JPH06102808B2 - Melt reduction method - Google Patents

Melt reduction method

Info

Publication number
JPH06102808B2
JPH06102808B2 JP61029001A JP2900186A JPH06102808B2 JP H06102808 B2 JPH06102808 B2 JP H06102808B2 JP 61029001 A JP61029001 A JP 61029001A JP 2900186 A JP2900186 A JP 2900186A JP H06102808 B2 JPH06102808 B2 JP H06102808B2
Authority
JP
Japan
Prior art keywords
secondary combustion
iron
bath
furnace
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61029001A
Other languages
Japanese (ja)
Other versions
JPS62188712A (en
Inventor
治良 田辺
純一 福味
正弘 川上
健三 山田
克博 岩崎
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP61029001A priority Critical patent/JPH06102808B2/en
Publication of JPS62188712A publication Critical patent/JPS62188712A/en
Publication of JPH06102808B2 publication Critical patent/JPH06102808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は鉄鉱石から直接溶鉄を製造する溶融還元法、
特に鉄鉱石の還元を高効率で行なう方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a smelting reduction method for directly producing molten iron from iron ore,
Particularly, it relates to a method for highly efficiently reducing iron ore.

〔従来の技術〕 従来の鉄鉱石から鋼を得る代表的な方法は、高炉法と転
炉法とを組み合せた方法である。この方法は高炉により
鉄鉱石を還元して銑鉄を得たのち、この銑鉄を転炉で脱
炭して鋼を得るいわゆる間接法である。
[Prior Art] A typical method of obtaining steel from conventional iron ore is a method combining a blast furnace method and a converter method. This method is a so-called indirect method in which iron ore is reduced by a blast furnace to obtain pig iron, and then this pig iron is decarburized in a converter to obtain steel.

しかし、この間接法には現在次のような問題がある。However, this indirect method currently has the following problems.

高炉に使用するコークスは強粘結炭を使用しているが
世界的な強粘結炭の需要増大にともない、強粘結炭の入
手面に不安があると同時に価格が高騰する一方である。
The coke used in the blast furnace uses strong coking coal, but with the worldwide increase in demand for strong coking coal, there is concern about the availability of strong coking coal and at the same time the price is rising.

コークス製造のためのコークス炉が必要であり、燃料
費も多く必要とする。
A coke oven for coke production is required, and fuel costs are high.

効率を高めるため、高炉に装入する鉄鉱石を焼結する
ための高価な焼結設備を必要とする。
To increase efficiency, expensive sintering equipment is required to sinter the iron ore loaded into the blast furnace.

このため間接法の改善提案がなされると同時に、間接法
に代る製鋼法として高炉を使用しない直接溶融還元法の
開発がいくつか進められている。
For this reason, improvements to the indirect method have been proposed, and at the same time, several direct smelting reduction methods that do not use blast furnaces have been developed as alternative steel manufacturing methods to the indirect method.

しかし、直接溶融還元法は石炭の消費量の増加を防ぐた
め、予備還元炉を使用するミドレツクス法(Midrex法)
等の還元鉄製造プロセスを組込む必要があり、設備費が
高価となり現段階では実用に至つていない。
However, the direct smelting reduction method uses a midrex method (Midrex method) that uses a preliminary reduction furnace to prevent an increase in coal consumption.
Since it is necessary to incorporate a reduced iron manufacturing process such as the above, the equipment cost is high and it has not been put to practical use at this stage.

また、予備還元炉を使用せずに鉄鉱石を直接還元して鋼
を得る直接溶融還元法には、冶金学的に次の問題があ
る。
Further, the direct smelting reduction method of directly reducing iron ore to obtain steel without using a preliminary reduction furnace has the following metallurgical problems.

転炉等の鉄浴型製錬炉利用して炉内に鉄浴を形成し、こ
の鉄浴に鉄鉱石を投入して還元せしめ、次第に増加する
鉄浴を連続的あるいは間欠的に抜き出して鋼又は溶銑を
製造する場合、鉄鋼石を還元するためには還元剤が必要
であり、鉄浴を還元剤として利用するに際しては鉄浴の
還元ポテンシヤルが高いことが条件となる。
An iron bath type smelting furnace such as a converter is used to form an iron bath in the furnace, iron ore is added to the iron bath to reduce it, and the gradually increasing iron bath is continuously or intermittently withdrawn to obtain steel. Alternatively, when producing hot metal, a reducing agent is required to reduce iron ore, and when the iron bath is used as the reducing agent, it is a condition that the reduction potential of the iron bath is high.

しかし抜き出すべき鉄浴は常識的に炭素含有量〔C〕が
1%未満であり、高炉の炭素含有量〔C〕が4%程度の
浴と比較して還元ポテンシヤルが低く、鉄浴上に装入さ
れた鉄鉱石は鉄浴上で溶解しても速やかに還元されな
い。このため鉄鉱石と石炭を酸素転炉内に装入して、鉄
鉱石より直接溶鋼を得る方法も種々試みられている。
However, it is common sense that the iron bath to be extracted has a carbon content [C] of less than 1% and has a lower reduction potential than that of a blast furnace with a carbon content [C] of about 4%. The iron ore put in is not immediately reduced even if it dissolves in the iron bath. For this reason, various methods have been tried in which iron ore and coal are charged into an oxygen converter to directly obtain molten steel from the iron ore.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記鉄鉱石と石炭を鉄浴型製錬炉内に投入して鉄鉱石か
ら直接溶鋼又は溶銑を得る方法は、いずれの場合も高炉
による還元溶銑には経済的に、はるかに及ばないという
問題点がある。
The method in which the iron ore and coal are put into an iron bath type smelting furnace to directly obtain molten steel or hot metal from the iron ore is economically far from reduced hot metal in a blast furnace, which is a problem. There is.

特に通常転炉操業並みのほとんど二次燃焼なしの条件下
では、C+1/2O2→COの反応熱約2200kcal/Eg・℃しか期
待できず、石炭原単位2000kcal/Tをこえる。さらに転炉
内で吹錬中の1次燃焼C+O→COにより発生するCOガス
が鉄浴湯面上方において水冷ランスからの酸素ジエツト
と反応し と2次燃焼を行なつている場合もあるが、この2次燃焼
によつて発生する熱がガスとして発散してしまうと同時
に、ランスを冷却水により抜熱が大きく、鉄浴への高着
熱を妨げているためである。
In particular, under the condition of almost no secondary combustion, which is equivalent to normal converter operation, the reaction heat of C + 1 / 2O 2 → CO can be expected to be only about 2200 kcal / Eg · ° C, which exceeds 2000 kcal / T of coal. Further, the CO gas generated by the primary combustion C + O → CO during blowing in the converter reacts with the oxygen jet from the water cooling lance above the surface of the iron bath. In some cases, the heat generated by this secondary combustion is dissipated as a gas, and at the same time, the lance removes a large amount of heat from the cooling water, so that the iron bath is highly adhered. This is because it blocks heat.

又、従来は2次燃焼により発生し熱の強制着熱は考えら
れていなく、(CO2+H2O)/(CO+CO2+H2+H2O)で表
はされる2次燃焼比が高くなると、第5図に示すように
着熱効率が低下して2次燃焼熱を有効に活用できないた
めでもある。これは、二次燃焼反応CO+1/2O2=CO2によ
り、約5600kcal/kgfcの一次燃焼の2倍以上の発熱が生
じ、入熱が飛躍的に増大するのに対し、伝熱面積や熱伝
達が、従来の転炉と同様であれば、着熱効率が低下せざ
るを得ず、ガス温度が2千数百度℃の非常に高い温度か
らあまり下がらずに炉上部より発生する。
Further, conventionally, forced heat generation due to secondary combustion is not considered, and if the secondary combustion ratio expressed by (CO 2 + H 2 O) / (CO + CO 2 + H 2 + H 2 O) increases, This is also because the heat deposition efficiency is lowered as shown in FIG. 5 and the secondary combustion heat cannot be effectively utilized. This is because the secondary combustion reaction CO + 1 / 2O 2 = CO 2 generates heat more than twice that of the primary combustion of about 5600 kcal / kgfc, and the heat input increases dramatically, while the heat transfer area and heat transfer However, if it is the same as that of the conventional converter, the heat generation efficiency is inevitably lowered, and the gas temperature is generated from the upper part of the furnace without significantly lowering from a very high temperature of 2,000 to several hundred degrees Celsius.

この発明はかかる問題点を解決するためになされたもの
であり、スラグ浴中二次燃焼等による伝熱面積増大によ
り着熱効率を、高めることにより、鉄鉱石から直接に鋼
を経済的に得ることができる溶融還元法を提案すること
を目的とするものである。
The present invention has been made to solve the above problems, and economically obtain steel directly from iron ore by increasing heat transfer efficiency by increasing the heat transfer area by secondary combustion in a slag bath. The purpose is to propose a smelting reduction method capable of

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る溶融還元法は、鉄浴に鉄鉱石及び石炭を
投入し浴鋼又は浴銑を製造する鉄浴型製錬炉底部に設け
た底吹羽口より鉄浴中に酸素を吹き込み1次燃焼を行な
うと同時に、鉄浴の湯面上方の炉側壁に設けた酸素羽口
から2次燃焼用酸素を吹き込み炉内湯面上方に2次燃焼
帯を形成し、この2次燃焼帯に湯面近傍の炉側壁に設け
たスプラツシユ生成用羽口から吹き込むスプラツシユ用
ガスにより生成されるスラグ及び鉄浴を飛ばすことによ
りスラグ浴中二次燃焼等による伝熱面積増大により、着
熱効率の改善を図る方法である。
In the smelting reduction method according to the present invention, oxygen is blown into the iron bath from a bottom blowhole provided at the bottom of an iron bath type smelting furnace for producing iron ore and coal in an iron bath to produce bath steel or hot metal. Simultaneously with the secondary combustion, oxygen for secondary combustion is blown from an oxygen tuyere provided on the side wall of the furnace above the surface of the iron bath to form a secondary combustion zone above the level of the molten metal in the furnace. The heat transfer efficiency is improved by increasing the heat transfer area by secondary combustion in the slag bath by flying the slag and iron bath generated by the splash gas that is blown from the tuyere for splash generation provided on the side wall of the furnace near the surface. Is the way.

〔作用〕[Action]

この発明においては、上吹送酸する水冷ランスに代えて
底吹羽口によつて1次燃焼用の酸素吹き込みを行ない、
水冷ランスによる炉内からの抜熱を防止し、かつ2次燃
焼用の酸素吹き込みにより2次燃焼比の向上を図ると同
時に、2次燃焼帯に液滴のスプラツシユを飛ばすことに
より、2次燃焼によつて発生した熱を液滴に吸収して着
熱効率の向上を図る。
In the present invention, instead of the water-cooled lance that blows up acid, oxygen is blown in for primary combustion by means of the bottom blowhole,
Preventing heat removal from the furnace by the water cooling lance and improving the secondary combustion ratio by blowing oxygen for secondary combustion, and at the same time secondary splashing by splashing droplets in the secondary combustion zone. The heat generated thereby is absorbed by the droplets to improve the heat deposition efficiency.

〔実施例〕〔Example〕

第1図及び第2図はこの発明の一実施例を示し、第1図
は断面図、第2図は平面図である。図において1は鉄浴
型製錬炉としての転炉である。2は転炉1内の鉄浴、3
は転炉1の底部に設けた底吹羽口、4は鉄浴2の湯面2a
上方の炉側壁に設けられた酸素羽口である。酸素羽口4
は吹出口が湯面中央部に向くように形成されている。5
は湯面2の近傍に設けられたスプラツシユ生成用羽口で
ある。なお、反応には実質的に関与しないが、酸素吹込
みにあたっては、その羽口は水冷されたり、羽口周囲よ
り既知の保護ガス(炭化水素系ガス、不活性ガス等)吹
込みにより、羽口保護対策を講ずることは言うまでもな
い。
1 and 2 show an embodiment of the present invention. FIG. 1 is a sectional view and FIG. 2 is a plan view. In the figure, 1 is a converter as an iron bath type smelting furnace. 2 is an iron bath in the converter 1, 3
Is a bottom blowing port provided at the bottom of the converter 1, and 4 is a bath surface 2a of the iron bath 2.
It is an oxygen tuyere provided on the upper side wall of the furnace. Oxygen tuyere 4
Is formed so that the air outlet faces toward the center of the molten metal surface. 5
Is a tuyere for generating splashes provided near the molten metal surface 2. Although it does not substantially participate in the reaction, when blowing oxygen, its tuyere is cooled with water, or by blowing a known protective gas (hydrocarbon gas, inert gas, etc.) around the tuyere, It goes without saying that mouth protection measures will be taken.

上記のように構成した転炉1内に鉄鉱石と石炭を連続投
入し、転炉1の底吹羽口3から鉄浴2中に高圧酸素を吹
き込みC+O→COの1次燃焼を行ない鉄鉱石の還元を行
なう。
Iron ore and coal are continuously charged into the converter 1 configured as described above, high-pressure oxygen is blown into the iron bath 2 from the bottom blowhole 3 of the converter 1, and primary combustion of C + O → CO is performed. To reduce.

このCOガスは底吹羽口から吹き込まれた酸素により の2次燃焼をも行なつているが、この2次燃焼を行なつ
ている2次燃焼帯6に酸素羽口4から酸素を吹き込み、
2次燃焼を促進させ2次燃焼比を向上させて、2次燃焼
により発生する熱量を大とする。
This CO gas is generated by the oxygen blown from the bottom blowing port 2nd combustion is also performed, but oxygen is blown from the oxygen tuyere 4 into the secondary combustion zone 6 that is performing this secondary combustion,
The secondary combustion is promoted, the secondary combustion ratio is improved, and the amount of heat generated by the secondary combustion is increased.

一方、スプラツシユ生成用羽口5から、例えば酸素,ア
ルゴン等のスプラツシユ用ガスを吹き込み鉄浴2及び鉄
浴2の湯面2a上のスラグ(不図示)の一部を液滴7と
し、この液滴7を2次燃焼帯6に飛ばす。2次燃焼帯6
に飛ばされた液滴7は2次燃焼により発生した熱を吸収
し、この熱を鉄浴2に着熱させる。
On the other hand, a gas for splashing, such as oxygen or argon, is blown from the tuyere 5 for generating splashes, and a part of slag (not shown) on the iron bath 2 and the molten metal surface 2a of the iron bath 2 is made into droplets 7, and this liquid Drop 7 is dropped onto secondary combustion zone 6. Secondary combustion zone 6
The droplets 7 blown up to absorb the heat generated by the secondary combustion, and heat this heat to the iron bath 2.

この実施例により、実際転炉1から排出されたガスを分
析して、2次燃焼比に対する着熱効率の変化を調べた結
果を第3図に示す。
FIG. 3 shows the result of analyzing the gas discharged from the actual converter 1 and examining the change in heat deposition efficiency with respect to the secondary combustion ratio in this example.

第3図から明らかなように、2次燃焼比が高くなつても
着熱効率は75%以上となり、2次燃焼燈を効率良く鉄浴
2に着熱させることができる。
As is clear from FIG. 3, even if the secondary combustion ratio is high, the heat-adsorption efficiency is 75% or more, and the secondary combustion lamp can be efficiently heat-heated on the iron bath 2.

なお、上記実施例では酸素羽口4とスプラツシユ生成用
羽口5とを対向させて設けた場合を示したが、第4図に
示すように酸素羽口4とスプラツシユ生成用羽口5を転
炉1の同一側壁に設けて2次燃焼帯6に液滴7を飛ばし
ても、上記実施例と同様な作用を行なうことができる。
In the above embodiment, the oxygen tuyere 4 and the splash producing tuyere 5 are provided so as to face each other. However, as shown in FIG. 4, the oxygen tuyere 4 and the splash producing tuyere 5 are transferred. Even if the droplets 7 are provided on the same side wall of the furnace 1 and fly to the secondary combustion zone 6, the same operation as in the above embodiment can be performed.

さらに上記各実施例ではスプラツシユ生成用羽口5を湯
面2の下方に設けた場合を示したが、スプラツシユ生成
用羽口5を湯面2の上方に設けても2次燃焼帯に液滴7
を飛ばすことができる。
Furthermore, in each of the above-mentioned embodiments, the case where the splashing-forming tuyere 5 is provided below the molten metal surface 2 is shown. However, even if the splashing-generating tuyere 5 is provided above the molten metal surface 2, droplets are generated in the secondary combustion zone. 7
Can be skipped.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明したように、1次燃焼用の酸素吹き
込みに水冷ランスを使用せず底吹羽口を使用することに
より水冷ランスによる抜熱を防止し、かつ2次燃焼用酸
素の2次燃焼帯への吹き込みにより2次燃焼比の向上を
図ることができる。
As described above, the present invention prevents heat removal by the water-cooling lance by using the bottom blowing tuyeres instead of using the water-cooling lance for blowing oxygen for the primary combustion, and prevents the secondary combustion of oxygen for the secondary combustion. The secondary combustion ratio can be improved by blowing into the combustion zone.

また、同時に2次燃焼帯にスラグ及び鉄浴の液滴を飛ば
すことにより、液滴に2次燃焼によつて発生した熱を吸
収して鉄浴に着熱するから着熱効率の向上を図ることが
できる。したがつて、石炭原単位(kg/ton鉄)を大巾に
低減することができる。
Further, by simultaneously flying the slag and the liquid droplets of the iron bath in the secondary combustion zone, the heat generated by the secondary combustion is absorbed by the liquid droplets and heats the iron bath to improve the heat deposition efficiency. You can Therefore, the coal basic unit (kg / ton iron) can be greatly reduced.

また2次燃焼により発生した熱を鉄浴に効率良く着熱す
るから、燃焼生成ガス温度は2千数百℃から浴温度近傍
まで下がり、2次燃焼による炉耐火物の損傷を防止でき
る効果も有する。
In addition, since the heat generated by the secondary combustion is efficiently applied to the iron bath, the temperature of the gas produced by combustion is reduced from 2,000 to several hundred degrees Celsius to around the bath temperature, and the effect of preventing damage to the furnace refractory due to the secondary combustion is also achieved. Have.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例を示す断面図、第2図は上記
実施例の平面図、第3図は上記実施例による2次燃焼比
と着熱効率の特性図、第4図は他の実施例を示す断面
図、第5図は従来の2次燃焼比と着熱効率の特性図であ
る。 1…転炉、2…鉄浴、3…底吹羽口、4…酸素羽口、5
…スプラツシユ生成用羽口、6…2次燃焼帯、7…液
滴。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a plan view of the above embodiment, FIG. 3 is a characteristic diagram of secondary combustion ratio and heat transfer efficiency according to the above embodiment, and FIG. FIG. 5 is a sectional view showing an embodiment, and FIG. 5 is a characteristic diagram of a conventional secondary combustion ratio and heat-transfer efficiency. 1 ... Converter, 2 ... Iron bath, 3 ... Bottom blowing tuyer, 4 ... Oxygen tuyering, 5
... tuyeres for generating splash, 6 ... secondary combustion zone, 7 ... droplets.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄浴に鉄鉱石及び石炭を投入し浴鋼又は浴
銑を製造する鉄浴型製錬炉底部に設けた底吹羽口より鉄
浴中へ酸素を吹き込み1次燃焼を行うと同時に、湯面上
方の炉側壁に設けた酸素羽口から2次燃焼用酸素を吹き
込み炉内湯面上方に2次燃焼帯を形成し、この2次燃焼
帯に湯面近傍の炉側壁に設けたスプラッシュ生成用羽口
から吹き込むスプラッシュ用ガスにより生成されるスラ
グ及び鉄浴の液滴を飛ばすことを特徴とする溶融還元
法。
1. Primary combustion is carried out by blowing oxygen into the iron bath from a bottom blowhole installed in the bottom of an iron bath type smelting furnace for producing iron ore and coal into the iron bath to produce bath steel or bath pig iron. At the same time, oxygen for secondary combustion is blown from an oxygen tuyere provided on the side wall of the furnace above the surface of the molten metal to form a secondary combustion zone above the level of the molten metal inside the furnace, and this secondary combustion zone is provided on the side wall of the furnace near the surface of the molten metal. A smelting reduction method characterized in that the droplets of the slag and iron bath generated by the splash gas blown from the splash-forming tuyere are blown.
JP61029001A 1986-02-14 1986-02-14 Melt reduction method Expired - Lifetime JPH06102808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61029001A JPH06102808B2 (en) 1986-02-14 1986-02-14 Melt reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61029001A JPH06102808B2 (en) 1986-02-14 1986-02-14 Melt reduction method

Publications (2)

Publication Number Publication Date
JPS62188712A JPS62188712A (en) 1987-08-18
JPH06102808B2 true JPH06102808B2 (en) 1994-12-14

Family

ID=12264160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61029001A Expired - Lifetime JPH06102808B2 (en) 1986-02-14 1986-02-14 Melt reduction method

Country Status (1)

Country Link
JP (1) JPH06102808B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765089B2 (en) * 1986-02-18 1995-07-12 日本鋼管株式会社 Smelting reduction method and smelting reduction furnace
NL9101083A (en) * 1991-06-24 1993-01-18 Procornea Holding Bv HOLDER FOR STORING A CONTACT LENS.
AU2003900357A0 (en) 2003-01-24 2003-02-13 Ausmelt Limited An improved smelting process for the production of iron

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128999A (en) * 1984-07-20 1986-02-08 日本電気株式会社 Driving of fluorescent indicator tube

Also Published As

Publication number Publication date
JPS62188712A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
KR20010071627A (en) Direct smelting vessel and direct smelting process
JP4487812B2 (en) Method for producing low phosphorus hot metal
CN103725821A (en) Method for prolonging life of vanadium-and-titanium-containing semi-steel making converter
JPH06102808B2 (en) Melt reduction method
WO2020152945A1 (en) Method for producing low-carbon ferromanganese
JPH0723494B2 (en) Method and apparatus for refining molten metal
JP4120161B2 (en) Operation method of iron bath smelting reduction furnace
US3471283A (en) Reduction of iron ore
JP3158912B2 (en) Stainless steel refining method
JP7036993B2 (en) Method for producing low carbon ferromanganese
JP2002062057A (en) Method for cooling and protecting furnace wall of metallurgical furnace and furnace wall cooling device
JPH06102807B2 (en) Melt reduction method
JPH05195030A (en) Two-area countercurrent smelting equipment system
JPS62188713A (en) Melt reduction steel making method
JP2783894B2 (en) Iron bath smelting reduction method
JPH09272907A (en) Furnace structure in smelting reduction plant
JPS62116712A (en) Melting and smelting vessel having splash lance
JPH06172839A (en) Operation of converter type smelting reduction furnace
JPH01191719A (en) Method for operating smelting reduction furnace
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JP2004204271A (en) Method for recycling dust in converter type refining furnace
JPH01252710A (en) Method for operating iron bath type smelting reduction furnace
JP2541200B2 (en) Converter for preventing melting of furnace wall due to high temperature gas
JPH0586447B2 (en)
JPH02282410A (en) Smelting reduction method for ore