JP2897363B2 - Hot metal production method - Google Patents

Hot metal production method

Info

Publication number
JP2897363B2
JP2897363B2 JP19450190A JP19450190A JP2897363B2 JP 2897363 B2 JP2897363 B2 JP 2897363B2 JP 19450190 A JP19450190 A JP 19450190A JP 19450190 A JP19450190 A JP 19450190A JP 2897363 B2 JP2897363 B2 JP 2897363B2
Authority
JP
Japan
Prior art keywords
furnace
coke
hot metal
amount
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19450190A
Other languages
Japanese (ja)
Other versions
JPH0480313A (en
Inventor
優 宇治澤
博章 石田
一治 花崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19450190A priority Critical patent/JP2897363B2/en
Publication of JPH0480313A publication Critical patent/JPH0480313A/en
Application granted granted Critical
Publication of JP2897363B2 publication Critical patent/JP2897363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は筒型炉を用い、スクラップと鉄鉱石を鉄源
として銑鉄を製造する方法において、送風停止時期およ
び次回装入コークス量を制御して温度および成分の安定
した溶銑を経済的に、かつ安定して製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of manufacturing pig iron using a cylindrical furnace and scrap and iron ore as an iron source, by controlling a blow-off time and an amount of coke charged next time. And a method for economically and stably producing hot metal whose temperature and components are stable.

(従来の技術) 現在、銑鉄はその大部分が高炉によって製造されてい
る。高炉製銑法そのものは、永年にわたる改良が積み重
ねられて鉄銑の大量生産技術としては極めて優れたもの
となっている。しかし、高炉製銑法は、鉄源としては焼
結鉱を、燃料(還元材)としては高品位のコークスを使
用するものであり、利用できる原燃料の制約がある。ま
た、近年の高炉は巨大化し、しかも一旦火入れした後は
停止、再起動が簡単にはできないため、鋼材需要の変動
に応じる柔軟性に乏しい。
(Prior art) At present, most of pig iron is manufactured by a blast furnace. The blast furnace iron making method itself has been continuously improved over the years, and has become extremely excellent as a technology for mass production of iron pig. However, the blast furnace iron making method uses sintered ore as an iron source and high-grade coke as a fuel (reducing material), and there are limitations on the raw fuel that can be used. In addition, blast furnaces in recent years have become enormous, and since they cannot be easily stopped and restarted after they have been fired, they lack flexibility in responding to changes in steel material demand.

上記のような従来の高炉製銑法の問題点を解消すべ
く、本出願人は製鋼用の転炉に類似する筒型炉を使用
し、鉱石とスクラップとを鉄源として用いる新しい製銑
方法を発明し先に特許出願を行った(特開平1−290711
号)。
In order to solve the problems of the conventional blast furnace iron making method as described above, the present applicant uses a cylindrical furnace similar to a converter for steelmaking and uses a new iron making method using ore and scrap as an iron source. And filed a patent application earlier (Japanese Unexamined Patent Publication No. 1-290711).
issue).

上記の銑鉄製造方法では第1図に示すような転炉型式
の筒型炉1を用いる。この筒型炉1は図示のように、炉
上部に炉内ガスの排出と原料装入用の開口部2、炉壁下
部に支燃性ガスと必要に応じて燃料を吹き込む一次羽口
3、その上部炉壁に支燃性ガスを吹き込む二次羽口4、
炉底に溶銑とスラグ8を排出する出銑口5を備えてい
る。
In the above pig iron manufacturing method, a cylindrical furnace 1 of a converter type as shown in FIG. 1 is used. As shown in the drawing, the cylindrical furnace 1 has an opening 2 for discharging gas inside the furnace and charging raw materials at an upper part of the furnace, a primary tuyere 3 for blowing a supporting gas and a fuel as needed at a lower part of the furnace wall, Secondary tuyere 4, injecting a supporting gas into the upper furnace wall,
A tap hole 5 for discharging hot metal and slag 8 is provided at the furnace bottom.

上記筒型炉1を用いて溶銑を製造するには、まず炉内
下部にコークス充填層7を、その上にスクラップ6−1
と鉄鉱石6−2の充填層6を形成させる。そして下部の
コークス層7に一次羽口3から支燃性ガスと必要に応じ
て燃料を吹き込んで下記(1)式の反応を生じさせ、そ
の反応熱によってコークス層7を高温に保つ。
In order to produce hot metal using the cylindrical furnace 1, first, a coke packed bed 7 is provided at a lower part in the furnace, and a scrap 6-1 is placed thereon.
And a filling layer 6 of iron ore 6-2. Then, a combustion supporting gas and, if necessary, fuel are blown into the lower coke layer 7 from the primary tuyere 3 to cause a reaction of the following formula (1), and the heat of the reaction keeps the coke layer 7 at a high temperature.

C+1/2O2→CO+29,400kcal/kmol・C …(1) 上記(1)式で発生したCOは、スクラップと鉄鉱石の
充填層6で二次羽口4から吹きこまれる支燃性ガスと下
記(2)式の反応(二次燃焼)を起こす。その反応熱は
スクラップと鉄鉱石の加熱および溶融に利用される。
C + 1 / 2O 2 → CO + 29,400 kcal / kmol · C (1) The CO generated by the above equation (1) is used as a combustible gas blown from the secondary tuyere 4 at the packed layer 6 of scrap and iron ore. The reaction (secondary combustion) of the following equation (2) occurs. The heat of reaction is used to heat and melt the scrap and iron ore.

CO+1/2O2→CO2+67,590kcal/kmol・CO …(2) この反応で溶融した鉄鉱石(溶融酸化鉄)は下部のコ
ークス層7に滴下して高温のコークスと下記(3)式に
より反応してすみやかに還元される。
CO + 1 / 2O 2 → CO 2 +67,590 kcal / kmol · CO (2) The iron ore (molten iron oxide) melted by this reaction is dropped on the lower coke layer 7 and the high temperature coke and the following formula (3) Reacts immediately after reaction.

Fe2O3+3C→2Fe+3CO −108,090kcal/kmol・Fe2O3 …(3) 上記(3)式の反応のとき、近くにCO2が存在しない
からCO2で(3)式の反応が阻害されることはない。そ
して(1)式および(3)式で発生したCOはスクラップ
と鉄鉱石の充填層6内で二次燃焼するために、それらの
加熱と溶融に有効に利用されて高い燃料効率が達成され
る。
Fe 2 O 3 + 3C → 2Fe + 3CO −108,090 kcal / kmol · Fe 2 O 3 … (3) In the reaction of the above formula (3), there is no CO 2 nearby, so the reaction of the formula (3) is inhibited by CO 2 It will not be done. The CO generated in the equations (1) and (3) is subjected to secondary combustion in the packed bed 6 of scrap and iron ore, so that it is effectively used for heating and melting them to achieve high fuel efficiency. .

以上のように本出願人が先に提案した上記溶銑の製造
方法によれば、転炉型式の筒型炉でスクラップと鉄鉱石
から熱効率よく溶銑を製造することができる。通常、こ
の溶銑製造方法の操業では、送風停止時期あるいは次回
装入コークス量の制御を測深器による炉内充填層高の測
定によって行う。そのため、溶解完了の判定が遅れたり
適正量のコークスが装入されないような事態が時として
発生する。
As described above, according to the method for producing hot metal proposed earlier by the present applicant, hot metal can be produced from scrap and iron ore with high efficiency in a converter type cylindrical furnace. Normally, in the operation of this hot metal production method, the control of the blow-off time or the amount of coke charged next time is performed by measuring the packed bed height in the furnace using a sounding device. For this reason, a situation occurs in which the determination of the completion of dissolution is delayed or an appropriate amount of coke is not charged.

実際の操業に際してはスクラップと鉄鉱石の鉄換算装
入量の比率(以下、SR比率という)、溶解中あるいは各
チャージ毎の吹き込み支燃性ガス量および燃料量、ある
いは装入コークス量等の操業条件を変更する場合もあ
り、溶解過程における炉内生成溶銑量(溶銑生産量)お
よび炉内ベッドコークス消費量の時系列変化を適確に把
握して溶解完了と同時に送風を停止すると共に、炉内ベ
ッドコークス高さおよび炉熱を予知して炉況および溶銑
温度、成分の安定化を図るため、次チャージで装入する
コークス量を制御することが重要な課題となっている。
In actual operation, operation of the ratio of scrap and iron ore in terms of iron equivalent charge (hereinafter referred to as SR ratio), the amount of injected combustion supporting gas and fuel during melting or for each charge, or the amount of coke charged In some cases, the conditions may be changed. The time series changes in the amount of hot metal produced in the furnace during the melting process (hot metal production) and the bed coke consumption in the furnace are accurately grasped, and blowing is stopped at the same time as melting is completed. In order to predict the inner bed coke height and furnace heat and stabilize the furnace condition, hot metal temperature and components, it is important to control the amount of coke charged in the next charge.

特開平1−195232号公報には、含鉄冷材の溶解完了時
期検知方法が開示されている。この方法では、転炉の炉
体振動の低周波成分振動力と全周波成分振動力を測定
し、これらの両振動力の比を演算し、その比が予め設定
した値となった時点をもって溶解が完了したと判定す
る。この方法の実施には、測定センサを炉付帯設備に直
接設置するのが必要であるが、炉本体および炉内のセン
シティブ振動数、周波数を正確に測定できる測定センサ
設定位置を選択するのは容易でないと思われる。また、
この方法では種湯の存在する転炉内に装入した含鉄冷材
の溶解前後における炉内溶融鉄液面の全体の揺れが判定
法のキーポイントになっている。しかしながら、本出願
人らが先に提案した溶銑の製造方法では、炉底にベット
コークス充填層が存在し、その充填層に連続して蓄銑さ
れるので充填層のない炉内溶銑の液面全体の揺れにもと
づく判定法の適用は困難である。
Japanese Patent Application Laid-Open No. 1-195232 discloses a method for detecting the completion timing of melting of a cold material containing iron. In this method, the low frequency component vibration force and the full frequency component vibration force of the furnace body vibration of the converter are measured, the ratio of these two vibration forces is calculated, and melting is performed when the ratio reaches a preset value. Is determined to be completed. To implement this method, it is necessary to install the measurement sensor directly on the furnace auxiliary equipment, but it is easy to select the measurement sensor setting position that can accurately measure the sensitive frequency and frequency in the furnace body and the furnace. It seems not. Also,
In this method, the whole swing of the molten iron liquid level in the furnace before and after the melting of the iron-containing cold material charged in the converter where the seed water is present is a key point of the determination method. However, in the method for producing hot metal proposed by the present applicants earlier, a bed of coke bed exists at the bottom of the furnace and is continuously stored in the bed. It is difficult to apply the judgment method based on the whole swing.

また、従来の高炉法における炉熱低下予測方法の一例
として、特開昭63−297517号公報に開示されている方法
がある。この方法では、高炉の炉内壁温度差の測定、炉
頂ガスの分析によるソリューションロス炭素量およびN
濃度の測定値を併用し、それぞれを時々刻々変化する設
定値と比較することにより高炉炉温低下を正確に測定し
て高炉の炉熱低下を予測している。この特開昭63−2975
17号公報の炉熱低下予測方法は、炉熱低の判定基準が複
雑な点を除けば炉熱低下の防止法としては有用である
が、炉内消費コークス全量(ソリューションロス量、燃
焼消費コークス量、浸炭コークス量を加算したもの)を
直接求めるものではないので、コークス使用量を制御し
て、その低減を図るところまでは至っていない。
Further, as an example of a method for predicting furnace heat reduction in a conventional blast furnace method, there is a method disclosed in Japanese Patent Application Laid-Open No. 63-297517. In this method, the temperature difference of the inner wall of the blast furnace is measured, the solution loss carbon amount and the N
The measured temperature of the blast furnace is accurately measured by comparing the measured values of the concentrations with the set values that change every moment to predict the temperature drop of the blast furnace. JP-A-62-2975
The furnace heat drop prediction method disclosed in Japanese Patent Publication No. 17 is useful as a method for preventing furnace heat drop except that the criteria for judging furnace heat low are complicated. However, the total amount of coke consumed in the furnace (solution loss, Therefore, the amount of coke used is not directly determined, and the amount of coke used is not controlled to reduce the amount.

(発明が解決しようとする課題) この発明は筒型炉を用い、スクラップおよび鉄鉱石を
鉄源として溶銑を製造する方法における前記の問題を解
決することを目的としてなされたものであり、送風停止
時期および次回装入コークス量を制御することにより温
度および成分が安定した溶銑を良好な状況下で経済的に
製造する方法を提供しようとするものである。
(Problem to be Solved by the Invention) The present invention has been made for the purpose of solving the above-mentioned problem in a method of producing hot metal using a scrap furnace and iron ore as an iron source using a cylindrical furnace, An object of the present invention is to provide a method for economically producing hot metal having a stable temperature and composition under favorable conditions by controlling the timing and the amount of coke charged next time.

(課題を解決するための手段) 本発明者らは上述した筒型炉の実操業において、
(a)装入鉄源の溶解完了と同時に送風を停止すると無
駄な送風を防止できるので支燃性ガス、燃料およびコー
クスの消費量を低減できること、(b)溶解開始時の炉
内ベッドコークス量がチャージ毎に一定となるようにコ
ークス装入量を制御すると炉熱の低下を防止できるので
炉況と溶銑温度および成分が安定化し、コークスの消費
量を低減できることを知った。そこで、上記の送風停止
の時期およびコークス装入量を最も適切に決定するため
の具体的な方法を検討し、下記の本発明を完成した。
(Means for Solving the Problems) In the actual operation of the cylindrical furnace described above, the present inventors
(A) If the blowing is stopped at the same time as the completion of melting of the charged iron source, useless blowing can be prevented, so that the consumption of the supporting gas, fuel and coke can be reduced. (B) The amount of bed coke in the furnace at the start of melting. It was found that controlling the coke charging rate so that the temperature became constant for each charge can prevent the furnace heat from decreasing, stabilizing the furnace conditions, hot metal temperature and components, and reducing coke consumption. Therefore, a specific method for determining the timing of the above-mentioned blowing stop and the amount of coke charged most appropriately was studied, and the present invention described below was completed.

本発明の要旨は『前述の筒型炉を用いる溶銑の製造方
法において、操業中、所定タイミング毎に炉内の物質
精算と熱精算を行って時系列に炉内溶銑生産量および炉
内ベットコークス消費量を算出すること、その算出値
から溶解完了時期および炉内ベッドコークスの過不足量
を予測すること、およびその予測に基づいて送風停止時
期および次回装入コークス量を制御することを特徴とす
る溶銑の製造方法』にある。
The gist of the present invention is that, in the above-described method for producing hot metal using a cylindrical furnace, during operation, material adjustment and heat adjustment in the furnace are performed at predetermined timings, and the production amount of hot metal in the furnace and the bed coke in the furnace are determined in time series. Calculating the consumption amount, predicting the melting completion time and the excess / deficiency amount of the bed coke in the furnace from the calculated value, and controlling the blowing stop time and the next charging coke amount based on the prediction. Hot metal production method ”.

なお、本発明方法において、使用する鉱石は通常の鉄
鉱石のほかに、Mn、Cr、Mo、Niなどを多く含む鉱石、ま
たはこれらの酸化物を使用することができる。また、こ
れらの鉱石類およびコークスとともに珪石、石灰石、蛇
紋岩、蛍石などの副原料を装入することができる。スク
ラップとしてもステンレス鋼スクラップのような高合金
スクラップを使用して、その中の有用元素を再利用する
ことが可能である。
In the method of the present invention, the ore to be used may be ordinary iron ore, ore containing a large amount of Mn, Cr, Mo, Ni or the like, or an oxide thereof. In addition, auxiliary raw materials such as quartzite, limestone, serpentine, and fluorite can be charged together with these ores and coke. It is also possible to use a high alloy scrap such as stainless steel scrap as a scrap, and to reuse useful elements therein.

鉄鉱石は炉の上部開口部からだけでなく、粉状鉱石を
一次羽口および/または二次羽口から吹き込むこともで
きる。
Iron ore can be blown not only from the upper opening of the furnace, but also from the primary and / or secondary tuyeres.

一次羽口および二次羽口から吹き込む支燃性ガスはO2
含有ガスである。一次羽口からは支燃性ガスとともに粉
炭燃料および/あるいは炭化水素系の助燃用燃料を吹き
込むこともできる。
The supporting gas blown from the primary and secondary tuyeres is O 2
It is a contained gas. From the primary tuyere, pulverized coal fuel and / or hydrocarbon-based fuel for auxiliary combustion can also be blown together with the supporting gas.

(作用) 第2図は、本発明方法の要点を示すブロック図、第3
図は、本発明方法の実施に用いる筒型炉溶解装置および
それに付帯する各種計測機器の一例を示す概略図であ
る。以下、これらの図を用いて本発明方法を具体的に説
明する。
(Operation) FIG. 2 is a block diagram showing the main points of the method of the present invention, and FIG.
The figure is a schematic diagram showing an example of a cylindrical furnace melting apparatus used for carrying out the method of the present invention and various measuring instruments attached thereto. Hereinafter, the method of the present invention will be specifically described with reference to these drawings.

本発明方法では、物質精算と熱精算を行うのである
が、そのためには、第2図に示すように、装入物情報、
送風情報、廃ガス情報および炉体放熱情報を求める必要
がある。これらの情報は、第3図に示す各種の付帯設備
を使用して集められる。
In the method of the present invention, material and thermal settlement are performed. For this purpose, as shown in FIG.
It is necessary to obtain blast information, waste gas information and furnace body heat radiation information. These pieces of information are collected using various auxiliary equipments shown in FIG.

装入物情報: 装入物情報としては、鉱石、コークスおよび副原料の
装入量は秤量ビン18で、スクラップ量は秤量器19でそれ
ぞれ計測され、装入の都度データサンプリングされる。
鉱石、コークスおよび副原料は装入ベルトコンベヤー10
を経て原料装入口9から炉内に装入され、スクラップは
フード12を開放してシュート11を用いて炉内に装入され
る。
Charge information: As charge information, the amounts of ore, coke, and auxiliary materials charged are measured by a weighing bin 18 and the amount of scrap is measured by a weighing device 19, and data is sampled each time charging is performed.
Ore, coke and adjuncts are charged belt conveyor 10
The scrap is charged into the furnace through the raw material charging port 9 through the opening, and the hood 12 is opened and the scrap is charged into the furnace using the chute 11.

送風情報: 送風情報は、一次羽口3では一次支燃性ガス流量計と
圧力計20および固体燃料秤量ビン22で、二次羽口4では
二次支燃性ガス流量計と圧力計21で計測されてデータサ
ンプリングされる。
Ventilation information: Ventilation information is obtained from the primary tuyere 3 at the primary combustible gas flowmeter and pressure gauge 20 and the solid fuel weighing bin 22, and at the secondary tuyere 4 at the secondary combustible gas flowmeter and pressure gauge 21. It is measured and data sampled.

廃ガス情報: 筒型炉1の開口部2はフード12によって大気と遮断さ
れ、操業中の廃ガスは廃ガス上昇管13、廃ガス下降管1
4、一次集塵器15、二次集塵器16および排風機17を経て
大気中に排風される。廃ガス情報は、廃ガス温度計23、
廃ガス圧力計24、廃ガス流量計25および廃ガス分析計26
で計測され、データサンプリングされる。廃ガス成分は
CO、CO2、O2、H2およびN2が分析される。
Waste gas information: The opening 2 of the cylindrical furnace 1 is isolated from the atmosphere by a hood 12, and the waste gas during operation is a waste gas riser 13 and a waste gas descender 1.
4. The air is exhausted to the atmosphere via the primary dust collector 15, the secondary dust collector 16, and the exhaust fan 17. For waste gas information, see the waste gas thermometer 23,
Waste gas pressure gauge 24, waste gas flow meter 25 and waste gas analyzer 26
Is measured and data sampled. Waste gas components
CO, CO 2 , O 2 , H 2 and N 2 are analyzed.

炉体放熱情報: 炉体放熱情報は、筒型炉1の炉体耐火物中に分散埋設
した耐火物温度計27を用いて、炉体耐火物の各位置の耐
火物温度を測定して求める。
Furnace body heat radiation information: The furnace body heat radiation information is obtained by measuring the refractory temperature at each position of the furnace body refractory using a refractory thermometer 27 dispersed and embedded in the furnace body refractory of the cylindrical furnace 1. .

上記の〜の情報は、操業中、通常約10間隔で操業
開始から終了まで連続して収集する。
The above information (1) is continuously collected during the operation, usually at intervals of about 10 from the start to the end of the operation.

溶銑秤量器28および溶銑温度計29は、出銑量および溶
銑温度を実測する場合に使用され、例えば、試験のため
に計算予測値と実測値とを対比する場合などに、溶銑成
分とともに出銑の都度データサンプリングされる。
The hot metal weighing device 28 and the hot metal thermometer 29 are used when actually measuring the hot metal output and the hot metal temperature.For example, when comparing the calculated predicted value with the actually measured value for a test, the hot metal component and the hot metal component are measured. Is sampled each time.

測深器30は、装入物充填層高さを計測するもので、本
発明方法を実施しない場合は操業中に層高を計測するこ
とにより、原料装入量の制御を行うのであるが、本発明
方法では補助的使用にとどまる。
The sounding device 30 measures the height of the charged bed, and when the method of the present invention is not performed, the raw material charge is controlled by measuring the bed height during operation. In the inventive method, it is only an auxiliary use.

上記のようにして収集された情報から、物質精算と熱
精算を実施し、送風停止時期および次回装入コークス量
を制御する方法を説明する。
A description will be given of a method of performing material accounting and thermal accounting based on the information collected as described above, and controlling the timing of stopping air blowing and the amount of coke charged next time.

上述の操業計測データは所定タイミング毎にデータサ
ンプリングされ、データ処理後、時系列データファイル
が作成される。作成された時系列データファイルを電子
計算機に内蔵された物質収支モデルにインプットし、逐
次物質精算を行い、支燃性ガスによる燃焼で消費される
コークス量と燃料量および排ガス成分別流量から筒型炉
内における各種反応、すなわち、前述の(1)、
(2)、(3)式反応および下記(4)式に示すソリュ
ーションロス反応などの反応量を逐次正確に定量化す
る。
The above-mentioned operation measurement data is sampled at predetermined timings, and after data processing, a time-series data file is created. The created time-series data file is input to the mass balance model built into the computer, and the material is calculated sequentially.The cylinder type is calculated from the amount of coke and fuel consumed by combustion with the supporting gas and the flow rate of each exhaust gas component. Various reactions in the furnace, that is, (1),
The amounts of the reactions (2), (3) and the solution loss reaction shown in the following equation (4) are sequentially and accurately quantified.

C+CO2→2CO−38200kcal/kmol・C …(4) 炉内各種反応の反応量に基づく反応熱、炉耐火物の放
散熱および廃ガス持ち去り顕熱等の筒型炉の入熱と出熱
を熱収支モデルを用いて計算し、入熱と出熱の差から溶
銑生成熱量が逐次算出されるので炉内生成溶銑量および
溶銑中への滲炭で消費されるコークス量を時系列に算出
することができる。
C + CO 2 → 2CO−38200 kcal / kmol · C (4) Heat input and output of cylindrical furnace such as reaction heat based on the reaction amount of various reactions in the furnace, heat dissipated by furnace refractories, and sensible heat carried away by waste gas Is calculated using a heat balance model, and the amount of hot metal produced from the difference between heat input and heat output is calculated sequentially, so the amount of hot metal generated in the furnace and the amount of coke consumed by carburizing into the hot metal are calculated in time series. can do.

モデルにより計算された炉内溶銑生産量は、逐次所定
タイミング毎にCRT画面に実測出銑量と共に表示され
る。このように操業中オンラインで時系列の炉内生成溶
銑量が算出表示されるので、SR比率、溶解中、あるいは
各チャージ毎の吹き込みガス量および燃料量、装入コー
クス量等の操業条件が変化しても正確に炉内溶銑生産量
を予測することができる。また、溶解完了時期が予測さ
れるので送風停止時期を制御できる。その結果、溶解末
期に無駄な送風を回避できるので支持性ガス燃料および
コークスの使用量を低減することができる。
The in-furnace hot metal production calculated by the model is displayed on the CRT screen together with the actually measured iron output at each predetermined timing. In this way, the amount of hot metal produced in the furnace in a time series is calculated and displayed online during operation, and operating conditions such as the SR ratio, the amount of injected gas and fuel during melting or for each charge, and the amount of coke charged change. Even in this case, it is possible to accurately predict the hot metal production in the furnace. Further, since the melting completion time is predicted, it is possible to control the blowing stop time. As a result, it is possible to avoid useless blowing at the end of melting, so that it is possible to reduce the amount of support gas fuel and coke used.

また、モデルにより計算された燃焼、ソリューション
ロスおよび溶鉄への滲炭に消費された炉内消費コークス
全量をチャージ毎に求め、現チャージ装入コークス量と
の差分から、炉内ベッドコークスの過不足量を予測し、
次回装入コークス量を制御して炉熱コントロールを行
う。これらの予測値および制御値は順次CRT画面に実測
出銑温度と共に表示される。このように操業中、オンラ
インでベッドコークスの過不足量を正確に予測し、次回
装入コークス量を制御するとチャージ毎の炉内ベッドコ
ークス量が一定に保持されるので炉熱の低下を未然に防
止でき、炉況および溶銑温度、成分が安定しコークス消
費量の低減を図ることができる。
In addition, the total amount of coke consumed in the furnace consumed for combustion, solution loss, and carburization of molten iron calculated by the model is calculated for each charge. Predict the amount,
The furnace heat control is performed by controlling the amount of coke charged next time. These predicted values and control values are sequentially displayed on the CRT screen together with the measured tapping temperature. In this way, during operation, the amount of bed coke is accurately predicted online and the amount of coke charged in the furnace is controlled the next time, and the amount of bed coke in the furnace at each charge is kept constant. It is possible to stabilize the furnace condition, hot metal temperature and components, and reduce coke consumption.

つぎに、本発明方法による炉内生成溶銑量の予測精度
について説明する。
Next, the prediction accuracy of the amount of hot metal produced in the furnace by the method of the present invention will be described.

第4図は、本発明方法で算出されるチャージ毎の最終
の溶銑生産量と、実測出銑量を対比して示す図である。
FIG. 4 is a diagram showing a comparison between the final hot metal production for each charge calculated by the method of the present invention and the actually measured hot metal output.

図に示すように本発明方法による計算値と実測値はよ
く一致しており、その誤差は平均で3%と小さい。この
結果から、本発明方法によれば溶解判定が十分可能であ
ることが明らかである。
As shown in the figure, the values calculated by the method of the present invention and the measured values are in good agreement, and the error is as small as 3% on average. From these results, it is clear that the method of the present invention can sufficiently determine the dissolution.

以下、実施例によって本発明の効果を具体的に説明す
る。
Hereinafter, the effects of the present invention will be specifically described with reference to examples.

(実施例1、2) 使用した装置は前述の第3図に示すような装置であ
り、筒型炉の炉寸法は直径1.5m、炉底から炉口までの高
さ3.6m、内容積6m3である。これに一次羽口は炉底から
0.8mの高さに、二次羽口は炉底から1.2mの高さにそれぞ
れ側壁に90度間隔で4本づつ、計8本設置した。炉壁下
部には出銑口が設けられている。
(Examples 1 and 2) The apparatus used was the apparatus shown in FIG. 3 described above. The furnace size of the cylindrical furnace was 1.5 m in diameter, the height from the furnace bottom to the furnace opening was 3.6 m, and the internal volume was 6 m. 3 The primary tuyere starts from the hearth
A total of eight secondary tuyeres were installed at a height of 0.8 m and four secondary tuyeres at a height of 1.2 m from the furnace bottom, each with four 90 ° intervals on the side wall. A tap hole is provided in the lower part of the furnace wall.

原料には、一辺がほぼ0.45mの角体で嵩比重3.5トン/m
3のスクラップ(鉄純度99%)と第1表に示す化学組成
を有する鉄鉱石を使用し、燃料には第2表に示すコーク
スと微粉炭を用いた。
The raw material is a square body with a side of almost 0.45 m and a bulk specific gravity of 3.5 ton / m
The scrap ( 3 ) (iron purity: 99%) and iron ore having the chemical composition shown in Table 1 were used, and the coke and pulverized coal shown in Table 2 were used as fuel.

操業条件としては、一次羽口を含むレベルまでコーク
スを装入し、その上に1回当たりの溶銑量が8トンとな
るようにスクラップ及び鉄鉱石(SR比率100%あるいは7
5%)を装入した。そして一次羽口から1000Nm3/hの酸素
と1,400kg/hの微粉炭を吹き込み、二次羽口からそれぞ
れ酸素を600Nm3/hを吹き込んだ。
The operating conditions were as follows: coke was charged up to the level including the primary tuyere, and scrap and iron ore (SR ratio 100% or 7
5%). And the primary tuyeres blowing the pulverized coal of 1000Nm 3 / h of oxygen and 1,400kg / h from, was blown into the 600Nm 3 / h of oxygen, respectively from the secondary tuyeres.

第3表の実施例1および実施例2はSR比率がそれぞれ
100%および75%の鉄源配合の場合の操業例で、炉内生
成溶銑量を時系列に予測して操業を行った。
Example 1 and Example 2 in Table 3 have different SR ratios.
In the operation example in the case of 100% and 75% iron source blending, the operation was performed by predicting the amount of hot metal produced in the furnace in time series.

第3表の比較例1および比較例2は溶解中、炉内充填
層高を測深器で測定し、その時系列推移から溶解判定を
行ったSR比率がそれぞれ100%および75%の操業例であ
る。
Comparative Example 1 and Comparative Example 2 in Table 3 are operation examples in which the SR ratio was 100% and 75%, respectively. .

操業の結果を第3表に示す。第3表から明らかなよう
に、燃料使用量(コークス使用量+微粉炭使用量)は実
施例1は比較例1に比べ36kg/t(溶銑1トン当たり36k
g)、実施例2は比較例2に比べ29kg/t低減している。
酸素使用量も実施例が比較例より16〜26Nm3/t少ない。
溶解時間も11〜19%短縮されているが出銑量の差はな
く、本発明の溶解完了予測が適正であったことは明らか
である。
The results of the operation are shown in Table 3. As is clear from Table 3, the fuel consumption (coke consumption + pulverized coal consumption) in Example 1 was 36 kg / t (36 k / ton of hot metal) compared to Comparative Example 1.
g), Example 2 is 29 kg / t lower than Comparative Example 2.
The amount of oxygen used in the example is also 16 to 26 Nm 3 / t less than that in the comparative example.
Although the melting time was also reduced by 11 to 19%, there was no difference in the tapping amount, and it is clear that the prediction of the completion of melting according to the present invention was appropriate.

(実施例3) 実施例3では、本発明方法を用いてベッドコークス過
不足量を予測して、次回装入コークス量を制御して操業
を行った。
(Example 3) In Example 3, the amount of bed coke was predicted using the method of the present invention, and the operation was performed by controlling the amount of coke charged next time.

実施例3の基本条件は、実施例1または2と同じであ
る。ベッドコークス過不足量は初期ベッドコークス高さ
(量)と下記の(5)式によって算出されるベッドコー
クスの増減量とを対比して行う。
The basic conditions of the third embodiment are the same as those of the first or second embodiment. The bed coke excess / deficiency is determined by comparing the initial bed coke height (amount) with the increase / decrease of bed coke calculated by the following equation (5).

ベッドコークスの増減量= 〔コークス装入量/チャージ〕−〔消費コークス量 /チャージ〕 ……(5) なお、(5)式の〔消費コークス量/チャージ〕には
溶銑浸炭量を含む。
Increase / decrease in bed coke = [coke charge / charge] − [consumed coke / charge] (5) In the equation (5), [consumed coke / charge] includes the amount of hot metal carburized.

比較例3として、実施例3と同じ基本条件で、溶解
中、炉内充填層高を測深器で測定し、その時系列推移に
応じてあらかじめ設定されたコークス量/チャージに次
回装入コークス量を調整する操業も行った。
As Comparative Example 3, the filling bed height in the furnace was measured with a sounding device during melting under the same basic conditions as in Example 3, and the coke amount charged next time was set to the coke amount / charge previously set in accordance with the time series transition. Coordinating operations were also performed.

第5図はチャージ毎のコークス使用量、溶銑温度およ
び溶銑中C濃度を実施例と比較例を対比して示す図であ
る。
FIG. 5 is a diagram showing the amount of coke used, the temperature of the hot metal and the C concentration in the hot metal for each charge, comparing the example with the comparative example.

図に示すように、実施例3では溶銑温度が1450℃近
傍、溶銑中〔C〕濃度が平均値4.5重量%近傍にほぼ一
定に保たれ、比較例3に比べて溶銑温度および成分が安
定化した。また、チャージ毎のコークス使用量の平均値
も実施例3では136kg/トンと比較例3の150kg/トンより
も14kg/トン低減できた。
As shown in the figure, in Example 3, the hot metal temperature was maintained at approximately 1450 ° C., and the [C] concentration in the hot metal was maintained substantially at an average value of approximately 4.5% by weight, and the hot metal temperature and the composition were stabilized as compared with Comparative Example 3. did. In addition, the average value of the coke consumption for each charge was 136 kg / ton in Example 3, which was 14 kg / ton reduced from 150 kg / ton in Comparative Example 3.

(発明の効果) 本発明の溶銑製造方法は、高炉に比較してはるかに小
型で簡便な筒型炉を使用し、かつ鉄源として鉱石ととも
にスクラップを使用して柔軟性に飛んだ製銑を行うこと
ができる方法である。しかも操業条件の変更に対応して
炉内溶銑生産量を時系列に算出できるので、送風停止時
期を的確に予測でき、生産性の向上と支燃性ガス、燃料
およびコークス使用量を低下させ製造コストを削減する
ことができる。
(Effect of the Invention) The method for producing hot metal of the present invention uses a much smaller and simpler cylindrical furnace as compared with a blast furnace, and uses iron ore and scrap together with ore as a source of iron to flexibly fly iron. Is a way that can be done. In addition, since the amount of hot metal production in the furnace can be calculated in time series in response to changes in operating conditions, it is possible to accurately predict when to stop blowing air, thereby improving productivity and reducing the amount of combustible gas, fuel and coke used in production. Costs can be reduced.

また、炉内ベッドコークス過不足量を予測することが
できのるで、次回装入コークス量の制御が可能となり炉
熱低下の未然防止、炉況と溶銑温度、成分の安定化およ
びコークス使用量の低減を図ることができる。
In addition, since the amount of bed coke in the furnace can be predicted, it is possible to control the amount of coke charged in the next time, prevent the furnace heat from decreasing, stabilize the furnace condition and hot metal temperature, components, and reduce the amount of coke used. Can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明方法の実施に用いる筒型炉とその炉内
装入物状態を示す概略断面図、 第2図は、本発明の要点を説明するブロック図、 第3図は、本発明方法の実施に用いる筒型炉溶解装置お
よびこれに付帯する各種計測機器の一例を示す概略断面
図、 第4図は、本発明方法で算出されるチャージ毎の溶銑生
産量(計算値)と、実測出銑量を対比して示す図、 第5図は、チャージ毎のコークス使用量、溶銑温度およ
び溶銑中C濃度を実施例と比較例を対比して示す図、で
ある。
FIG. 1 is a schematic cross-sectional view showing a cylindrical furnace used for carrying out the method of the present invention and the state of the interior of the furnace, FIG. 2 is a block diagram illustrating the gist of the present invention, and FIG. FIG. 4 is a schematic cross-sectional view showing an example of a cylindrical furnace melting apparatus used for carrying out the method and various measuring instruments attached thereto. FIG. 4 shows the amount of hot metal production (calculated value) for each charge calculated by the method of the present invention; FIG. 5 is a diagram showing the measured amount of hot metal in comparison, FIG. 5 is a diagram showing the amount of coke used for each charge, the hot metal temperature and the C concentration in the hot metal in comparison with the examples and comparative examples.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】上部に炉内ガスの排出と原料装入用の開口
部を、炉底部および/または下部側壁に一次羽口、その
上部側壁に二次羽口を有する筒型炉を用い、その炉底か
ら一次羽口を含むレベルまでコークスの充填層を形成さ
せ、その上に二次羽口を含むレベルまでスクラップと鉄
鉱石とからなる充填層を形成させた後、一次羽口および
二次羽口から支燃性ガスを吹き込む溶銑の製造方法にお
いて、操業中、所定タイミング毎に炉内の物質精算と熱
精算を行って時系列に溶銑生産量および炉内ベッドコー
クス消費量を算出し、その算出値から溶解完了時期およ
び炉内ベッドコークスの過不足量を予測することにより
送風停止時期および次回装入コークス量を制御すること
を特徴とする溶銑の製造方法。
1. A cylindrical furnace having an opening for discharging gas in the furnace and charging a raw material at an upper part thereof, a primary tuyere at a furnace bottom part and / or a lower side wall, and a secondary tuyere at an upper side wall thereof, A packed layer of coke is formed from the bottom of the furnace to a level including the primary tuyere, and a packed layer of scrap and iron ore is formed thereon to a level including the secondary tuyere. In the method of manufacturing hot metal in which the supporting gas is blown from the next tuyere, during the operation, material accounting and thermal accounting in the furnace are performed at predetermined timings to calculate the hot metal production and furnace coke consumption in time series. And a method for controlling the blow-off time and the amount of coke charged next time by predicting the melting completion time and the excess / deficiency of bed coke in the furnace from the calculated values.
JP19450190A 1990-07-23 1990-07-23 Hot metal production method Expired - Lifetime JP2897363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19450190A JP2897363B2 (en) 1990-07-23 1990-07-23 Hot metal production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19450190A JP2897363B2 (en) 1990-07-23 1990-07-23 Hot metal production method

Publications (2)

Publication Number Publication Date
JPH0480313A JPH0480313A (en) 1992-03-13
JP2897363B2 true JP2897363B2 (en) 1999-05-31

Family

ID=16325569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19450190A Expired - Lifetime JP2897363B2 (en) 1990-07-23 1990-07-23 Hot metal production method

Country Status (1)

Country Link
JP (1) JP2897363B2 (en)

Also Published As

Publication number Publication date
JPH0480313A (en) 1992-03-13

Similar Documents

Publication Publication Date Title
US3920447A (en) Steel production method
Williams Control and analysis in iron and steelmaking
CN109797265A (en) A kind of converter is precisely controlled the method for staying the quantity of slag
JP2897363B2 (en) Hot metal production method
JPH05239522A (en) Production of molten iron
US3565606A (en) Method for controlling carbon removal in a basic oxygen furnace
JP4484717B2 (en) How to operate steelmaking equipment
US3540879A (en) Method for controlling phosphorus removal in a basic oxygen furnace
JPS59568B2 (en) Oxygen converter blowing control method
JPH10298620A (en) Method for charging ore and the like into blast furnace
JP3033263B2 (en) Hot metal production furnace and hot metal production method
EP4269625A1 (en) Method for detecting remaining amount of liquid and detection device for same, method for detecting remaining amount of molten substance and detection device for same, and vertical furnace operation method
CA1165561A (en) Blast furnace control method
JPH0254706A (en) Method for operating blast furnace
WO2023017674A1 (en) Cold iron source melting rate estimation device, converter-type refining furnace control device, cold iron source melting rate estimation method, and molten iron refining method
JP2897362B2 (en) Hot metal production method
Mei et al. Real-Time Carbon and Temperature Model of Converter Based on the Weights of Elemental Reaction Rate
JPH11323412A (en) Detection of furnace temperature drop in blast furnace
JP2001040405A (en) Method for evaluating mud material for iron tapping hole in blast furnace and method for opening iron tapping hole
JPS60215705A (en) Method for operating melt reducing furnace
JPS5985841A (en) Manufacture of ferrochromium
JP2021031684A (en) Converter blowing control device, statistic model construction device, converter blowing control method, statistic model construction method and program
JPH01195217A (en) Operation of melting and reducing furnace
SU1553809A1 (en) Method of controlling iron-melting in cupola furnace
RU2283872C1 (en) Method of blast-furnace smelting

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12