JPH02282410A - Smelting reduction method for ore - Google Patents
Smelting reduction method for oreInfo
- Publication number
- JPH02282410A JPH02282410A JP10429989A JP10429989A JPH02282410A JP H02282410 A JPH02282410 A JP H02282410A JP 10429989 A JP10429989 A JP 10429989A JP 10429989 A JP10429989 A JP 10429989A JP H02282410 A JPH02282410 A JP H02282410A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- secondary combustion
- combustion ratio
- blowing
- ore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000003723 Smelting Methods 0.000 title abstract description 4
- 238000007664 blowing Methods 0.000 claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 230000008018 melting Effects 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 11
- 238000002485 combustion reaction Methods 0.000 abstract description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 15
- 239000003575 carbonaceous material Substances 0.000 abstract description 9
- 229910052742 iron Inorganic materials 0.000 abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 239000002893 slag Substances 0.000 abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 4
- 239000001301 oxygen Substances 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 9
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000009841 combustion method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000006263 metalation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は炉壁に横吹羽口を備えた上底吹き転炉を用い
て鉱石の溶融還元を行うに際し、横吹羽口とメタル浴面
とが所定距離を保つように浴面高さを制御して、炉内二
次燃焼比率及び着熱効率の向上を図る鉱石の溶融還元方
法に関する。[Detailed Description of the Invention] (Field of Industrial Application) This invention provides a method for melting and reducing ore using a top-bottom blowing converter equipped with a side-blowing tuyere on the furnace wall. The present invention relates to a method for melting and reducing ore in which the height of the bath surface is controlled so that the height of the bath surface is maintained at a predetermined distance, thereby improving the secondary combustion ratio in the furnace and the heat transfer efficiency.
(従来の技術)
従来、銑鉄はほとんど高炉法により製造されてきた。高
炉法は生産性が高く熱効率がきわめてよいが、燃料とし
て高価なコークスを必要とする欠点がある。そこで最近
では安価な石炭を用い、上底吹き転炉により鉄鉱石を溶
融還元して溶銑を製造する方法が試みられている(特開
昭62−60805号公報)、またステンレス鋼などの
合金鋼の分野でも、従来のように電気炉によらず転炉に
よる溶融還元方法が提案されている(特開昭61−27
9608号公報)。(Prior Art) Conventionally, pig iron has been mostly produced by the blast furnace method. Although the blast furnace method has high productivity and extremely good thermal efficiency, it has the disadvantage of requiring expensive coke as fuel. Recently, attempts have been made to use cheap coal to melt and reduce iron ore in a top-bottom blowing converter to produce hot metal (Japanese Patent Application Laid-Open No. 62-60805), and to produce hot metal using alloys such as stainless steel. In this field, a method for melting and reducing using a converter instead of the conventional electric furnace has been proposed.
9608).
ところで鉱石の溶融還元法においてもっとも重要なこと
は、熱を充分に供給するということである。そのために
溶融還元法では操業時に発生するCOを炉内で燃焼させ
る、いわゆる炉内二次燃焼方法が実施されている。しか
しこの炉内二次燃焼方法は下記(1)式で示すように気
相での発熱反応であるために、二次燃焼比率を上げた場
合には排ガス温度が著しく上昇し、炉内耐火物を溶損し
たり、排ガス中のCOが減少してガスカロリーが低下す
るという問題がある。By the way, the most important thing in the ore melting reduction method is to supply sufficient heat. For this reason, in the smelting reduction method, a so-called in-furnace secondary combustion method is implemented in which CO generated during operation is combusted in a furnace. However, since this in-furnace secondary combustion method is an exothermic reaction in the gas phase as shown in equation (1) below, when the secondary combustion ratio is increased, the exhaust gas temperature rises significantly and the in-furnace refractory There is a problem that gas calories are reduced due to melting and loss of CO in the exhaust gas.
CO+1/2 0x =C(h ・ ・ ・
・(1)そこで本出願人はこの問題を解消するために
、■転炉炉周の絞り部に炭素物質をコーティングする方
法(特開昭63−157811号号公報)、及び■上吹
きランスに設けたノズルから転炉炉口部に向かって炭材
を吹きこむ方法(特開昭62−272316号公報)を
提案した。CO+1/2 0x = C(h ・ ・ ・
・(1) Therefore, in order to solve this problem, the present applicant has developed a method of (1) coating the constricted part around the converter furnace with carbon material (Japanese Patent Application Laid-Open No. 157811/1983), and (2) coating the top blowing lance with a carbon material. We proposed a method (Japanese Unexamined Patent Publication No. 62-272316) in which carbonaceous material is injected from a provided nozzle toward the mouth of the converter furnace.
前記■の方法によれば、排ガス中のCO8と炭素物質中
のCとが下記(2)式の吸熱反応を起こして耐火物付近
の温度を低下させる。According to method (2) above, CO8 in the exhaust gas and C in the carbon material cause an endothermic reaction according to the following formula (2), thereby lowering the temperature near the refractory.
C+COx −2CO−−・・(2)
二次燃焼比率を高めた場合でも、この吸熱反応による温
度低下によって耐火物の溶損を抑制することができ、ま
た排ガス中のカロリーを上昇させることができる。C+COx -2CO--... (2) Even when the secondary combustion ratio is increased, the temperature drop caused by this endothermic reaction can suppress melting of refractories and increase the calories in the exhaust gas. .
また前記■の方法によると、粉体中の炭素分が高温排ガ
ス中のCOIと前記(2)式の吸熱反応を起こし、耐火
物近傍の温度を低下させるので溶損が防止される。According to the method (2) above, the carbon content in the powder causes an endothermic reaction of the above formula (2) with COI in the high-temperature exhaust gas, and the temperature near the refractory is lowered, so that melting loss is prevented.
しかしながら上記■及び■の方法にはそれぞれつぎのよ
うな問題がある。However, the above methods (1) and (2) each have the following problems.
■の方法では、転炉を傾動して出湯するときコーテイン
グ材の炭素が溶出してメタル中(C)を上昇さる。■の
方法においては、炭材粉が吹きつけられた部分の耐火物
が必要以上に冷却されてスポーリングを起こす。In method (2), when the converter is tilted to tap the metal, carbon in the coating material is eluted and rises in the metal (C). In method (2), the refractories in the areas where the carbonaceous powder is sprayed are cooled more than necessary, causing spalling.
(発明が解決しようとする課題)
この発明の目的は、炉壁に酸素を吹きこむ横吹羽口を備
えた上底吹き転炉を用いて鉱石を溶融還元するに際し、
横吹羽口とメタル浴面との距離を適正に制御して、炉内
二次燃焼比率と着熱効率を向上させることのできる鉱石
の溶融還元方法を提供することにある。(Problems to be Solved by the Invention) The purpose of the present invention is to solve the following problems when melting ore is reduced using a top-bottom blowing converter equipped with a side blowing tuyere for blowing oxygen into the furnace wall.
It is an object of the present invention to provide a method for melting and reducing ore, which can improve the secondary combustion ratio and heat transfer efficiency in a furnace by appropriately controlling the distance between the side blowing tuyeres and the metal bath surface.
(課題を解決するための手段)
本発明者らは、炉壁に横吹羽口を備えた上底吹き転炉を
用いて溶融還元する際に、二次燃焼比率と着熱効率を向
上させる方法について種々検討を重ねた結果、炉内メタ
ル上には多量のスラグが存在し、そのメタル浴面に近い
ところでは多量の炭材と粒鉄が混在しているために、単
に横吹羽口から酸素を吹きこむだけでは酸素はスラブ中
の浮遊炭材や粒鉄の酸化に消費されてしまい、二次燃焼
比率および着熱効率を高めることはできず、これらを高
めるためには横吹羽口とメタル浴面とが適正な距離を保
つように浴面高さを制御する必要があることを知った。(Means for Solving the Problem) The present inventors have proposed a method for improving the secondary combustion ratio and heat transfer efficiency when performing melt reduction using a top-bottom blowing converter equipped with side blowing tuyeres on the furnace wall. As a result of various studies, we found that there was a large amount of slag on the metal in the furnace, and a large amount of carbonaceous material and granulated iron were mixed near the metal bath surface. If only the oxygen is blown into the slab, it will be consumed by the oxidation of suspended carbonaceous materials and granulated iron in the slab, making it impossible to increase the secondary combustion ratio and heat transfer efficiency. I learned that it is necessary to control the height of the bath to maintain an appropriate distance between the two.
そこで第1図に示すように、炉壁に横吹羽口2を備えた
上底吹き転炉1 (炉内直径D)を用い、この横吹羽口
2からスラグ3内に酸素を吹き込みながらメタル4の浴
面との距ji!!Hを変えた場合に、二次燃焼比率およ
び着熱効率がどのように変化するかを調べた。なお第1
図において、5は上吹きランス、6は底吹きノズルであ
る。。Therefore, as shown in Fig. 1, a top-bottom blowing converter 1 (furnace internal diameter D) equipped with a horizontal blowing tuyere 2 on the furnace wall is used. The distance from the bath surface! ! We investigated how the secondary combustion ratio and heat transfer efficiency change when H is changed. Note that the first
In the figure, 5 is a top blowing lance and 6 is a bottom blowing nozzle. .
その結果を第2図に示す0図において横軸は横吹羽口お
よびメタル浴面間の距MHと炉内直径りとの比率(H/
D)であり、縦軸は二次燃焼比率η、及び着熱効率η、
である。この図から明らかなように、二次燃焼比率η、
(Oで示す)はH/Dが0.3未満では低いが0.3に
なるとほぼ45%に達する。そしてH/Dが増大するに
つれて少しづつ増加してゆく、一方、着熱効率η、(・
印で示す)は、H/Dが0.3より小さいと著しく高い
が、H/Dが0.3になると約85%となり、H/Dが
1.5になるまではほとんどそのまま推移する。しかし
H/Dが1.5を越えると急速に低下する。なお二次燃
焼比率77、は下記の式で表される。The results are shown in Figure 2. In Figure 2, the horizontal axis is the ratio (H/
D), where the vertical axis is the secondary combustion ratio η, the heat transfer efficiency η,
It is. As is clear from this figure, the secondary combustion ratio η,
(denoted by O) is low when H/D is less than 0.3, but reaches approximately 45% when it becomes 0.3. Then, as H/D increases, it increases little by little, while the heat transfer efficiency η, (・
) is significantly high when H/D is smaller than 0.3, but becomes about 85% when H/D reaches 0.3, and remains almost unchanged until H/D reaches 1.5. However, when H/D exceeds 1.5, it rapidly decreases. Note that the secondary combustion ratio 77 is expressed by the following formula.
1、− CC0M / (Cot +C0))X100
また前記着熱効率η、はつぎの式で表される。1, - CC0M / (Cot +C0))X100
Further, the heat transfer efficiency η is expressed by the following formula.
ηb−(1(Q−/ Q−c) ) Xto。ηb-(1(Q-/ Q-c) ) Xto.
ここに、0.。はCO及びH8の燃焼熱、0.は排ガス
スーパーヒートであって下記式で表せる。Here, 0. . is the heat of combustion of CO and H8, 0. is the exhaust gas superheat and can be expressed by the following formula.
Ql−(総人熱)
−(メタル及びスラグの顕然増加分)
−(メタル温度相当分のガス顕熱)
−(鉱石の還元熱)
−(石炭の分解熱)
−(炉体からの放散熱)
−(C溶解熱)
−(原料中のH,O蒸発熱)
ところで、二次燃焼比率η、及び着熱効率η、が第2図
のように変化するのは下記の理由によるものと考えられ
る。Ql- (total human heat) - (obvious increase in metal and slag) - (sensible heat of gas equivalent to metal temperature) - (heat of reduction of ore) - (heat of decomposition of coal) - (radiation from the furnace body) Heat dissipation) - (Heat of dissolution of C) - (Heat of vaporization of H and O in the raw materials) By the way, the reason why the secondary combustion ratio η and heat transfer efficiency η change as shown in Figure 2 is thought to be due to the following reasons. It will be done.
H/Dが0.3未満のとき二次燃焼比率η、が低いのは
、メタル浴面と横吹羽口との距離Hが近すぎ、羽目から
吹きこんだ酸素がスラグ中の炭材や粒鉄、或いはメタル
の脱炭やFeの酸化のために消費されてしまい、COの
二次燃焼が充分に行えないからである。またH/Dが1
.5を超えた場合に着熱効率η、が低下するのは、メタ
ル浴面と横吹羽口が離れすぎているためと、二次燃焼で
生じた熱がメタルに伝達しないまま炉外に排出されてし
まうからである。したがって本発明においては、横吹羽
口とメタル浴面との距離Hが下記式を満たすようにその
高さを制御する必要がある。The reason why the secondary combustion ratio η is low when H/D is less than 0.3 is because the distance H between the metal bath surface and the side blowing tuyere is too short, and the oxygen blown through the tuyeres is absorbed by the carbonaceous materials and particles in the slag. This is because CO is consumed for decarburization of iron or metal and oxidation of Fe, and secondary combustion of CO cannot be performed sufficiently. Also, H/D is 1
.. The reason why the heat transfer efficiency η decreases when it exceeds 5 is because the metal bath surface and the side blowing tuyeres are too far apart, and the heat generated by secondary combustion is discharged outside the furnace without being transferred to the metal. This is because it will be put away. Therefore, in the present invention, it is necessary to control the height so that the distance H between the side blowing tuyere and the metal bath surface satisfies the following formula.
0.3D≦H≦1.5D
ここに、Hは横吹きとメタル浴面との距離、Dは転炉の
内径である。0.3D≦H≦1.5D Here, H is the distance between the side blower and the metal bath surface, and D is the inner diameter of the converter.
以上のように鉱石を溶融還元する際に、横吹羽目とメタ
ル浴面との距離が適正になるように浴面高さを制御する
ことにより、炉内二次燃焼比率及び着熱効率を著しく高
めることができる。As described above, when ore is smelted and reduced, by controlling the bath surface height so that the distance between the side blowing surface and the metal bath surface is appropriate, the secondary combustion ratio in the furnace and the heat transfer efficiency can be significantly increased. I can do it.
(実施例1)
第1図に示すような炉壁に横吹羽口を備えた容量15ト
、の上底吹き試験転炉(内径1.6m )に溶銑(重量
%で、C:4.5%、Si:0.01%、Mn:0.1
0%、P :0.015%)を5ト、と、クロム鉱石(
重量%で、T、Cr:31.0%、T、Fe:20.6
%)、コークス、副原料として生石灰と珪石を装入し、
第1表に示す操業条件により含クロム溶銑を製造した。(Example 1) Hot metal (by weight, C: 4.5 %, Si: 0.01%, Mn: 0.1
0%, P: 0.015%) and 5 tons of chromium ore (
In weight%, T, Cr: 31.0%, T, Fe: 20.6
%), coke, charged with quicklime and silica stone as auxiliary raw materials,
Chromium-containing hot metal was produced under the operating conditions shown in Table 1.
このときの横吹羽口の本数は4本であり、メタル浴面を
羽口よりI D (1,6m)下になるように制御して
操業した。また比較例としてメタル浴面が横吹羽口から
0.15D(0,24m)になるように制御した操業も
行った。その結果、比較例のときの二次燃焼比率は40
%であったが、本発明例の場合には65%であり比較例
より15%も高かった。また着熱効率は、比較例では8
7%で、本発明例では85%であり、その差はほとんど
なかった。The number of horizontal blowing tuyeres at this time was four, and the operation was controlled so that the metal bath surface was below the tuyere by I D (1.6 m). As a comparative example, an operation was also carried out in which the metal bath surface was controlled to be 0.15 D (0.24 m) from the horizontal blowing tuyere. As a result, the secondary combustion ratio in the comparative example was 40
%, but in the case of the example of the present invention, it was 65%, which was 15% higher than that of the comparative example. In addition, the heat transfer efficiency is 8 in the comparative example.
7%, and in the example of the present invention it was 85%, and there was almost no difference.
(以下、余白)
第1表
第2表
(実施例2)
実施例1と同じ試験転炉に含有成分の異なる数種の溶銑
(重量%で、C:4.3〜4.6%、Si :0.01
%、Mn:0.15%、P :0.012〜.018%
)を4ト、と、塊石炭(揮発分VM:34重量%)、鉄
鉱石(τ、Fe:66重量%)、及び生石灰を装入し、
第2表に示す条件のもとてメタル浴面高さを種々変えて
操業した。(Hereinafter, blank spaces) Table 1 Table 2 (Example 2) Several types of hot metal containing different components (in weight %, C: 4.3 to 4.6%, Si :0.01
%, Mn: 0.15%, P: 0.012~. 018%
), lump coal (volatile content VM: 34% by weight), iron ore (τ, Fe: 66% by weight), and quicklime were charged,
Operations were carried out under the conditions shown in Table 2 with various metal bath surface heights.
その結果を第3表に示す、この表から明らかなように、
H/Dが0.30〜1.5Dの範囲で二次燃焼比率及び
着熱効率がともに良好であった。The results are shown in Table 3.As is clear from this table,
Both the secondary combustion ratio and heat transfer efficiency were good when H/D was in the range of 0.30 to 1.5D.
第3表 れば、高い炉内二次燃焼比率と着熱効率が達成される。Table 3 If so, a high in-furnace secondary combustion ratio and heat transfer efficiency can be achieved.
したがって生産性の向上と炭材使用量の低減を図ること
が可能になる。Therefore, it becomes possible to improve productivity and reduce the amount of carbon material used.
第1図は、本発明の方法を実施する炉壁に横吹羽口を備
えた上底吹き転炉の概略断面図、第2図は、H/D (
横吹羽口からメタル浴面までの距MHと転炉内径りとの
比)と二次燃焼比率及び着熱効率との関係を示す図、
である。
1は上底吹き転炉、2は横吹羽口、3はスラグ、4はメ
タル、5は上吹きランス、6は底吹きノズル。FIG. 1 is a schematic cross-sectional view of a top-bottom blowing converter equipped with side blowing tuyeres on the furnace wall in which the method of the present invention is carried out, and FIG.
FIG. 2 is a diagram showing the relationship between the distance MH from the side blowing tuyere to the metal bath surface and the converter inner radius), the secondary combustion ratio, and the heat transfer efficiency. 1 is a top and bottom blowing converter, 2 is a side blowing tuyere, 3 is a slag, 4 is a metal, 5 is a top blowing lance, and 6 is a bottom blowing nozzle.
Claims (1)
融還元を行うに際し、前記横吹羽口とメタル浴面との距
離が下記条件を満たすように浴面高さを制御することを
特徴とする鉱石の溶融還元方法。 0.3D≦H≦1.5D ここに、Hは横吹羽口とメタル浴面との距離、Dは転炉
の内径である。[Scope of Claims] When melting and reducing ore using a top-bottom blowing converter equipped with a horizontal blowing tuyere on the furnace wall, the bath is adjusted so that the distance between the horizontal blowing tuyere and the metal bath surface satisfies the following conditions. A method for melting and reducing ore, which is characterized by controlling the surface height. 0.3D≦H≦1.5D Here, H is the distance between the horizontal blowing tuyere and the metal bath surface, and D is the inner diameter of the converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10429989A JPH02282410A (en) | 1989-04-24 | 1989-04-24 | Smelting reduction method for ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10429989A JPH02282410A (en) | 1989-04-24 | 1989-04-24 | Smelting reduction method for ore |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02282410A true JPH02282410A (en) | 1990-11-20 |
Family
ID=14377048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10429989A Pending JPH02282410A (en) | 1989-04-24 | 1989-04-24 | Smelting reduction method for ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02282410A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997012065A1 (en) * | 1995-09-27 | 1997-04-03 | Sumitomo Metal Industries, Ltd. | Method of melting tinned iron scrap |
CN105803147A (en) * | 2016-04-06 | 2016-07-27 | 安徽工业大学 | Method for smelting and reducing iron ores through converter steelmaking system |
-
1989
- 1989-04-24 JP JP10429989A patent/JPH02282410A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997012065A1 (en) * | 1995-09-27 | 1997-04-03 | Sumitomo Metal Industries, Ltd. | Method of melting tinned iron scrap |
US5902375A (en) * | 1995-09-27 | 1999-05-11 | Sumitomo Metal Industries, Ltd. | Method of melting tinned iron scrap |
CN105803147A (en) * | 2016-04-06 | 2016-07-27 | 安徽工业大学 | Method for smelting and reducing iron ores through converter steelmaking system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4111687A (en) | Process for the production of intermediate hot metal | |
US3323907A (en) | Production of chromium steels | |
JPH02282410A (en) | Smelting reduction method for ore | |
JPS609815A (en) | Production of high chromium alloy by melt production | |
JP2661478B2 (en) | Cylindrical furnace and method for producing hot metal using the same | |
JP3629740B2 (en) | Hot metal production method | |
JPS6036613A (en) | Production of raw molten nickel-containing stainless steel | |
JPS6169944A (en) | Manufacture by melting and reducing of ferrochrome | |
WO2022163156A1 (en) | Refining method of molten iron and manufacturing method of molten steel using same | |
JPS61279608A (en) | Production of high-chromium alloy by melt reduction | |
JPH0524961B2 (en) | ||
JP2783894B2 (en) | Iron bath smelting reduction method | |
JP3788392B2 (en) | Method for producing high Cr molten steel | |
JPH01252715A (en) | Method for operating iron bath type smelting reduction furnace | |
JP3509128B2 (en) | Operating method of converter type smelting reduction furnace and oxygen blowing lance | |
JP3121894B2 (en) | Metal melting furnace | |
JPH09272907A (en) | Furnace structure in smelting reduction plant | |
JP2897362B2 (en) | Hot metal production method | |
US3498783A (en) | Method of refining a carbonaceous metal | |
JPH01252710A (en) | Method for operating iron bath type smelting reduction furnace | |
JP2837282B2 (en) | Production method of chromium-containing hot metal | |
JPH01149911A (en) | Smelting reduction process | |
JPH01191719A (en) | Method for operating smelting reduction furnace | |
JP2541200B2 (en) | Converter for preventing melting of furnace wall due to high temperature gas | |
JPH07146072A (en) | Cupola type scrap melting furnace |