JPH01252710A - Method for operating iron bath type smelting reduction furnace - Google Patents

Method for operating iron bath type smelting reduction furnace

Info

Publication number
JPH01252710A
JPH01252710A JP7586488A JP7586488A JPH01252710A JP H01252710 A JPH01252710 A JP H01252710A JP 7586488 A JP7586488 A JP 7586488A JP 7586488 A JP7586488 A JP 7586488A JP H01252710 A JPH01252710 A JP H01252710A
Authority
JP
Japan
Prior art keywords
molten slag
furnace
molten
amount
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7586488A
Other languages
Japanese (ja)
Inventor
Hideki Ishikawa
英毅 石川
Hiroyuki Katayama
裕之 片山
Mitsutaka Matsuo
充高 松尾
Mitsuru Sato
満 佐藤
Tsutomu Saito
力 斎藤
Hiroshi Hirata
浩 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7586488A priority Critical patent/JPH01252710A/en
Publication of JPH01252710A publication Critical patent/JPH01252710A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve reducing speed of iron ore and also secondary combustion ratio by specifying molten slag quantity in a furnace, remaining carbon quantity in the furnace and pressure of oxygen jet from to blowing lance at the time of reduction-refining molten pig by charging the iron ore and coal as reducing agent and blowing oxygen from top blowing lance into a iron bath type reduction furnace. CONSTITUTION:Under condition of remaining the molten pig 4 and the molten slag 5 in the converter type refining furnace 1 providing bottom blowing tuyeres 2 and the oxygen top blowing lance 3, the iron ore and the coal as the reducing agent are charged from the furnace top part and oxygen gas is blown from the top blowing lance 3 and inert gas, oxygen gas, etc., are blown from the bottom blowing tuyeres 2 and iron ore is reduced, to produce the molten pig. In this case, >=50% of the whole quantity of oxygen for blowing is blown from the top blowing lance 3 and the balance is blown from the bottom blowing tuyeres 2. Further, the refining furnace is operated under condition that the quantity of the molten slag 5 in the refining furnace is made to >=500kg/m<2> of cross section area of the furnace and the remaining carbon quantity in the furnace is made to >=5wt.% of the molten slag and also cavity depth Ls of the molten slag by oxygen jet of the top blowing lance 3 is made to <=0.7 of thickness Hs of the molten slag.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鉄浴式溶融還元炉により溶鉄を製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing molten iron using an iron bath type smelting reduction furnace.

[従来の技術] 特開昭61−213310号は鉄系合金溶湯を製造する
にあたり、スラグ量の条件、底吹きガス条件、スラグ成
分に関する操業条件に関する発明であるが、その中には
、後述するような還元反応促進の観点からの必要な溶融
スラグ量や残存炭材量の条件が明示されておらず、かつ
後述するように二次燃焼の観点から、酸素ジェットによ
る溶融スラグのキャビティーの条件が明示されていない
[Prior Art] JP-A No. 61-213310 is an invention related to operating conditions regarding slag amount conditions, bottom blowing gas conditions, and slag components in producing molten iron-based alloys. The conditions for the amount of molten slag and the amount of residual carbon material required from the perspective of promoting the reduction reaction are not specified, and as will be explained later, from the perspective of secondary combustion, the conditions for the cavity of molten slag by oxygen jet are not specified. is not specified.

また特願昭61−181358号は溶融還元炉を2気圧
以上に加圧し、コークス/スラグ比をO01〜0.3の
範囲に規定するものであるが、この発明は溶融還元炉を
加圧してスラグのフォーミングを抑制する事を目的とし
ており、今回の発明とは目的・手段共に異なる。
Furthermore, in Japanese Patent Application No. 181358/1982, the melting reduction furnace is pressurized to 2 atmospheres or more, and the coke/slag ratio is specified in the range of O01 to 0.3, but this invention pressurizes the melting reduction furnace. The purpose of this invention is to suppress slag forming, which is different from the present invention both in purpose and means.

また、特願昭61−088662号は、スラグ中に浮遊
した固体炭素質を燃焼させて、鉄系金属の溶解、酸化物
の還元を行う際、酸素ジェットの火点面積と固体炭素/
スラグ量の比を規定するものであるが、スラグフォーミ
ングを目的としており酸素ジェットの吹酸方法でソフト
ブローの概念のみで、スラグキャビティーの考えが示さ
れていない。
In addition, Japanese Patent Application No. 1988-088662 describes the firing point area of an oxygen jet and the solid carbon/solid carbon content when melting iron-based metals and reducing oxides by burning solid carbon suspended in slag.
Although it specifies the ratio of slag amounts, it is aimed at slag foaming and only uses the concept of soft blowing using an oxygen jet acid blowing method, and does not include the idea of a slag cavity.

本発明は、転炉型反応容器での鉄浴式溶融還元において
、高還元速度および高二次燃焼率を両立させる方法とし
て、操業方法として溶融スラグ量。
The present invention is a method for achieving both a high reduction rate and a high secondary combustion rate in iron bath smelting reduction in a converter-type reaction vessel, and as an operating method that reduces the amount of molten slag.

炉内残存炭材量、上部吹酸での酸素ジェットの吹き方を
規定するものである。
It stipulates the amount of carbonaceous material remaining in the furnace and the method of blowing the oxygen jet in the upper blowing acid.

[発明が解決しようとする課9!i] 本発明は、転炉反応容器での鉄浴式溶融還元において、
高還元速度(還元速度: 0,04 k+5ol−02
/T。
[Lesson 9 that the invention attempts to solve! i] The present invention provides iron bath smelting reduction in a converter reaction vessel,
High reduction rate (reduction rate: 0.04 k+5ol-02
/T.

Fs%/分/m”以上)及び高二次燃焼率(二次燃焼率
40%以上)の両方を達成するための操業方法を開示す
るものである。
The present invention discloses an operating method for achieving both a high secondary combustion rate (secondary combustion rate of 40% or higher) and a high secondary combustion rate (secondary combustion rate of 40% or higher).

但し、ここでいう二次燃焼率とは、(4)式で定義され
る値である。
However, the secondary combustion rate here is a value defined by equation (4).

[ii題を解決するための手段および作用コ本発明は、
上底吹き可能な転炉型の反応容器内の溶鉄と溶融スラグ
よりなる溶融物に、全酸素の50%以上は上部ランスよ
り吹酸するに際し、溶融スラグ量を常に(1)式の条件
とし、かつ溶融スラグ中に分散し浮遊している残存炭材
の量が、常に溶融スラグ量(kg)との関係で、(2)
式の条件とし、かつ溶融スラグ中に生じるキャビティー
の深さLsが溶融スラグ層の厚みとの関係で常に(3)
式の条件とする事を特徴とする操業方法である。
[ii. Means and operation for solving the problem] The present invention has the following features:
At least 50% of the total oxygen is blown into the molten material consisting of molten iron and molten slag from the upper lance in a converter-type reaction vessel capable of top-bottom blowing. , and the amount of residual carbonaceous material dispersed and floating in the molten slag is always in relation to the amount of molten slag (kg), (2)
Under the conditions of the equation, the depth Ls of the cavity formed in the molten slag is always (3) in relation to the thickness of the molten slag layer.
This is an operating method characterized by setting the conditions of Eq.

溶融スラグ量≧500kg/ m ”・・・・・・・・
・・・・・・・・・・(1)但し溶融スラグ量は、炉内
の溶融スラグ量(kg)を便所面積(m2)で除した値 炉内残存炭素量(kg)>溶融スラグ量(kg) x 
o、os・・・・・・・・・・・・・・・・・・(2)
但しくLs)及び(Hs)は(am) 第1図は本発明を実施する鉄浴式溶融還元炉の例を示す
図である。反応容器1は例えばMgO系耐火物で内張さ
れた転炉型容器であり、底部に底吹き羽口2を装備して
おり、酸素ガスもしくは不活性ガスを吹き込むことがで
きる。上部には吹酸用のランス3を備えており、溶鉄4
及び溶融スラグ5からなる溶融物に酸素ジェットを吹き
つける。
Molten slag amount ≧500kg/m”・・・・・・・・・
・・・・・・・・・・・・(1) However, the amount of molten slag is the value obtained by dividing the amount of molten slag in the furnace (kg) by the toilet area (m2) Amount of residual carbon in the furnace (kg) > Amount of molten slag (kg) x
o, os・・・・・・・・・・・・・・・(2)
However, Ls) and (Hs) are (am). FIG. 1 is a diagram showing an example of an iron bath type melting reduction furnace in which the present invention is implemented. The reaction vessel 1 is, for example, a converter-type vessel lined with an MgO-based refractory, and is equipped with a bottom blowing tuyere 2 at the bottom, through which oxygen gas or inert gas can be blown. The upper part is equipped with a lance 3 for blowing acid, and a lance 3 for blowing acid.
and molten slag 5 is blown with an oxygen jet.

一般に、鉄浴式溶融還元では、還元反応はa)鉱石吹き
込み時の鉱石と溶鉄間の界面、b)溶融スラグと溶鉄間
の界面、C)溶融スラグ中の溶融スラグと分散している
炭材との界面、d)溶融スラグ中の溶融スラグと粒鉄と
の界面でおこる。鉱石吹き込みの場合には、還元速度は
大であるが。
In general, in iron bath smelting reduction, the reduction reaction occurs at a) the interface between the ore and molten iron during ore injection, b) the interface between molten slag and molten iron, and C) the molten slag and dispersed carbonaceous material in the molten slag. d) Occurs at the interface between molten slag and granulated iron in molten slag. In the case of ore injection, the reduction rate is high.

発生するガスにより必然的に溶鉄の攪拌が大になり、二
次燃焼率の低下をもたらす。従って、高還元速度と高二
次燃焼率を両立させるには、鉱石や炭材等の原料は上方
から炉内に投入する。そしてこの際の還元反応は上記b
)〜d)でおこる。
The generated gas inevitably increases the agitation of the molten iron, resulting in a decrease in the secondary combustion rate. Therefore, in order to achieve both a high reduction rate and a high secondary combustion rate, raw materials such as ore and carbonaceous materials are introduced into the furnace from above. The reduction reaction at this time is b
) to d).

従って、還元反応に関する本発明者等の実験結果に依れ
ば、還元反応速度は溶融スラグ量と溶融スラグ中に分散
・浮遊している炭材量の影響を受け。
Therefore, according to the experimental results of the present inventors regarding the reduction reaction, the reduction reaction rate is influenced by the amount of molten slag and the amount of carbon material dispersed and suspended in the molten slag.

第2図のような結果を得た。The results shown in Figure 2 were obtained.

このような結果から、スラグ中の還元反応を大にし、全
体的に効率的な還元反応を起させる条件として、(1)
式及び(2)式の条件を得た。
Based on these results, the conditions for increasing the reduction reaction in the slag and causing an overall efficient reduction reaction are (1)
The conditions for equation and equation (2) were obtained.

次に二次燃焼については、溶鉄中に含率れる溶解炭素は
酸素ジェットとの反応性が良好であるが故に、鉄浴式溶
融還元で操業されるような温度(1300℃以上)では
−酸化炭素までしか燃焼しない。
Next, regarding secondary combustion, since the dissolved carbon contained in molten iron has good reactivity with oxygen jet, at temperatures such as iron bath smelting reduction (1300℃ or higher), - oxidation It only burns up to carbon.

これは、上部吹酸される酸素ジェットが直接溶鉄に接触
し溶鉄中の炭素と燃焼する場合には、燃焼ガス中の一酸
化炭素が増加し、二次燃焼率は低下する。従って、上部
吹酸される酸素ジェットと溶鉄の間に溶融スラグを介在
せしめ、遮蔽効果を持たせる事により溶鉄中の炭素の酸
素ジェットによる直接燃焼を阻害し、溶融スラグ中の炭
材を燃焼させる事により40%以上の高二次燃焼率を得
る事ができる。
This is because when the top-blown oxygen jet directly contacts molten iron and burns with carbon in the molten iron, carbon monoxide in the combustion gas increases and the secondary combustion rate decreases. Therefore, by interposing molten slag between the oxygen jet that blows oxygen from the top and the molten iron to provide a shielding effect, direct combustion of carbon in the molten iron by the oxygen jet is inhibited, and the carbonaceous materials in the molten slag are combusted. As a result, a high secondary combustion rate of 40% or more can be obtained.

この遮蔽効果について、発明者等の実験では、上部吹酸
される酸素ジェットにより生じる溶融スラグのキャビテ
ィーの深さLsとスラブ層の厚みHsの比により、二次
燃焼率は第3図に示すように変る結果を得た。
Regarding this shielding effect, in experiments conducted by the inventors, the secondary combustion rate was determined by the ratio of the depth Ls of the cavity of the molten slag generated by the top-blown oxygen jet to the thickness Hs of the slab layer, as shown in Figure 3. I got different results.

これらの結果から、(3)式の条件で、40%以上の高
二次燃焼率を得ることができる。
From these results, it is possible to obtain a high secondary combustion rate of 40% or more under the conditions of equation (3).

[実施例] 定格溶湯量120tの上底吹転炉型溶融還元炉(底吹羽
口4本、二重管、外管:内径24+*m  冷却用LP
G吹き込み、内管:内径20mm+  酸素ガス吹き込
み)に、溶鉄(C:4.2%、 Si:0.3%)を4
0トン装入した。
[Example] Top-bottom blowing converter melting reduction furnace with rated molten metal capacity of 120 tons (4 bottom blowing tuyeres, double pipe, outer pipe: inner diameter 24+*m, LP for cooling)
molten iron (C: 4.2%, Si: 0.3%) was added to the inner tube: inner diameter 20 mm + oxygen gas injection)
0 tons was charged.

鉄鉱石及び石炭は上部のホッパーから炉内へ投入した。Iron ore and coal were charged into the furnace from the upper hopper.

上吹ランスのノズルはソフトブロー用の放射角15度の
7孔ノズル(孔径60mm X 7)を用い、(5)式
によりスラグキャビティー深さLsを計算し、スラグ厚
みHsとの比が所定の値になるようランス高さを調整し
た。スラグ中の炭材量(重f&)/スラグ量(重量)の
比は二次燃焼率の測定結果に基づき、炭材供給速度と送
酸速度の値からマスバランス計算により所定の範囲内に
なるように調整した。
The nozzle of the top blowing lance is a 7-hole nozzle (hole diameter 60 mm x 7) with a radiation angle of 15 degrees for soft blowing, and the slag cavity depth Ls is calculated using equation (5), and the ratio with the slag thickness Hs is determined as follows. The lance height was adjusted to the value of . The ratio of the amount of carbonaceous material in the slag (weight f&)/the amount of slag (weight) will be within a predetermined range based on the measurement results of the secondary combustion rate and the mass balance calculation from the values of the carbonaceous material supply rate and the oxygen supply rate. I adjusted it as follows.

n:ランスの孔数、d:ランスの孔径(m+n)FO,
:上吹送MJi(Nm’/hr)、  1gニスラグ−
ランス先端の距離(mm)、ρII:溶鉄の比重、ρS
:溶融スラグの比重 第1表に示すように、浴面積当りのスラブ量、炉内炭材
/スラグ量(重量比)、Ls/Hsの比について、異な
る5条件(A、B、C,D、E)で各々約12時間の定
常操業を行い、二次燃焼率およびスラブ中のT、Fe値
の平均値を得た。
n: Number of holes in the lance, d: Diameter of the holes in the lance (m+n)FO,
:Top blow MJi (Nm'/hr), 1g Nislag-
Distance of lance tip (mm), ρII: Specific gravity of molten iron, ρS
: Specific gravity of molten slag As shown in Table 1, five different conditions (A, B, C, D , E) were operated steadily for about 12 hours, and the average values of the secondary combustion rate and the T and Fe values in the slab were obtained.

又、還元速度が不十分な場合に往々にしておきるスラグ
フォーミングの有無を調べた。主な操業条件及び上記の
;**aデータを第1表にしめす。
We also investigated the presence or absence of slag foaming, which often occurs when the reduction rate is insufficient. The main operating conditions and the above ;**a data are shown in Table 1.

なお、各々の場合の送酸量は約30000 N m ’
 /hr、鉱石(未還元)供給量は600〜!000k
g/分、溶鉄温度1450〜1520℃、スラグの塩基
度(Cab/Sin、 )は1.0〜1.5の間に保持
して操業した。
In addition, the amount of oxygen delivered in each case was approximately 30,000 N m'
/hr, ore (unreduced) supply amount is 600 ~! 000k
The operation was carried out at a temperature of molten iron of 1450 to 1520° C. and a basicity of slag (Cab/Sin) of 1.0 to 1.5.

また、1.5〜2時間毎に炉内の溶鉄及び溶融スラグの
一部を排出した。
In addition, a portion of the molten iron and molten slag in the furnace was discharged every 1.5 to 2 hours.

第1表に示すように本発明の条件を全て満足したAの場
合のみ、二次燃焼率も高く、鉱石供給速度が大であって
もスラグ中の(T、Fe)は低く、かつフォーミングの
発生しない安定した操業が可能であった・ スラグ・キャビティーの大きいBの場合には、還元速度
はかなり大きく、スラグ中の(T、Fe)は若干の増加
に留まったが、二次燃焼率は高くならなかった。スラグ
中の炭材比が0.03以下では還元速度が極めて遅く、
結果的にフォーミングを誘発した。
As shown in Table 1, only in the case of A, which satisfies all the conditions of the present invention, the secondary combustion rate is high, the (T, Fe) in the slag is low even if the ore supply rate is high, and the forming In the case of B with a large slag cavity, the reduction rate was quite high and (T, Fe) in the slag only increased slightly, but the secondary combustion rate was not high. When the carbonaceous ratio in the slag is less than 0.03, the reduction rate is extremely slow;
As a result, forming was induced.

また、スラグ量が400kg/m”程度の比較的少量の
場合には、全般的に還元速度が小さい為、スラグ中の(
T、Fe)が高めに推移し、鉱石供給速度を低めにせざ
るを得なかった。
In addition, when the amount of slag is relatively small, such as about 400 kg/m'', the reduction rate is generally low, so the (
T, Fe) remained high, and the ore supply rate had to be lowered.

[発明の効果] 本発明により、鉄浴式溶融還元において、高還元速度と
高二次燃焼率の両方を達成した操業が可能となる。
[Effects of the Invention] The present invention enables operation that achieves both a high reduction rate and a high secondary combustion rate in iron bath smelting reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する鉄浴式溶融還元炉の例を示す
図、 第2図は、溶融スラグ量とスラグ中の炭材量が還元反応
速度に及ぼす影響の例を示す図、第3図は、Ls/Hs
と二次燃焼率の関係を示す図である。 特許出願人  新日本製鐵株式会社
FIG. 1 is a diagram showing an example of an iron bath type smelting reduction furnace in which the present invention is implemented. FIG. Figure 3 shows Ls/Hs
It is a figure which shows the relationship between and secondary combustion rate. Patent applicant Nippon Steel Corporation

Claims (1)

【特許請求の範囲】 上底吹き可能な転炉型の反応容器内の溶鉄と溶融スラグ
よりなる溶融物に、全酸素の50%以上は上部ランスよ
り吹酸する際し、溶融スラグ量を常に(1)式の条件と
し、かつ溶融スラグ中に分散し浮遊している残存炭材の
量が、常に溶融スラグ量(kg)との関係で(2)式の
条件とし、かつ溶融スラグ中に生じるキャビティー深さ
L_sが溶融スラグ層の厚みとの関係で常に(3)式の
条件とする事を特徴とする鉄浴式溶融還元炉の操業方法
。 溶融スラグ量≧500kg/m^2・・・(1) 但し溶融スラグ量は、炉内の溶融スラグ量(kg)を炉
断面積(m^2)で除した値 炉内残存炭素量(kg)>溶融スラグ量(kg)×0.
05・・・(2) 溶融スラグキャビティー(L_s) <0.7・・・(3) 溶融スラグ厚み(H_s) 但し(L_s)及び(H_s)は(mm)
[Claims] When 50% or more of the total oxygen is blown into the molten material consisting of molten iron and molten slag in a converter-type reaction vessel capable of top-bottom blowing from an upper lance, the amount of molten slag is constantly controlled. (1), and the amount of residual carbonaceous materials dispersed and floating in the molten slag is always in relation to the amount of molten slag (kg), and the condition of (2) is satisfied, and the amount of residual carbonaceous material dispersed and suspended in the molten slag is A method for operating an iron bath smelting reduction furnace, characterized in that the depth L_s of the produced cavity always satisfies the condition of equation (3) in relation to the thickness of the molten slag layer. Amount of molten slag ≧500kg/m^2...(1) However, the amount of molten slag is calculated by dividing the amount of molten slag in the furnace (kg) by the cross-sectional area of the furnace (m^2).The amount of residual carbon in the furnace (kg) )>Amount of molten slag (kg) x 0.
05...(2) Molten slag cavity (L_s) <0.7...(3) Molten slag thickness (H_s) However, (L_s) and (H_s) are (mm)
JP7586488A 1988-03-31 1988-03-31 Method for operating iron bath type smelting reduction furnace Pending JPH01252710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7586488A JPH01252710A (en) 1988-03-31 1988-03-31 Method for operating iron bath type smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7586488A JPH01252710A (en) 1988-03-31 1988-03-31 Method for operating iron bath type smelting reduction furnace

Publications (1)

Publication Number Publication Date
JPH01252710A true JPH01252710A (en) 1989-10-09

Family

ID=13588544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7586488A Pending JPH01252710A (en) 1988-03-31 1988-03-31 Method for operating iron bath type smelting reduction furnace

Country Status (1)

Country Link
JP (1) JPH01252710A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU629681B2 (en) * 1989-09-04 1992-10-08 Nippon Steel Corporation Method of operating in-bath smelting reduction furnace
WO1997035038A1 (en) * 1996-03-22 1997-09-25 Steel Technology Corporation Stable operation of a smelter reactor
JP2017020071A (en) * 2015-07-10 2017-01-26 新日鐵住金株式会社 Iron oxide-containing iron raw material reduction/melting method, and oxygen blowing lance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU629681B2 (en) * 1989-09-04 1992-10-08 Nippon Steel Corporation Method of operating in-bath smelting reduction furnace
WO1997035038A1 (en) * 1996-03-22 1997-09-25 Steel Technology Corporation Stable operation of a smelter reactor
US6171364B1 (en) 1996-03-22 2001-01-09 Steel Technology Corporation Method for stable operation of a smelter reactor
JP2017020071A (en) * 2015-07-10 2017-01-26 新日鐵住金株式会社 Iron oxide-containing iron raw material reduction/melting method, and oxygen blowing lance

Similar Documents

Publication Publication Date Title
CA2010357C (en) Method for smelting reduction of ni ore
JP4745731B2 (en) Method of melting hot metal with cupola
US4988079A (en) Apparatus for smelting and reducing iron ores
EP1511871B1 (en) Refining ferroalloys
JPH01252710A (en) Method for operating iron bath type smelting reduction furnace
JP3752051B2 (en) Scrap melting method and scrap melting lance
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JPS609815A (en) Production of high chromium alloy by melt production
JP4120161B2 (en) Operation method of iron bath smelting reduction furnace
JP2983087B2 (en) Operation method of smelting reduction
JPS6169944A (en) Manufacture by melting and reducing of ferrochrome
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPH01195211A (en) Method for melting and reducing iron oxide
JPS62116712A (en) Melting and smelting vessel having splash lance
JP3509128B2 (en) Operating method of converter type smelting reduction furnace and oxygen blowing lance
JPH02282410A (en) Smelting reduction method for ore
JPH0433844B2 (en)
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
SU729251A1 (en) Method of steel casting in hearth steel-melting set
JPH01283312A (en) Method for melting iron-contained cold material
JPH06172839A (en) Operation of converter type smelting reduction furnace
JPS62247013A (en) Apparatus for producing molten ferrous metal
JPH01172504A (en) Smelting reduction method for cr raw ore
JPH032312A (en) Production of low-phosphorus pig iron
JP2011219818A (en) Dephosphorizing method