコ−クス高さの測定装置によっ
て測定することができる。この測定法はベッドコ−クス
の推定高さ近傍の鉄皮を、その外側から複数高さに変化
させて打撃子により打撃し、その打撃音から炉内に存在
するベッドコ−クスと溶解材料とのかさ比重の違いによ
る音圧レベルと時間との関係の比較によって計測する方
法である。勿論、ベッドコ−クスの高さ測定は他の物理
的手段を用いた方法でも良い。
The height H can be measured by a bed coke height measuring device disclosed in Japanese Patent Laid-Open No. 2-235987. In this measurement method, the iron skin near the estimated height of the bed coke is changed from its outside to a plurality of heights and hit by a hitting element, and the impact sound determines whether the bed coke existing in the furnace and the molten material. This is a method of measurement by comparing the relationship between the sound pressure level and time due to the difference in specific gravity. Of course, the height of the bed coke may be measured by using other physical means.

【0015】なお、操業においては炉底に充填されてい
る耐火物塊も、溶鋼や溶融スラグにより序々に溶損さ
れ、消費される。これを補うために原材料投入口3から
耐火物塊を時々投入する。本発明で使用できる鉄源材料
(主に鉄スクラップ)は、特に制約はないが、溶鋼を製
造するので、投入する鉄源の全量を銑鉄とすることはで
きない。一旦溶解した炭素を脱炭するには新たなプロセ
スが必要となるためである。炉内での炭素吸収がないと
して物質収支をとり、所望の溶鋼中炭素濃度となるよう
に鉄源としての鋼屑と銑屑の配合を決めれば良い。但
し、全量を鋼屑とした場合であっても送風条件の調整に
より、本発明の範囲内で所望の溶鋼を得ることは可能で
ある。
In operation, the refractory lumps filled in the furnace bottom are gradually melted and consumed by the molten steel and molten slag. To compensate for this, a refractory mass is sometimes charged from the raw material charging port 3. The iron source material (mainly iron scrap) that can be used in the present invention is not particularly limited, but since molten steel is manufactured, the total amount of the iron source to be charged cannot be pig iron. This is because a new process is required to decarburize the once dissolved carbon. Assuming that carbon is not absorbed in the furnace, the material balance is taken, and the combination of steel scrap and pig iron scrap as the iron source may be determined so that the desired carbon concentration in the molten steel is obtained. However, even if the total amount is steel scrap, it is possible to obtain a desired molten steel within the scope of the present invention by adjusting the blowing conditions.

【0016】本発明を開発するにあたり、試験用キュポ
ラを用い、炉内径をφ0.3、φ0.6、φ0.9mの
3種類とし、かつ炭材としてのコ−クス平均径が40m
m以下、40〜80mm、80〜100mm、100〜
200mm、200mm以上の5種類をそれぞれ用いて
鉄スクラップの溶解操業を行った。鉄スクラップとして
は鋼のシュレッダ−屑および型銑を用い、操業初期から
安定操業に入るまでは前者を70%、後者を30%の配
合とした。約1時間後からは前者のみの配合とした。こ
れは、操業当初は炉体温度が低いため、溶鋼を直接製造
すると炉内で凝固する恐れがあるための対処手法であ
る。
In developing the present invention, a test cupola was used, the inner diameter of the furnace was φ0.3, φ0.6, and φ0.9 m, and the average coke diameter as carbonaceous material was 40 m.
m or less, 40 to 80 mm, 80 to 100 mm, 100 to
The melting operation of the iron scrap was performed using five types of 200 mm and 200 mm or more, respectively. As the iron scrap, shredder scraps of steel and mold pigs were used, and the former was 70% and the latter was 30% from the initial operation to the stable operation. Only about 1 hour later, the former formulation was used. This is a countermeasure to deal with the risk of solidification in the furnace if molten steel is directly produced since the temperature of the furnace is low at the beginning of operation.

【0017】炭材としては高炉用コ−クスをふるい分け
て用いた。鉄源材料と同様に、操業が安定期に入るまで
はベッドコ−クス高さをやや高めとし、安定期に入って
からは装入原料中のコ−クス配合を調整することによ
り、ベッドコ−クス高さを変化させた。操業安定期にお
ける平均出湯炭素濃度とコ−クス平均粒径、ベッドコ−
クスの羽口からの高さH、の関係を炉内径別に図2〜図
4に示す。
As a carbonaceous material, a blast furnace coke was used after sieving. Like the iron source material, the bed coke height is set slightly higher until the operation enters the stable period, and after the stable period, the coke composition in the charging raw material is adjusted to adjust the bed coke. I changed the height. Average concentration of discharged carbon, coke average particle size and bed coke during stable operation
The relationship between the height H from the tuyere of the cous and the inner diameter of the furnace is shown in FIGS.

【0018】いずれの炉内径のキュポラであっても、炉
内径Dの0.8倍以下に炭材充填層6の高さHを制御す
ることにより、炭素濃度2%以下の溶鋼を得ることがで
きた。特に、H≦0.8×Dの条件下でコ−クス平均粒
径を100mm以下にすると、確実に炭素濃度2%未満
の溶鋼を得ることができる。またコ−クス平均粒径が1
00mmを超えてもHをより小さい条件にて操業すれば
溶鋼を得ることができる。
By controlling the height H of the carbonaceous material-filled layer 6 to be 0.8 times or less of the furnace inner diameter D, molten steel having a carbon concentration of 2% or less can be obtained for any cupola of the furnace inner diameter. did it. In particular, when the coke average particle size is 100 mm or less under the condition of H ≦ 0.8 × D, molten steel having a carbon concentration of less than 2% can be reliably obtained. The coke average particle size is 1
Molten steel can be obtained by operating H under a smaller condition even if it exceeds 00 mm.

【0019】図2〜図4中の曲線は、炭素濃度0.5%
以下の鉄スクラップを原料とし、コ−クス平均粒径が8
0〜100mmの条件での炭材充填層高さHと炭素濃度
との関係を示すデ−タのわずかに炭素濃度が高い点(一
部推定も含む)を結んだ曲線であり、どの炉内径の場合
にもH=0.8×Dの時に、炭素濃度2%の直線と交差
していることがわかる。
The curves in FIGS. 2 to 4 show a carbon concentration of 0.5%.
The following iron scraps are used as raw materials, and the coke average particle size is 8
It is a curve that connects points (including some estimations) of slightly higher carbon concentration in the data showing the relationship between the carbon material packed bed height H and the carbon concentration under the condition of 0 to 100 mm, and which furnace inner diameter Also in the case of H = 0.8 × D, it can be seen that the line intersects with a straight line having a carbon concentration of 2%.

【0020】炭材充填層の高さの下限は特に限定される
ものではないが、余り低くなると溶解熱発生が不十分と
なるので、0.4D程度以上とすることが好ましい。さ
て、本発明で溶解炉の羽口面から炉底までの空間には炭
素含有量の少ない耐火物塊を充填し炭材充填層が下降す
ることを防止することを要件としている。これは、羽口
面より下方に炭材の充填層が存在すると、溶解した鋼が
滴下中に炭素を吸収し、炭素濃度が2%超となり、さら
には炭素濃度が3%超の溶銑となって出湯されるためで
ある。
The lower limit of the height of the carbonaceous material-filled layer is not particularly limited, but if it is too low, the heat of dissolution is insufficiently generated, so that it is preferably about 0.4D or more. Now, the present invention requires that the space from the tuyere surface of the melting furnace to the furnace bottom is filled with a refractory mass having a low carbon content to prevent the carbonaceous material packed bed from descending. This is because if a carbonaceous material packing layer exists below the tuyere surface, the molten steel absorbs carbon during the dropping, resulting in a carbon concentration of more than 2%, and further a carbon concentration of more than 3%. It is because it is taken out of the bath.

【0021】この場合、炭素含有量の少ない耐火物塊が
羽口面まで充填されたことは、羽口に設けた覗き窓から
確認できる。以上述べたように、本発明で提案した羽口
面から炉底までの間に耐火物塊を充填すること、および
その上方の炭材充填層の高さHを炉内径Dの0.8倍以
下とすることにより炭素濃度2%以下の溶鋼が得られ、
特に、炭材の平均粒径を100mm以下とすることによ
り、確実に炭素濃度2%以下の溶鋼が得られる。
In this case, the fact that the refractory mass having a low carbon content is filled up to the tuyere surface can be confirmed from the peep window provided at the tuyere. As described above, filling the refractory mass from the tuyere surface to the furnace bottom proposed in the present invention, and setting the height H of the carbonaceous material packed layer above the refractory mass to 0.8 times the furnace inner diameter D. Molten steel with a carbon concentration of 2% or less can be obtained by
In particular, by setting the average particle size of the carbonaceous material to 100 mm or less, molten steel having a carbon concentration of 2% or less can be reliably obtained.

【0022】100mm以下の小粒径炭材を用いた方が
出湯溶湯の炭素濃度を低くできる理由は、定かではない
が、小径コ−クスは燃焼速度が大きく、速くより小径に
なってしまい、そのためコ−クスベッド中で浸炭(加
炭)用に使われる割合が少なくなり、溶湯炭素濃度が上
昇しにくいと考えられた。
The reason why the carbon concentration of the molten metal can be lowered by using the carbonaceous material having a small particle diameter of 100 mm or less is not clear. However, the small-diameter coke has a high burning rate and becomes a smaller diameter faster. Therefore, it was considered that the ratio of carbon used for carburization (carburizing) in the coke bed was reduced, and the carbon concentration in the molten metal was unlikely to rise.

【0023】[0023]

【実施例】本発明で提案した条件下でのキュポラ操業に
ついては既に上述したが、更に詳しく溶鋼を製造する操
業について一例を示す。まず、溶解炉としては、炉内径
φ0.6m、炉底から羽口までの高さ0.4m、羽口か
ら原材料投入口までの高さ5mの冷風送風キュポラを選
んだ。送風用羽口は50mmφのものが6本設置されて
いる。
EXAMPLES The cupola operation under the conditions proposed by the present invention has already been described above, but an example of the operation for producing molten steel will be described in more detail. First, as the melting furnace, a cold air blowing cupola having a furnace inner diameter of 0.6 m, a height of 0.4 m from the furnace bottom to the tuyere, and a height of 5 m from the tuyere to the raw material charging port was selected. As for the tuyere for blowing, 6 pieces with a diameter of 50 mm are installed.

【0024】原材料装入は、まず大きさ40mmから2
00mm程度の高アルミナ質レンガ屑170kgを炉底
から羽口面まで充填した。羽口に設けた覗き窓からその
高さを確認した。続いて平均粒径80〜100mmのコ
−クス塊を羽口から上方に約1mの高さまで積み、羽口
の1本から装入した着火用プロパンバ−ナ−によりこの
コ−クスに点火した。コ−クスの燃焼により炉内を約1
時間加熱したのち、120kgのコ−クスを追加し、そ
の後スクラップとコ−クスを交互にそれぞれ2700k
g,250kg装入した。この時のスクラップは型銑3
0%、シュレッダ−鋼屑70%の配合とした。
The raw material is charged from a size of 40 mm to 2
170 kg of high alumina brick scraps of about 00 mm were filled from the furnace bottom to the tuyere surface. I confirmed the height from the viewing window in the tuyere. Subsequently, coke lumps having an average particle size of 80 to 100 mm were piled up from the tuyere to a height of about 1 m, and the coke was ignited by an ignition propane burner charged from one of the tuyere. About 1 in the furnace due to combustion of coke
After heating for an hour, 120 kg of coke was added, and then scrap and coke were alternated at 2700 k each.
g, 250 kg was charged. The scrap at this time is type 3
The composition was 0% and shredder-steel scrap 70%.

【0025】この状態で約1時間保持し、本格送風を開
始した。送風流量は2400Nm3/hrとした。約1
7分後に炉底の出湯孔を開孔し、出湯を開始した。出湯
を開始してからは、約6〜7分毎にシュレッダ−鋼屑を
320kgとコ−クス30kg、石灰石10kgを同時
に炉頂の投入口3から断続的に投入した。また、この原
料投入の3回に1回は、高アルミナレンガ屑を5kg混
入させた。
This state was maintained for about 1 hour and full blown air was started. The blast flow rate was 2400 Nm 3 / hr. About 1
After 7 minutes, the tap hole on the bottom of the furnace was opened and tapping was started. After starting the tapping, 320 kg of shredder steel scrap, 30 kg of coke and 10 kg of limestone were simultaneously intermittently charged from the charging port 3 at the top of the furnace every 6 to 7 minutes. In addition, 5 kg of high alumina brick scraps was mixed in once every three times the raw material was charged.

【0026】操業中の出湯炭素濃度、温度、送風条件な
どのトレンドを図5に示す。送風開始後、約1時間以降
は炭素濃度は0.8〜1.0%の間で推移し、溶鋼が連
続的に得られていることがわかる。この場合、操業中の
コ−クス充填層高さHは約0.35〜0.40mの範囲
であった。Hの測定は炉壁の高さ方向に数点設置した覗
き窓から赤熱コ−クスの有無を目視判定することにより
行った。
FIG. 5 shows trends such as the concentration of discharged carbon during operation, temperature, and blowing conditions. After about 1 hour from the start of air blowing, the carbon concentration changes between 0.8 and 1.0%, indicating that molten steel is continuously obtained. In this case, the height H of the coke packed bed during operation was in the range of about 0.35 to 0.40 m. The measurement of H was performed by visually judging the presence or absence of red-hot coke from a viewing window installed at several points in the height direction of the furnace wall.

【0027】[0027]

【発明の効果】本発明により、小規模設備のキュポラ型
溶解炉にて、スクラップをベ−スとして溶鋼を製造する
ことができるようになり、従来のように大規模な高炉−
転炉を経ずとも、また高価な電力による溶解を行う電気
炉を経ずとも、経済的に溶鋼を得られるようになった。
Industrial Applicability According to the present invention, it becomes possible to produce molten steel by using scrap as a base in a cupola type melting furnace of a small-scale facility.
It has become possible to obtain molten steel economically without passing through a converter or an electric furnace for melting with expensive electric power.

【0028】また、本発明は普通鋼の製造に留まらず、
原料として、合金鉄や合金成分の鉱石(マンガン鉱石、
クロム鉱石等)、あるいは合金成分を含むスクラップや
廃棄物(Ni触媒屑、ステンレス鋼屑)も原材料として
投入できるので、合金鋼の製造も可能である。
The present invention is not limited to the production of ordinary steel,
As a raw material, ore of alloy iron and alloy components (manganese ore,
Chromium ore, etc.), or scraps containing alloy components and wastes (Ni catalyst scraps, stainless steel scraps) can be added as raw materials, so that alloy steel can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】キュポラ型溶解炉の縦断面図である。FIG. 1 is a vertical sectional view of a cupola-type melting furnace.

【図2】炭材充填層高さと平均出湯炭素濃度との関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the height of a carbonaceous material packed bed and the average carbon concentration of discharged carbon.

【図3】炭材充填層高さと平均出湯炭素濃度との関係を
示すグラフである。
FIG. 3 is a graph showing the relationship between the height of the carbonaceous material packed bed and the average carbon concentration of discharged carbon.

【図4】炭材充填層高さと平均出湯炭素濃度との関係を
示すグラフである。
FIG. 4 is a graph showing the relationship between the carbonaceous material packed bed height and the average discharged carbon concentration.

【図5】操業条件のトレンドを示すチャートである。FIG. 5 is a chart showing a trend of operating conditions.

【符号の説明】[Explanation of symbols]

1 溶解炉 2 出湯口 3 原材料投入口 4 送風羽口 5 耐火物塊 6 炭材充填層 7 層 1 Melting furnace 2 Outlet port 3 Raw material input port 4 Blower tuyere 5 Refractory lump 6 Carbon material filling layer 7 layers

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 キュポラ型のスクラップ溶解炉の操業方
法において、送風用羽口面から炉底までの間に耐火物塊
を充填し、羽口面から上方には下式Hにより規定される
高さまで炭材充填層を形成することを特徴とする竪型ス
クラップ溶解炉による溶鋼製造方法。 H≦0.8D ここで、 H:送風羽口から炭材充填層上面までの高さ(m)、 D:溶解炉の炉内径(m)、
1. In a method of operating a cupola-type scrap melting furnace, a refractory mass is filled between a tuyere surface for blowing and a furnace bottom, and a height defined by the following formula H is provided above the tuyere surface. A method for producing molten steel using a vertical scrap melting furnace, characterized in that a carbonaceous material packed bed is formed. H ≦ 0.8D where H: height from blower tuyere to carbonaceous material packed bed upper surface (m), D: furnace inner diameter of melting furnace (m),
【請求項2】 平均径が100mm以下の炭材を用いる
ことを特徴とする請求項1記載の竪型スクラップ溶解炉
による溶鋼製造方法。
2. The method for producing molten steel by means of a vertical scrap melting furnace according to claim 1, wherein a carbonaceous material having an average diameter of 100 mm or less is used.
JP20642294A 1994-08-31 1994-08-31 Production of molten steel in vertical scrap melting furnace Pending JPH0873914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20642294A JPH0873914A (en) 1994-08-31 1994-08-31 Production of molten steel in vertical scrap melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20642294A JPH0873914A (en) 1994-08-31 1994-08-31 Production of molten steel in vertical scrap melting furnace

Publications (1)

Publication Number Publication Date
JPH0873914A true JPH0873914A (en) 1996-03-19

Family

ID=16523118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20642294A Pending JPH0873914A (en) 1994-08-31 1994-08-31 Production of molten steel in vertical scrap melting furnace

Country Status (1)

Country Link
JP (1) JPH0873914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008030A (en) * 2008-06-30 2010-01-14 Jfe Steel Corp Molten-metal production method using vertical melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008030A (en) * 2008-06-30 2010-01-14 Jfe Steel Corp Molten-metal production method using vertical melting furnace

Similar Documents

Publication Publication Date Title
CN101743330B (en) Process for producing molten iron
CN107245637A (en) A kind of AOD smelts the method and a kind of AOD furnace of high manganese stainless steel
JP5236926B2 (en) Manufacturing method of molten steel
US6693947B1 (en) Method to protect the anode bottoms in batch DC electric arc furnace steel production
US5304232A (en) Fumeless cupolas
US3323907A (en) Production of chromium steels
US3859078A (en) Method of operating a basic open hearth furnace
US1934082A (en) Reduction of ore
JPH0873914A (en) Production of molten steel in vertical scrap melting furnace
JPS609815A (en) Production of high chromium alloy by melt production
JP2661478B2 (en) Cylindrical furnace and method for producing hot metal using the same
CN112481439A (en) Smelting process of converter low-phosphorus steel
JPH1036906A (en) Operation of vertical furnace
WO2010016553A1 (en) Iron bath-type melting furnace
JP2897362B2 (en) Hot metal production method
JPS6169944A (en) Manufacture by melting and reducing of ferrochrome
JPH07278634A (en) Operation of scrap melting furnace
JPH09165613A (en) Scrap melting method
JP4581136B2 (en) Method for smelting reduction of iron oxide
JP3121894B2 (en) Metal melting furnace
JPS6239225B2 (en)
JPH02282410A (en) Smelting reduction method for ore
JPH09203584A (en) Method for loading raw fuel such as dust block ore, self-reducing ore block, iron slug and solid fuel or the like into vertical furnace
JPS59113159A (en) Method for refining high chromium alloy by melting and reduction
CN114647220A (en) Automatic control method for converter smelting

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010313