JPH01195217A - Operation of melting and reducing furnace - Google Patents

Operation of melting and reducing furnace

Info

Publication number
JPH01195217A
JPH01195217A JP63019258A JP1925888A JPH01195217A JP H01195217 A JPH01195217 A JP H01195217A JP 63019258 A JP63019258 A JP 63019258A JP 1925888 A JP1925888 A JP 1925888A JP H01195217 A JPH01195217 A JP H01195217A
Authority
JP
Japan
Prior art keywords
furnace
oxygen
rate
amount
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63019258A
Other languages
Japanese (ja)
Other versions
JPH0798968B2 (en
Inventor
Tetsuji Ibaraki
哲治 茨城
Masao Yamauchi
雅夫 山内
Katsuhiko Sakamoto
阪本 克彦
Michitaka Kanemoto
金本 通隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1925888A priority Critical patent/JPH0798968B2/en
Publication of JPH01195217A publication Critical patent/JPH01195217A/en
Publication of JPH0798968B2 publication Critical patent/JPH0798968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To appropriately control the operation of a melting and reducing furnace by integrating the calculated values of every instantaneous oxygen amt. accumulated in the furnace to obtain the amt. of the metal oxide remaining in the furnace and its rate of change, and detecting the progress of the reduction reaction. CONSTITUTION:The flow rate of oxygen supplied into the furnace from an oxygen lance 2 and a bottom-blowing tuyere 3, the flow rate of generated gas by a generated gas flowmeter 9, the supply rates of prereduced ore, coal, and auxiliary material by weighers 4a, 5a, and 6a, the content of O2 in the generated gas by a gas analyzer 8, etc., are inputted to a process computer 11. Every instantaneous oxygen amt. accumulated in the furnace is integrated from the difference between the sum of oxygen supplied into the furnace and the sum of oxygen discharged from the furnace to compute the amt. of the metal oxide remaining in the furnace and its rate of change. The progress of the reaction is detected based on the computed results, and the furnace is stably and efficiently controlled. The supply rates of oxygen and carbonaceous material, the height of the lance 2, and the agitating force for a metal bath 12 and molten slag 13 are independently or integrally controlled based on the obtained metal oxide amt. and its rate of change.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属の溶融還元を効率的かつ安定的に操業す
るための操業法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an operation method for efficiently and stably operating metal melting reduction.

〔従来の技術〕[Conventional technology]

溶融還元炉においては、炉内に塊状もしくは酸素ガスを
吹込みながら石炭を燃焼させ、さらに炉内の溶融スラグ
および溶融金属を攪拌して投入した鉱石を還元させるこ
とにより、溶融金属を得ためには、炉内での還元反応が
操業目標どおり進行しているか、物質・熱収支は予定ど
おりか等を操業中絶えず検知し、かつ、これらの状態値
を正常に制御する必要がある。そのためには、特に炉内
の溶融スラグの成分および金属浴の温度等を把iL、こ
れらを適正に制御することが重要である。
In a smelting reduction furnace, coal is burned in the form of lumps or while blowing oxygen gas into the furnace, and the molten slag and molten metal in the furnace are stirred to reduce the ore thrown in to obtain molten metal. It is necessary to constantly detect during operation whether the reduction reaction in the furnace is progressing as per the operational target, whether the material/heat balance is as planned, and to control these status values normally. For this purpose, it is particularly important to understand and properly control the components of the molten slag in the furnace, the temperature of the metal bath, etc.

このような制御を行う従来の技術としては、例えば特開
昭60−218407号公報に開示された溶融還元シス
テムの操業法があるがこの技術では鉄の溶融還元プロセ
スにおいて、発生ガスの発生量の制御方法を与えること
のみを目的とするものである。
As a conventional technique for performing such control, for example, there is a method for operating a smelting-reduction system disclosed in Japanese Patent Application Laid-Open No. 60-218407. It is intended only to provide a control method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

溶融還元においては、一般に炉内に添加された鉱石中の
酸化金属のすべてが、直ちに還元され溶融金属とはなる
とは限らず、一部は主としてスラグ内に溶解して酸化金
属成分として存在する。そして、このスラグ内の酸化金
属濃度は最終的に、炉内の還元剤と酸化金属が反応する
速度と鉱石の供給速度が平衡する濃度になる。本発明者
らは種々の試験を繰り返すうちに、この平衡濃度は炉内
の金属浴および溶融スラグの攪拌状態、金属洛中の炭素
濃度、溶融スラグ中の炭材量、酸素の供給状態等により
異なることを知見した。
In smelting reduction, generally all of the oxidized metal in the ore added to the furnace is not necessarily reduced immediately and becomes molten metal, but a portion is mainly dissolved in the slag and exists as an oxidized metal component. The metal oxide concentration in this slag eventually reaches a concentration at which the rate at which the reducing agent in the furnace reacts with the metal oxide is in equilibrium with the ore supply rate. While repeating various tests, the inventors found that this equilibrium concentration differs depending on the stirring conditions of the metal bath and molten slag in the furnace, the carbon concentration in the metal bath, the amount of carbonaceous material in the molten slag, the oxygen supply condition, etc. I found out that.

つまり、スラグ内酸化金属濃度はたえず一定ではなく、
炉内の状況の変化に対応して、変化してゆく。さらに、
実際の還元反応速度は鉱石の投入速度とは異なるため、
単に鉱石の投入速度からだけの反応熱等の熱収支を判断
して操業するだけでは、熱的に安定した操業ができない
ことも知見した。また、炉内の状態の変化によってはス
ラグ内には未還元の酸化金属が急速に蓄積することも決
して稀ではなく、炉内の反応が適正に進行していること
を連続的かつ瞬時に検知することが技術的に困難であっ
た。
In other words, the metal oxide concentration in the slag is not always constant;
It changes in response to changes in the situation inside the furnace. moreover,
Since the actual reduction reaction rate is different from the ore input rate,
It was also discovered that thermally stable operations cannot be achieved by simply determining the heat balance such as reaction heat based on the ore input rate. In addition, it is not uncommon for unreduced metal oxides to rapidly accumulate in the slag depending on changes in the conditions inside the furnace, and it is possible to continuously and instantly detect that the reaction inside the furnace is progressing properly. It was technically difficult to do so.

ところで前記公報に開示された技術においては、炉内の
還元率と発生ガスの組成を測定して、予備還元鉱、石炭
および酸素の供給状態を制御する方法である。しかしな
がらこの方法においては、スラグの組成、特にスラグ中
酸化金属の濃度(および総量)を計測できないために、
還元反応速度が目的どおり進行しているかどうか、また
スラグ中の酸化金属の濃度が過多で異常反応が発生しな
いかの判断ができない、さらに反応の進行に伴う還元反
応熱の供給を、実際の反応速度から適正に制御すること
は困難であった。
By the way, in the technique disclosed in the above-mentioned publication, the reduction rate in the furnace and the composition of the generated gas are measured to control the supply state of the pre-reduced ore, coal and oxygen. However, this method cannot measure the composition of the slag, especially the concentration (and total amount) of metal oxides in the slag.
It is difficult to judge whether the reduction reaction rate is progressing as intended or whether abnormal reactions will occur due to excessive concentration of metal oxide in the slag. It was difficult to properly control the speed.

また上記技術を含めて一般に従来技術においては、炉内
の還元反応が適正かどうかを判定するためには、炉内か
ら溶融スラグを採取してこれを分析することにより、ス
ラグ成分、特にスラグ中酸化金属濃度を測定する方法が
行われている。しかしながら、この測定方法においては
、試料の採取が間欠的であり、かつこのスラグの試料分
析には十数分間以上の長時間が必要であるため、炉内の
状況が短時間に変化する溶融還元炉においては、実際の
反応に即応する的確な制御をすることは不可能であった
In addition, in general conventional technology including the above technology, in order to determine whether the reduction reaction in the furnace is appropriate, it is necessary to collect molten slag from the furnace and analyze it. Methods have been used to measure metal oxide concentrations. However, in this measurement method, samples are collected intermittently, and analysis of the slag sample requires a long time of more than ten minutes, so the situation inside the furnace changes in a short period of time. In a furnace, it has been impossible to perform precise control that responds immediately to the actual reaction.

本発明は、上記問題点に鑑みなされたもので、炉内の反
応の変化を連続的かつ瞬時にとらえ炉内の還元反応およ
び熱収支が適正かつ安定して進行する状態を保つことが
で縫る操業法を提供する。
The present invention was developed in view of the above-mentioned problems, and is capable of continuously and instantaneously detecting changes in the reaction inside the furnace and keeping the reduction reaction and heat balance inside the furnace proceeding appropriately and stably. Provides operating methods that allow

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、炉内に供給される酸素の総和と、炉内から排
出される酸素の総和を連続的に計測し、それぞれの総和
の差から、その時点に炉内に蓄積される酸素量を計算し
、該計算値を積算して炉内に残留する酸化金属量および
その変化率を求めることにより反応の進行を検知するこ
とを特徴とする溶融還元炉の操業法であり、また炉内に
供給される酸素の総和と、炉内から排出される酸素の総
和を連続的に計測し、それぞれの総和の差から、その時
点に炉内に蓄積されている酸素量を計算し、該計算値を
積算して炉内に残留する酸化金属量およびその変化率を
求めた値により、酸素の供給速度およびランス高さ、炭
材の供給速度、金属浴および溶融スラグの攪拌力を単独
もしくは組合せて制御することを特徴とする溶融還元炉
の操業法である。
The present invention continuously measures the total amount of oxygen supplied into the furnace and the total amount of oxygen discharged from the furnace, and calculates the amount of oxygen accumulated in the furnace at that point from the difference between the two totals. This is a method of operating a smelting reduction furnace characterized by detecting the progress of the reaction by calculating and integrating the calculated values to determine the amount of oxidized metal remaining in the furnace and its rate of change. Continuously measure the total amount of oxygen supplied and the total amount of oxygen discharged from the furnace, calculate the amount of oxygen accumulated in the furnace at that point from the difference between the two totals, and calculate the calculated value. The amount of oxidized metal remaining in the furnace and the rate of change thereof are calculated by integrating the amount of oxidized metal remaining in the furnace.The oxygen supply rate and lance height, the carbon material supply rate, and the stirring power of the metal bath and molten slag can be adjusted individually or in combination. This is a method of operating a smelting reduction furnace characterized by control.

(作 用) 以下本発明を作用とともに詳述する。(for production) The present invention will be explained in detail below along with its operation.

本発明においては、炉内の反応の進行状態および熱収支
等を検知、把握するために、溶融還元炉における瞬時毎
の酸素バランスを計測して、これを基にして炉内での未
還元で主にスラグ中に残留している酸化金属の量および
スラグ内酸化金属濃度を算出、把握し、操業を適正に制
御する。
In the present invention, in order to detect and understand the progress of the reaction in the furnace and the heat balance, etc., the oxygen balance in the melting reduction furnace is measured at every moment, and based on this, the oxygen balance in the furnace is measured. Mainly, calculate and understand the amount of metal oxide remaining in the slag and the concentration of metal oxide in the slag, and control operations appropriately.

まず、溶融還元炉における反応の状況を説明すれば、前
に述べたように炉内に供給された気体の酸素および鉱石
中の酸素の全部が、ただちに反応して発生ガスとして炉
外へ排出される訳ではないこと、また炉内に残留してい
る酸素の殆どは、金属の酸化物として存在していること
といった幾つかの関係を、種々の試験の結果見出すに至
った。
First, to explain the reaction situation in a smelting reduction furnace, as mentioned earlier, all of the gaseous oxygen supplied into the furnace and the oxygen in the ore immediately react and are discharged outside the furnace as generated gas. As a result of various tests, we have found several relationships, such as that the oxygen remaining in the furnace is not necessarily a metal oxide, and that most of the oxygen remaining in the furnace exists as metal oxides.

つまり、炉内に供給される酸素と排出される酸素の計測
値から算出される残留酸素を把握することにより、炉内
で還元されずにいる酸化金属の量を把握することができ
ることを発明した。また、この酸化金属の総量とスラグ
に取り込まれる鉱石、炭材等の原料からの不純物たとえ
ば、5102、CaO等の炉内の蓄積量から、スラグ内
酸化金属濃度の値を計算して得ること、さらに炉内の酸
化金属の量の変化値と鉱石の投入速度の関係より、炉内
で実際に還元している反応速度を求めることができるこ
とから、ある瞬間に実際の還元反応熱等を正確に求める
ことを本発明者らは可能とした。
In other words, he invented the ability to determine the amount of oxidized metal that remains unreduced in the furnace by determining the residual oxygen calculated from the measured values of oxygen supplied into the furnace and oxygen discharged. . Further, the value of the metal oxide concentration in the slag is calculated and obtained from the total amount of metal oxide and the amount of impurities such as 5102, CaO, etc. accumulated in the furnace from raw materials such as ores and carbonaceous materials incorporated into the slag. Furthermore, the actual reduction reaction rate in the furnace can be determined from the relationship between the change in the amount of oxidized metal in the furnace and the ore input speed, so the actual reduction reaction heat etc. can be accurately calculated at a given moment. The inventors of the present invention have made it possible to achieve this goal.

ここで、本発明における炉内に残留する酸化金属の量お
よびスラグ内濃度を求めるための溶融還元の構成例を述
べる。
Here, an example of the configuration of smelting reduction for determining the amount of metal oxide remaining in the furnace and the concentration in the slag in the present invention will be described.

第1図は本発明を実施するための溶融還元制御の一例を
示すブロック接続図である。1は炉体、2は送酸用ラン
スであり、基部には流量計28が取付けられる。3は底
吹羽口であり、同様に流量計3aが取付けられている。
FIG. 1 is a block connection diagram showing an example of melt reduction control for carrying out the present invention. 1 is a furnace body, 2 is an oxygen supply lance, and a flow meter 28 is attached to the base. 3 is a bottom blowing tuyere, and a flow meter 3a is similarly attached thereto.

炉上には予備還元鉱(鉱石)供給装置4、石炭供給装置
5、副原料供給装置6が設けられ、夫々計量器4a、5
a。
A preliminary reduced ore (ore) supply device 4, a coal supply device 5, and an auxiliary raw material supply device 6 are provided on the furnace, and are equipped with measuring instruments 4a and 5, respectively.
a.

6aを経てシュートから炉内に原料が供給される。炉上
に取付けられた排気ダクトは、発生ガス冷却器14、集
應器7を経て誘引ファン10に接続され、その途中に発
生ガス成分分析器8と発生ガス流量計9が取付けられて
いる。なお12は溶鉄、13は溶融スラグである。
The raw material is supplied into the furnace from the chute via 6a. The exhaust duct installed on the furnace is connected to an induction fan 10 via a generated gas cooler 14 and a sifter 7, and a generated gas component analyzer 8 and a generated gas flow meter 9 are installed in the middle of the exhaust duct. Note that 12 is molten iron and 13 is molten slag.

ここで流量計2a、3aにより供給酸素流量、計量器4
a、5a、6aにて予備還元鉱供給速度、石炭供給速度
、副原料供給速度、発生ガス流量計9で発生ガス流量、
ガス成分分析器8で発生ガスの02. Go、 CO2
,)121820が夫々計測されてプロセスコンピュー
ター11に入力される。
Here, the supplied oxygen flow rate is measured by the flowmeters 2a and 3a, and the meter 4
a, 5a, and 6a indicate the preliminary reduction ore supply rate, coal supply rate, and auxiliary raw material supply rate; the generated gas flow rate meter 9 indicates the generated gas flow rate;
The gas component analyzer 8 analyzes the generated gas. Go, CO2
, ) 121820 are measured and input into the process computer 11.

プロセスコンピューター11では下記の演算が行なわれ
る。
The process computer 11 performs the following calculations.

単位時間当たり残留酸素量変化 =(供給酸素流量)+(予備還元鉱供給速度)×(予備
還元鉱の活性酸素比率)十幅源料供給速度)×(副原料
の活性酸素比率)−(発生ガス流量)×(含有酸素比率
)             ・・・・・・・・・(l
)含有酸素比率−((h+1/2 CO+CO2−1−
1/2820) (a+oJ2) ”””””(2)≠
(単位時間当たり残留酸素量変化)×(当量数)×(金
属原子量)          ・−−−−−(4)ス
ラグ内酸化金属濃度=(残留酸化金属量)/(生成スラ
グ量)・・・・・・(6) 以上の演算結果に基づき、溶融還元炉を安定かつ効率的
に制御する操業法について以下に述べる。
Change in amount of residual oxygen per unit time = (Supplied oxygen flow rate) + (pre-reduced ore supply rate) x (active oxygen ratio of pre-reduced ore) 100% source material supply rate) x (active oxygen ratio of auxiliary raw material) - (generated Gas flow rate) × (oxygen content ratio) ・・・・・・・・・(l
)Contained oxygen ratio-((h+1/2 CO+CO2-1-
1/2820) (a+oJ2) ”””””(2)≠
(Change in amount of residual oxygen per unit time) x (number of equivalents) x (metal atomic weight) ------- (4) Oxidized metal concentration in slag = (amount of residual metal oxide) / (amount of generated slag)... (6) Based on the above calculation results, an operating method for stably and efficiently controlling the melting reduction furnace will be described below.

まず第一に、炉内の残留酸化金属量(およびスラグ内酸
化金属濃度)の変化率から還元反応速度を求めて還元反
応における吸熱量と生成する溶融金属、スラグおよび発
生ガス等の顕熱さらには、炉の無効熱量等から、炉内で
消費される熱量を求め、金属浴の温度が目標の範囲に入
る様に熱源である炭材と酸素の供給速度および供給状態
を制御する。制御する内容の例を具体的に述べれば、ラ
ンスからの酸素流量、ランスの主孔と副孔の酸素の流量
比およびランス高さを適当に制御すること等により、炭
材の燃焼速度や二次燃焼率等を変化させる。
First of all, we calculate the reduction reaction rate from the rate of change in the amount of residual oxidized metal in the furnace (and the oxidized metal concentration in slag), and calculate the amount of heat absorbed in the reduction reaction, the sensible heat of the molten metal, slag, generated gas, etc. The method calculates the amount of heat consumed in the furnace from the amount of heat available in the furnace, etc., and controls the supply rate and state of the carbon material and oxygen, which are heat sources, so that the temperature of the metal bath falls within the target range. To give a concrete example of what is controlled, the combustion rate of the carbonaceous material and the Change the secondary combustion rate, etc.

また第二には、スラグ内酸化金属濃度が過多なるために
発生する異常反応、例えばスラグフォーミング過剰によ
る炉口からのスラグ突沸といった現象を防止し、安定し
た状態を保つことが溶融還元の経済的な操業に重要であ
る。そのために、安定操業条件となるスラグ内酸化金属
濃度の上限以下の範囲にスラグ内酸化金属濃度がなるよ
うに、該演算結果に基づいて、金属浴および溶融スラグ
の攪拌力、炭材の供給速度を変えて炉内の残存炭材量を
制御し、さらに酸素の供給速度を制御する。ここで金属
浴および溶融スラグの攪拌力の制御方法としては、主と
して底吹ガス流量の調整で行う。
Secondly, it is important to prevent abnormal reactions that occur due to excessive metal oxide concentration in slag, such as slag bumping from the furnace mouth due to excessive slag foaming, and to maintain a stable state. important for proper operations. Therefore, based on the calculation results, the stirring power of the metal bath and molten slag, the supply rate of carbonaceous material, etc. are adjusted so that the metal oxide concentration in the slag is within the range below the upper limit of the metal oxide concentration in the slag, which is a stable operation condition. The amount of carbon remaining in the furnace is controlled by changing the amount of carbon, and the oxygen supply rate is also controlled. Here, the stirring force of the metal bath and molten slag is controlled mainly by adjusting the flow rate of the bottom blowing gas.

これらの制御は、プロセスコンピューター11での炉内
の残留金属酸化物量の演算結果に基づき、該プロセスコ
ンピューターが制御指令を出し、計量器4aおよび5a
を制御して鉱石および炭材の供給速度を、流量調節器2
aおよび3aを制御して酸素の供給速度と金属浴および
溶融スラグの攪拌状態を、ざらにランス2を上下させて
二次燃焼の制御を行う。
These controls are based on the calculation result of the amount of residual metal oxide in the furnace by the process computer 11, and the process computer issues control commands to the measuring instruments 4a and 5a.
The flow rate regulator 2 controls the supply rate of ore and carbonaceous materials.
a and 3a to control the oxygen supply rate and the stirring state of the metal bath and molten slag, and roughly move the lance 2 up and down to control the secondary combustion.

(実施例) 本発明を鉄の溶融還元に適用した実施例を以下に説明す
る。
(Example) An example in which the present invention is applied to melting and reduction of iron will be described below.

以下の記述の条件を目標として操業を行なった結果を、
第2図(実施例)および第3図(比較例)に示す。ここ
では操業状態の制御精度の指標として、スラグ中鉄分濃
度(スラグ中のFe3+およびFe”の濃度の和)、溶
銑温度およびスラグ高さを測定した結果を図とした。
The results of operations aimed at the conditions described below are as follows:
It is shown in FIG. 2 (Example) and FIG. 3 (Comparative Example). Here, the results of measuring the iron concentration in the slag (the sum of the concentrations of Fe3+ and Fe'' in the slag), hot metal temperature, and slag height are plotted as indicators of the control accuracy of the operating conditions.

(条 件) (イ)溶融還元炉能力□ 30 T/H(ロ)溶融還元
制御 □ 100丁 (八)溶銑温度   □1500℃ (ニ)溶鉄成分   □C4,8%Si O,02%M
n O,22% S O,09%P O,07%(ホ)
スラグ中成分 □ 塩基度1.35 Mg07% 12038%第2図と第
3図の比較から判るように、本発明を適用した操業法に
よれば、溶銑温度およびスラグ中鉄分濃度ともに安定し
ており、反応および熱収支の制御が終始安定して行なう
ことができ、また操業中にスラグの異常フォーミングに
よる炉口からのスラグの突沸現象も生じなかった。しか
し、一方では適正な反応および熱収支の制御が行えなか
った比較例の操業においては、還元反応が遅滞してスラ
グ中鉄分濃度が増加するとともに、熱収支が取れずに溶
銑温度が低下してしまっている。さらに、スラグ中鉄分
濃度つまり酸化鉄濃度が増加したことにより、−気にス
ラグ中酸化鉄と、粒鉄内の炭酸もしくは炭材とが反応し
て異常スラグフォーミングが発生してスラグが炉口から
噴出してしまっており、安定した操業状態を保持できな
かった。
(Conditions) (a) Smelting reduction furnace capacity □ 30 T/H (b) Smelting reduction control □ 100 tons (8) Hot metal temperature □ 1500℃ (d) Molten iron composition □C4,8%SiO,02%M
n O, 22% S O, 09% P O, 07% (e)
Components in slag □ Basicity 1.35 Mg07% 12038% As can be seen from the comparison between Figures 2 and 3, according to the operating method to which the present invention is applied, both the hot metal temperature and the iron concentration in the slag are stable. The reaction and heat balance could be controlled stably from beginning to end, and there was no bumping of slag from the furnace mouth due to abnormal slag foaming during operation. However, in the operation of the comparative example where proper reaction and heat balance control could not be carried out, the reduction reaction was delayed and the iron concentration in the slag increased, and the heat balance could not be maintained and the hot metal temperature decreased. It's stored away. Furthermore, due to the increase in the iron concentration in the slag, that is, the iron oxide concentration, the iron oxide in the slag reacts with the carbonic acid or carbonaceous material in the granulated iron, causing abnormal slag foaming, and the slag is removed from the furnace mouth. It was not possible to maintain stable operating conditions as the water was gushing out.

また、本発明と従来法による操業を長時間実施した結果
の生産性、熱源の石炭原単位および炉の耐火物の原単位
の比較を次に示す。
Further, a comparison of the productivity, the unit consumption of coal for the heat source, and the unit consumption of the refractory material of the furnace after long-term operation according to the present invention and the conventional method is shown below.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明による操業法によれば、炉内
の反応および熱収支の変化を連続的および瞬時にとらえ
て、その変化に即応するように炉内の酸化金属量のスラ
グ中濃度および金属浴温度を目標の範囲内に制御するこ
とができるので、反応の異常現象などの変化にたいして
事前に対処でき、溶融還元反応速度が安定するとともに
操業性も向上することができ、また浴温度の低下による
反応の遅滞が生じない。さらに熱収支が安定して不必要
な高温操業をすることがなくなることから、熱源の炭材
原単位が減少し、かつ高温の溶融金属および溶融スラグ
による耐火物の損耗も防止できることから、金属の製造
のための費用も大幅に低減を図ることができる。
As explained above, according to the operating method according to the present invention, changes in reactions and heat balance in the furnace are continuously and instantaneously detected, and the concentration of oxidized metal in the slag and the metal Since the bath temperature can be controlled within the target range, changes such as abnormal phenomena in the reaction can be dealt with in advance, the melting reduction reaction rate is stabilized and operability is improved, and the bath temperature can be lowered. No reaction delay occurs. Furthermore, since the heat balance is stable and unnecessary high-temperature operations are no longer required, the consumption of carbonaceous materials as a heat source is reduced, and wear and tear on refractories due to high-temperature molten metal and molten slag can be prevented. Manufacturing costs can also be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための溶融還元制御の一例を
示すブロック接続図、第2図および第3図は操業状況を
示す実施例および比較例のグラフである。 1・・・炉体、2・・・送酸用ランス、3・・・底吹羽
口、2a、3a・・・流ユ計、4・・・予備還元鉱供給
装置、5・・・石炭供給装置、6・・・副原料供給装置
、4a。 5a、6a・・・計量器、8・・・発生ガス成分分析器
、9・・・発生ガス流量計、11・・・プロセスコンピ
ューター。 代理人 弁理士  秋 沢 政 光 信1名 7i′1図
FIG. 1 is a block connection diagram showing an example of melt reduction control for carrying out the present invention, and FIGS. 2 and 3 are graphs of an example and a comparative example showing operating conditions. DESCRIPTION OF SYMBOLS 1... Furnace body, 2... Oxidation lance, 3... Bottom blowing tuyere, 2a, 3a... Flow meter, 4... Preliminary reduced ore supply device, 5... Coal Supply device, 6...auxiliary raw material supply device, 4a. 5a, 6a... Measuring instrument, 8... Generated gas component analyzer, 9... Generated gas flow meter, 11... Process computer. Agent Patent Attorney Masaaki Akizawa Mitsunobu 7i'1 Figure

Claims (1)

【特許請求の範囲】 1、炉内に供給される酸素の総和と、炉内から排出され
る酸素の総和を連続的に計測し、それぞれの総和の差か
ら、その時点に炉内に蓄積される酸素量を計算し、該計
算値を積算して炉内に残留する酸化金属量およびその変
化率を求めることにより反応の進行を検知することを特
徴とする溶融還元炉の操業法。 2、炉内に供給される酸素の総和と、炉内から排出され
る酸素の総和を連続的に計測し、それぞれの総和の差か
ら、その時点に炉内に蓄積される酸素量を計算し、該計
算値を積算して炉内に残留する酸化金属量およびその変
化率を求めた値により、酸素の供給速度およびランス高
さ、炭材の供給速度、金属浴および溶融スラグの攪拌力
を単独もしくは組合せて制御することを特徴とする溶融
還元炉の操業法。
[Claims] 1. Continuously measure the total amount of oxygen supplied into the furnace and the total amount of oxygen discharged from the furnace, and calculate the amount of oxygen accumulated in the furnace at that point based on the difference between the two totals. 1. A method for operating a smelting-reduction furnace, characterized in that the progress of a reaction is detected by calculating the amount of oxygen remaining in the furnace and calculating the amount of oxidized metal remaining in the furnace and the rate of change thereof by integrating the calculated values. 2. Continuously measure the total amount of oxygen supplied into the furnace and the total amount of oxygen discharged from the furnace, and calculate the amount of oxygen accumulated in the furnace at that point from the difference between the two totals. , the amount of oxidized metal remaining in the furnace and its rate of change are determined by integrating the calculated values, and then the oxygen supply rate and lance height, the carbon material supply rate, and the stirring power of the metal bath and molten slag are determined. A method of operating a melting reduction furnace characterized by controlling it alone or in combination.
JP1925888A 1988-01-29 1988-01-29 Operation method of smelting reduction furnace Expired - Lifetime JPH0798968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1925888A JPH0798968B2 (en) 1988-01-29 1988-01-29 Operation method of smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1925888A JPH0798968B2 (en) 1988-01-29 1988-01-29 Operation method of smelting reduction furnace

Publications (2)

Publication Number Publication Date
JPH01195217A true JPH01195217A (en) 1989-08-07
JPH0798968B2 JPH0798968B2 (en) 1995-10-25

Family

ID=11994407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1925888A Expired - Lifetime JPH0798968B2 (en) 1988-01-29 1988-01-29 Operation method of smelting reduction furnace

Country Status (1)

Country Link
JP (1) JPH0798968B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387308A (en) * 1989-08-29 1991-04-12 Nippon Steel Corp Method for operating iron bath reaction vessel
EP1186675A1 (en) * 2000-09-07 2002-03-13 Daido Tokushuko Kabushiki Kaisha Apparatus for controlling introduced air in metal oxide reducing furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387308A (en) * 1989-08-29 1991-04-12 Nippon Steel Corp Method for operating iron bath reaction vessel
EP1186675A1 (en) * 2000-09-07 2002-03-13 Daido Tokushuko Kabushiki Kaisha Apparatus for controlling introduced air in metal oxide reducing furnace

Also Published As

Publication number Publication date
JPH0798968B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
US3748122A (en) Method for dynamically controlling decarburization of steel
CN111575443B (en) Gas supply device and method for smelting low-carbon alloy in AOD furnace
JP5493997B2 (en) Converter refining method
JP2013060659A (en) Method for decarburizing and refining molten iron in converter
JP5678718B2 (en) Method of decarburizing and refining hot metal in converter
JPH01195217A (en) Operation of melting and reducing furnace
JP5630324B2 (en) Method of decarburizing and refining hot metal in converter
US8092572B2 (en) Method of regulating the output of carbon monoxide in a metallurgical melting process
EP1403387A1 (en) METHOD FOR DECARBONIZATION REFINING OF CHROMIUM−CONTAINING MOLTEN STEEL
PL187541B1 (en) Method of controlling a reducing smelting process
JPS5856723B2 (en) Continuous desiliconization method for hot metal
JPH11246907A (en) Method for controlling blowing in converter
JP2897363B2 (en) Hot metal production method
JPH01195218A (en) Operation of melting and reducing furnace
Sahoo et al. Optimization of Aluminum Deoxidation Practice in the Ladle Furnace
JPH036312A (en) Method for controlling blowing in converter
Björklund et al. Effect of temperature on oxygen activity during ladle treatment
JPS6318012A (en) Method for controlling flow rate of oxygen for refining for metallurgical refining furnace
JPH05239522A (en) Production of molten iron
Mukuku Thermodynamic And Parametric Modeling in the Refining of High Carbon Ferrochromium Alloys using Manually Operated AODs
JPS60215705A (en) Method for operating melt reducing furnace
JPH01283309A (en) Method for operating smelting reduction furnace
JPS62224613A (en) Control method for foaming
JPS5877515A (en) Controlling method for temperature of blown up steel bath in oxygen top blown converter
JP2837284B2 (en) Method and apparatus for producing hot metal containing chromium