JP2541200B2 - Converter for preventing melting of furnace wall due to high temperature gas - Google Patents

Converter for preventing melting of furnace wall due to high temperature gas

Info

Publication number
JP2541200B2
JP2541200B2 JP30336686A JP30336686A JP2541200B2 JP 2541200 B2 JP2541200 B2 JP 2541200B2 JP 30336686 A JP30336686 A JP 30336686A JP 30336686 A JP30336686 A JP 30336686A JP 2541200 B2 JP2541200 B2 JP 2541200B2
Authority
JP
Japan
Prior art keywords
converter
furnace
refractory
blowing
furnace wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30336686A
Other languages
Japanese (ja)
Other versions
JPS63157811A (en
Inventor
武行 平田
稔 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30336686A priority Critical patent/JP2541200B2/en
Publication of JPS63157811A publication Critical patent/JPS63157811A/en
Application granted granted Critical
Publication of JP2541200B2 publication Critical patent/JP2541200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02W30/54

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、高温ガスによる炉壁耐火物の溶損を防止
するに、カロリーの高い排ガスの回収を可能にした転炉
に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a converter capable of recovering exhaust gas having high calories in order to prevent melting damage of a refractory on a furnace wall due to high temperature gas.

<背景技術> 転炉製鋼法の発達に伴い鉄鋼産業に“鉄鋼一貫体制”
が確立されて久しく、鋼の生産能率は飛躍的な向上を遂
げてきたが、近年、世界的に景気の低迷期を迎えるに及
んで鋼の需要も一時の無制限状態から着実な安定化傾向
をたどるようになってきた。
<Background technology> With the development of the converter steelmaking method, the steel industry has a “steel integrated system”
The steel production efficiency has improved dramatically for a long time since its establishment, but with the recent global economic downturn, demand for steel has shown a steady stabilization trend from a temporary unrestricted state. I started to trace.

このようなことから、最近、高炉銑の生産量抑制策が
採られる傾向となり、同時に市中スクラップが大量に出
回ってその価格も安定化してきたこともあって、転炉製
鋼原料としてのスクラップの使用割合を増加し、更に鉄
鉱石やマンガン鉱石をも配合する転炉操業法の確立が検
討され始めてきた。
Because of this, recently, there has been a tendency to take measures to control the production amount of blast furnace pig iron, and at the same time, a large amount of commercial scrap has been circulating and its price has stabilized, so that scrap as a raw material for steelmaking in converter furnaces The establishment of a converter operation method in which the use ratio is increased and iron ore or manganese ore is also compounded has begun to be considered.

中でも、溶銑処理により溶銑の熱源が低下した場合の
スクラップ比率上昇対策や鉄鉱石,マンガン鉱石等の増
配対策等としての“転炉への熱付与技術”が注目を集め
ており、特に「転炉における脱炭操業時に発生したCOガ
スを炉内でCO2ガスにまで燃焼させる“二次燃焼法”に
よって所要熱量を確保するのが最も有効かつ実用的であ
る」として、通常の主送酸ノズルの他にCOガス燃焼用の
O2送給ノズルを配設した上吹ランスを用いて転炉操業を
行う方法や、炉肩部(絞り部)にCOガス燃焼用のO2送給
ノズルを斜め下方に向けて配置した転炉を使用する方法
等、“二次燃焼法”に関する様々な提案がなされてい
る。
Of these, "heat application technology for converters" is attracting attention as a measure for increasing the scrap ratio when the heat source of the hot metal decreases due to hot metal treatment, and for increasing the distribution of iron ore, manganese ore, etc. It is most effective and practical to secure the required amount of heat by the "secondary combustion method" in which the CO gas generated during the decarburization operation in the furnace is burned to CO 2 gas in the furnace. " Besides CO gas combustion
A method of the O 2 delivery nozzle with a spray lance on which is disposed performing converter operation, rolling disposed toward the O 2 delivery nozzle for CO gas combustion obliquely downward Rokata portion (narrowed portion) Various proposals have been made regarding the "secondary combustion method" such as a method using a furnace.

しかしながら、上述のような“二次燃焼法”を採用す
ると、 (a) 炉内での排ガス温度が上昇して耐火物の溶損が
増加する、 (b) 排ガス中のCO含有量が低下するためエネルギー
回収の面で不利である、 等の新たな問題が生じ、操業コストの低減が厳しく問わ
れる転炉製鋼において上記“二次燃焼法”の実用化が達
成されたとは決して言い難い状況にあった。
However, when the "secondary combustion method" as described above is adopted, (a) the temperature of the exhaust gas in the furnace rises and the melting loss of the refractory increases, and (b) the CO content in the exhaust gas decreases. Therefore, it is difficult to say that the above-mentioned "secondary combustion method" has been put to practical use in converter steelmaking, where new problems such as energy recovery are disadvantageous, and the reduction of operating costs is strictly demanded. there were.

しかも、このような“二次燃焼法”を積極的に促進し
ない場合でも、操業時の転炉内排ガス温度は1800℃前後
となるためにやはり耐火物溶損の懸念は絶えず付きまと
っており、その十分な対策が待ち望まれていたのであ
る。
Moreover, even if such a "secondary combustion method" is not actively promoted, the exhaust gas temperature in the converter during operation is around 1800 ° C, so there is a constant concern of refractory melting loss. Sufficient measures were eagerly awaited.

<問題点を解決するための手段> 本発明者等は、上述のような観点から、通常操業時は
もとより、二次燃焼比率を上昇させた操業時においても
炉内耐火物の溶損を殆んど生じることがなく、しかもエ
ネルギー回収率の点でも十分に満足し得る転炉を提供す
べく鋭意研究を重ねた結果、以下に示されるような知見
を得たのである。即ち、 A) 何れの形式の転炉であっても同様であるが、炉内
高温排ガスが直接接触する部位の耐火物内面に炭素質物
質をコーティングすると、高温排ガス中のCO2が前記炭
素質物質コーティング中のCと C+CO2→2CO なる吸熱反応を起こして耐火物近傍の温度を低下させる
こと、 B) この吸熱反応による耐火物近傍の温度低下は耐火
物溶損の防止に十分なものであり、これによって二次燃
焼比率を上昇させた転炉操業を行ったとしても炉内耐火
物の溶損は顕著に抑制されること、 C) しかも、前記吸熱反応によって排ガス中のCOガス
が増加するので排ガスのカロリーが上昇し、エネルギー
回収の点からも極めて有利となること、 D) 更に、耐火物内面に炭素質物質をコーティングす
ることに加えて転炉の炉口下部に羽口を設け、転炉操業
時に該羽口から炭素質物質粉末を吹き込むと、この炭素
質物質粉末中のCも高温排ガス中のCO2と前記式で示し
た吸熱反応を起こして炉内耐火物近傍の温度を低下する
ので、耐火物の溶損防止効果が一段と向上し、排ガスの
カロリーも一層上昇すること。
<Means for Solving Problems> From the viewpoints described above, the present inventors have found that the melting loss of the refractory in the furnace is almost eliminated not only during the normal operation but also during the operation in which the secondary combustion ratio is increased. As a result of intensive studies to provide a converter that rarely occurs and the energy recovery rate is sufficiently satisfied, the following findings were obtained. That is, A) the same applies to any type of converter, but when a carbonaceous material is coated on the inner surface of the refractory material at the portion where the high temperature exhaust gas in the furnace is in direct contact, CO 2 in the high temperature exhaust gas becomes C in the material coating causes an endothermic reaction of C + CO 2 → 2CO to lower the temperature in the vicinity of the refractory, B) The temperature decrease in the vicinity of the refractory due to this endothermic reaction is sufficient to prevent melting of the refractory. Yes, the melting loss of the refractory in the furnace is remarkably suppressed even if the converter operation is performed with the secondary combustion ratio increased. C) Moreover, the CO gas in the exhaust gas increases due to the endothermic reaction. Therefore, the calorie of the exhaust gas increases, which is extremely advantageous from the viewpoint of energy recovery. D) Furthermore, in addition to coating the carbonaceous material on the inner surface of the refractory, a tuyere is provided at the lower part of the furnace mouth of the converter. , Converter operation In the blowing carbonaceous material powder from該羽port, since the lower the temperature of the furnace refractories vicinity undergoes an endothermic reaction shown C of the carbonaceous material powder also CO 2 in the high-temperature exhaust gas by the formula , The refractory material melting prevention effect is further improved, and the calorie of exhaust gas is further increased.

この発明は、上記知見に基づいてなされたものであ
り、 「第1図に示されるように、炉壁1内面の高温ガスに
曝される部位を炭素質物質でコーティング2して転炉
(転炉の基本的な形式は特定されるものではない)を構
成するか、或いは第2図に示されるように、炉壁1内面
の高温ガスに曝される部位を炭素質物質でコーティング
2すると共に、炉口3の下部に炭素質物質粉末吹き込み
用羽口4を設けて転炉を構成することにより、高温ガス
による炉内耐火物の溶損を効果的に防止し、かつカロリ
ーの高い排ガスの回収を可能ならしめた」点、 に特徴を有するものである。
The present invention has been made based on the above findings. "As shown in Fig. 1, a portion of the inner surface of the furnace wall 1 exposed to high-temperature gas is coated with a carbonaceous substance 2 to form a converter (converter). The basic form of the furnace is not specified), or, as shown in FIG. 2, the part of the inner surface of the furnace wall 1 exposed to the high temperature gas is coated 2 with a carbonaceous material. By constructing the converter by providing the tuyere 4 for blowing carbonaceous material powder in the lower part of the furnace mouth 3, it is possible to effectively prevent melting damage of the refractory in the furnace due to high temperature gas, and The feature is that "the collection is possible".

ここで、第1図並びに第2図において、符号5で示さ
れるものは上吹酸素ランス、6は底吹羽口、7はスラ
グ、そして8は溶銑又は溶鋼をそれぞれ示す。
Here, in FIGS. 1 and 2, reference numeral 5 indicates a top blowing oxygen lance, 6 a bottom blowing tuyer, 7 a slag, and 8 hot metal or molten steel, respectively.

なお、前記「炉壁内面の高温ガスに曝される部位」と
は格別に特定されるものではないが、通常は第1図或い
は第2図で示したような炉口下部付近がこれに該当す
る。また、コーティング層を形成する炭素質物質として
はークスや石炭粉等をあげることができ、コーティング
には、前記炭素質物質粉末をバインダー及び水分と混合
した後吹き付けして炉壁を構成する耐火物の所要部位内
面に塗布する等の手段を採用すれば良い。そして、炭素
質物質吹き込み用羽口から吹き込む炭素質物質としては
コークス粉或いは石炭粉等の平均粒径:0.125mm程度の粉
末が好適である。
It should be noted that the above-mentioned "site exposed to high-temperature gas on the inner surface of the furnace wall" is not particularly specified, but usually the vicinity of the lower part of the furnace opening as shown in FIG. 1 or 2 corresponds to this. To do. Further, as the carbonaceous substance forming the coating layer, there can be mentioned, for example, coals and coal powder, and the coating is a refractory material which constitutes the furnace wall by spraying after mixing the carbonaceous substance powder with a binder and water. Means such as coating on the inner surface of the required site may be adopted. Then, as the carbonaceous substance blown from the tuyere for blowing the carbonaceous substance, powder having an average particle diameter of about 0.125 mm such as coke powder or coal powder is suitable.

ところで、炉口の下部に炭素質物質吹き込み用羽口を
設ける場合には、第2図で示す炉底からの高さ〔HL〕を 0.6HV≦HL≦0.9HV (但し、HVは炉底から炉口までの高さ) の範囲とし、また該羽口の水平角度〔θ〕を −15゜≦θ≦15゜ 範囲に設定するのが良い。なぜなら、炭素質物質吹き込
み用羽口の高さ〔HL〕が炉底から炉口までの高さ〔HV
の0.6倍未満であったり、羽口の水平角度〔θ〕が−15
゜を下回ると、排ガス温度の低下によって溶鉄・スラグ
への熱供給が不足がちとなり、一方、前記高さHLが0.9H
Vを越えたり、〔θ〕が15゜を上回ると炉内排ガス温度
を低下させる効果が不十分となって羽口設置に見合う耐
火物溶損防止効果の向上が期待できなくなるからであ
る。
By the way, when the tuyere for blowing carbonaceous material is provided in the lower part of the furnace mouth, the height [H L ] from the furnace bottom shown in Fig. 2 is 0.6H V ≤H L ≤0.9H V (however, H V is the range from the bottom to the height of the furnace), and the horizontal angle [θ] of the tuyere is preferably set within the range of −15 ° ≦ θ ≦ 15 °. This is because the height of the tuyeres blowing carbonaceous material [H L] is the height from the furnace bottom to the furnace opening [H V]
Is less than 0.6 times, or the tuyere horizontal angle [θ] is -15
If the temperature falls below °, the heat supply to the molten iron / slag tends to be insufficient due to the decrease in exhaust gas temperature, while the height H L is 0.9H.
This is because if V is exceeded or [θ] exceeds 15 °, the effect of lowering the temperature of exhaust gas in the furnace becomes insufficient, and improvement in the refractory melt damage prevention effect commensurate with installation of tuyere cannot be expected.

次いで、この発明を実施例により具体的に説明する。 Next, the present invention will be specifically described with reference to examples.

<実施例> 実施例 1 第1図に示すような10トン上・底両吹きの複合吹錬転
炉の炉壁内面の耐火物表面に、炉口から1/2 HVの深さに
亘って5mmの厚さでC:85%,SiO2:5.2%及びAl2O3:3.1%
を含む炭素質粉末を塗布し、この転炉を使用して 溶銑量:8000kg、 溶銑温度:1280〜1295℃、 使用上吹酸素ランス:12φ×6孔×15゜、 吹錬時間:15分 なる条件で脱燐溶銑の脱炭処理を行った。
To <Example> Example 1 refractory surfaces of the furnace wall inner surface of the first on 10 tons, as shown in FIG Bottom both blown composite blowing converter, extending from throat to a depth of 1/2 H V With a thickness of 5 mm, C: 85%, SiO 2 : 5.2% and Al 2 O 3 : 3.1%
Applying carbonaceous powder containing this, and using this converter, the amount of hot metal: 8000kg, hot metal temperature: 1280 ~ 1295 ℃, use blow oxygen lance: 12φ x 6 holes x 15 °, blowing time: 15 minutes The dephosphorized hot metal was decarburized under the conditions.

一方、比較のため、炭素質物質粉末を内面に塗布しな
かった以外は上記と同様の従来の上・底両吹き複合吹錬
転炉を使用し、同様条件で脱燐溶銑の脱炭処理をも実施
した。
On the other hand, for comparison, the same conventional top / bottom double-blown combined blowing converter was used, except that the carbonaceous material powder was not applied to the inner surface, and the decarburization treatment of the dephosphorized hot metal was performed under the same conditions. Also carried out.

このときの炉口下部における耐火物表面最高到達温
度、耐火物の溶損量、並びに炉内排ガス成分の測定値を
第1表に示した。なお、耐火物の表面温度は、耐火物表
面より3mmの深さに熱電対をセットして測定した。
Table 1 shows the maximum temperature reached by the refractory surface at the lower part of the furnace opening, the melting loss of the refractory material, and the measured values of the exhaust gas components in the furnace. The surface temperature of the refractory was measured by setting a thermocouple at a depth of 3 mm from the surface of the refractory.

第1表に示される結果からも、炭素質物質を炉壁内面
にコーティングした本発明に係る転炉を使用すると、従
来の転炉を使用した場合に比べて耐火物の溶損量を著し
く低減できることが明らかである。
From the results shown in Table 1, when the converter according to the present invention in which the inner surface of the furnace wall is coated with the carbonaceous material is used, the melting loss of the refractory material is significantly reduced as compared with the case where the conventional converter is used. It is clear that you can.

実施例 2 第1図に示すような10トン上・底両吹きの複合吹錬転
炉の炉壁内面の耐火物表面に、炉口から1/2 HVの深さに
亘って3mmの厚さでC:85%,SiO2:5.2%及びAl2O3:3.1%
を含む炭素質粉末を塗布すると共に、炉の上部に炭素質
物質粉末吹き込み用羽口を設置し(HL=0.8HV、θ=10
゜)、この転炉を使用して炭素質物質粉末吹き込み用羽
口から粉コークス(−60メッシュ、C量:88%)を吹き
込みつつ(吹き込み量:60kg)、 溶銑量:8000kg、 溶銑温度:1290〜1310℃、 使用上吹酸素ランス:14φ×3孔×10゜及び9φ×6孔
×20゜、 吹錬時間:15分 なる条件で脱燐溶銑の脱炭処理を行った。
The refractory surface of the oven wall inner surface in Example 2 first on 10 tons, as shown in FIG Bottom both blown composite blowing converter, the thickness of 3mm over the throat depth of 1/2 H V 85%, SiO 2:: C with is 5.2% and the Al 2 O 3: 3.1%
The carbonaceous powder containing carbon is applied and the tuyere for blowing carbonaceous material powder is installed on the upper part of the furnace ( HL = 0.8H V , θ = 10
゜), using this converter while blowing coke powder (-60 mesh, C content: 88%) from the tuyere for carbonaceous material powder blowing (blowing amount: 60 kg), hot metal amount: 8000 kg, hot metal temperature: The dephosphorized hot metal was decarburized under the conditions of 1290 to 1310 ° C., blowing oxygen lance after use: 14φ × 3 holes × 10 ° and 9φ × 6 holes × 20 °, and blowing time: 15 minutes.

一方、比較のため、炭素質物質粉末を内面に塗布せ
ず、しかも炭素質物質粉末吹き込み用羽口を設置しなか
った以外は上記と同様の従来の上・底両吹き複合吹錬転
炉を使用し、同様条件で脱燐溶銑の脱炭処理をも実施し
た。
On the other hand, for comparison, the conventional top / bottom double-blown composite blowing converter similar to the above except that the carbonaceous material powder was not applied to the inner surface and the tuyere for blowing the carbonaceous material powder was not installed. The dephosphorized hot metal was also decarburized under the same conditions.

このときの炉口下部における耐火物表面最高到達温
度、耐火物の溶損量、並びに炉内排ガス成分の測定値を
第2表に示した。なお、耐火物の表面温度は、実施例1
と同様、耐火物表面より3mmの深さに熱電対をセットし
て測定した。
Table 2 shows the maximum reached temperature of the refractory surface at the lower part of the furnace opening, the melting loss of the refractory material, and the measured values of the exhaust gas components in the furnace. In addition, the surface temperature of the refractory material is the same as in Example 1.
In the same manner as above, a thermocouple was set at a depth of 3 mm from the surface of the refractory material for measurement.

第2表に示される結果からも、炭素質物質を炉壁内面
にコーティングすると共に、炭素質物質粉末吹き込み用
羽口を設置した本発明に係る転炉を使用すると、従来の
転炉を使用した場合に比べて耐火物の溶損量を著しく低
減できるばかりか、同時に排ガス中のCO量も上昇させる
ことができ、エネルギー回収面での効果も十分に期待し
得ることも明らかである。
Also from the results shown in Table 2, when the carbonaceous material was coated on the inner surface of the furnace wall and the converter according to the present invention in which the tuyere for blowing carbonaceous material powder was installed was used, the conventional converter was used. It is apparent that not only the melting loss of refractory materials can be significantly reduced, but also the amount of CO in exhaust gas can be increased at the same time, and an effect in terms of energy recovery can be expected sufficiently.

実施例 3 第1図に示すような10トン上・底両吹きの複合吹錬転
炉の炉壁内面の耐火物表面に、炉口から1/2 HVの深さに
亘って7mmの厚さでC:85%,SiO2:5.2%及びAl2O3:3.1%
を含む炭素質粉末を塗布した。
The refractory surface of the oven wall inner surface of the Example 3 on 10 tons, as shown in FIG. 1, the bottom two-blown composite blowing converter, the thickness of 7mm over the throat depth of 1/2 H V 85%, SiO 2:: C with is 5.2% and the Al 2 O 3: 3.1%
Was applied.

次いで、この転炉を用い、脱燐銑を種湯として5000kg
のクロム鉱石(全Cr量:31%、全Fe量:20.6%)を溶融還
元した。このときの転炉操業条件は 種湯溶銑量:5000kg、 種湯溶銑温度:1250℃、 最終溶銑温度:1600℃、 使用上吹酸素ランス:12φ×6孔×15゜、 吹錬時間:130分 であった。
Then, using this converter, 5000 kg of dephosphorized pig iron as seed water
The chromium ore (total Cr content: 31%, total Fe content: 20.6%) was melt-reduced. The operating conditions of the converter at this time are as follows: Hot metal hot metal amount: 5000kg, Hot metal hot metal temperature: 1250 ℃, Final hot metal temperature: 1600 ℃, Blowing oxygen lance: 12φ × 6 holes × 15 °, Blowing time: 130 minutes Met.

一方、比較のため、炭素質物質粉末を内面に塗布しな
かった以外は上記と同様の従来の上・底両吹き複合吹錬
転炉を使用し、同様条件でクロム鉱石の還元処理を実施
した。
On the other hand, for comparison, the same conventional top / bottom double-blown combined blowing converter was used, except that the carbonaceous material powder was not applied to the inner surface, and the reduction treatment of chromium ore was carried out under the same conditions. .

このときの炉口下部における耐火物表面最高到達温
度、耐火物の溶損量、並びに炉内排ガス成分の測定値を
第3表に示した。なお、耐火物の表面温度は、耐火物表
面より5mmの深さに熱電対をセットして測定した。
Table 3 shows the maximum reached temperature of the refractory surface at the lower part of the furnace mouth, the melting loss of the refractory material, and the measured values of the exhaust gas components in the furnace. The surface temperature of the refractory was measured by setting a thermocouple at a depth of 5 mm from the surface of the refractory.

第3表に示される結果からも明らかなように、この場
合にも、炭素質物質を炉壁内面にコーティングした本発
明に係る転炉を使用すると従来の転炉を使用した場合に
比べて耐火物の溶損量を著しく低減できることが分か
る。
As is clear from the results shown in Table 3, in this case as well, when the converter according to the present invention in which the inner surface of the furnace wall is coated with the carbonaceous material is used, the fire resistance is higher than that in the case where the conventional converter is used. It can be seen that the melting loss of the material can be significantly reduced.

<効果の総括> 上述のように、この発明によれば、既存の転炉をその
まま使用して炉壁耐火物の溶損が極力少なく、またカロ
リーの高い排ガスの回収が可能な転炉を提供することが
でき、転炉操業効率の一層の向上、そして転炉操業コス
トの更なる低減を実現することが可能となるなど、産業
上極めて有用な効果がもたらされるのである。
<Summary of Effects> As described above, according to the present invention, the existing converter is used as it is to provide a converter capable of recovering exhaust gas having a high calorie with minimal melting loss of the refractory of the furnace wall refractory. Therefore, it is possible to further improve the converter operating efficiency, and further reduce the converter operating cost, which brings about an extremely useful effect in the industry.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る「炉壁内面に炭素質物質コーテ
ィングを有する転炉」の一例を示す概略模式図、 第2図は、本発明に係る「炉壁内面に炭素質物質コーテ
ィングを有すると共に、炭素質物質粉末吹き込み用羽口
を備えた転炉」の一例を示す概略模式図である。 図面において、 1……炉壁、2……炭素質物質コーティング層、 3……炉口、 4……炭素質物質粉末吹き込み用羽口、 5……上吹酸素ランス、6……底吹羽口、 7……スラグ、8……溶銑又は溶鋼。
FIG. 1 is a schematic diagram showing an example of “a converter having a carbonaceous material coating on the inner surface of the furnace wall” according to the present invention, and FIG. 2 is a “schematic coating of carbonaceous material on the inner surface of the furnace wall” according to the present invention. FIG. 1 is a schematic diagram showing an example of a “converter having a tuyere for blowing carbonaceous material powder”. In the drawing, 1 ... furnace wall, 2 ... carbonaceous material coating layer, 3 ... furnace mouth, 4 ... tuyere for blowing carbonaceous material powder, 5 ... top blowing oxygen lance, 6 ... bottom blowing Mouth, 7 ... slag, 8 ... hot metal or molten steel.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炉壁内面の高温ガスに曝される部位を炭素
質物質でコーティングして成ることを特徴とする、高温
ガスによる炉壁溶損を防止した転炉。
1. A converter for preventing melting of a furnace wall due to a high temperature gas, characterized by coating a portion of the inner surface of the furnace wall exposed to the high temperature gas with a carbonaceous material.
【請求項2】炉壁内面の高温ガスに曝される部位を炭素
質物質でコーティングすると共に、炉口の下部に炭素質
物質粉末吹き込み用羽口を設けて成ることを特徴とす
る、高温ガスによる炉壁溶損を防止した転炉。
2. A high temperature gas, characterized in that a portion exposed to the high temperature gas on the inner surface of the furnace wall is coated with a carbonaceous material, and a tuyere for blowing carbonaceous material powder is provided at the lower part of the furnace mouth. Converter that prevents melting damage to the furnace wall.
JP30336686A 1986-12-19 1986-12-19 Converter for preventing melting of furnace wall due to high temperature gas Expired - Fee Related JP2541200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30336686A JP2541200B2 (en) 1986-12-19 1986-12-19 Converter for preventing melting of furnace wall due to high temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30336686A JP2541200B2 (en) 1986-12-19 1986-12-19 Converter for preventing melting of furnace wall due to high temperature gas

Publications (2)

Publication Number Publication Date
JPS63157811A JPS63157811A (en) 1988-06-30
JP2541200B2 true JP2541200B2 (en) 1996-10-09

Family

ID=17920125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30336686A Expired - Fee Related JP2541200B2 (en) 1986-12-19 1986-12-19 Converter for preventing melting of furnace wall due to high temperature gas

Country Status (1)

Country Link
JP (1) JP2541200B2 (en)

Also Published As

Publication number Publication date
JPS63157811A (en) 1988-06-30

Similar Documents

Publication Publication Date Title
JP2007177295A (en) Method for producing molten iron
GB2065711A (en) Steel making process
JP2541200B2 (en) Converter for preventing melting of furnace wall due to high temperature gas
JP3236737B2 (en) Operating method of vertical iron scrap melting furnace
US4412862A (en) Method for the production of ferrochromium
JP2983087B2 (en) Operation method of smelting reduction
JP2933809B2 (en) Operating method of moving bed type scrap melting furnace
JPS62127413A (en) Raw material charging method for blast furnace
JP2837282B2 (en) Production method of chromium-containing hot metal
JP2783894B2 (en) Iron bath smelting reduction method
JP2725466B2 (en) Smelting reduction steelmaking method
JPH0778251B2 (en) Direct iron making method using vertical furnace
JPH0524961B2 (en)
JPS63176407A (en) Production of molten iron
JP3577365B2 (en) Hot metal pretreatment method
JPH05295410A (en) Method for operating blast furnace
WO1997012066A1 (en) Chromium ore smelting reduction process
JPS6167708A (en) Refining method of iron alloy
JPH02282410A (en) Smelting reduction method for ore
JPH06102808B2 (en) Melt reduction method
JP3509128B2 (en) Operating method of converter type smelting reduction furnace and oxygen blowing lance
JP3645621B2 (en) Hot metal pretreatment method
US3498783A (en) Method of refining a carbonaceous metal
JPH01252710A (en) Method for operating iron bath type smelting reduction furnace
JPH0723503B2 (en) Hot metal manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees