JPS60215705A - Method for operating melt reducing furnace - Google Patents

Method for operating melt reducing furnace

Info

Publication number
JPS60215705A
JPS60215705A JP7195984A JP7195984A JPS60215705A JP S60215705 A JPS60215705 A JP S60215705A JP 7195984 A JP7195984 A JP 7195984A JP 7195984 A JP7195984 A JP 7195984A JP S60215705 A JPS60215705 A JP S60215705A
Authority
JP
Japan
Prior art keywords
furnace
coal
oxygen
iron
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7195984A
Other languages
Japanese (ja)
Inventor
Masakazu Nakamura
正和 中村
Yoichi Hayashi
洋一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TEKKO RENMEI
Original Assignee
NIPPON TEKKO RENMEI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TEKKO RENMEI filed Critical NIPPON TEKKO RENMEI
Priority to JP7195984A priority Critical patent/JPS60215705A/en
Publication of JPS60215705A publication Critical patent/JPS60215705A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the stability of the operation of a reducing furnace by measuring a change in the weight of the furnace, the volume and composition of exhaust gas and setting conditions during the blowing of iron ore, coal and oxygen on the basis of the measured values. CONSTITUTION:The weight of a melt reducing furnace 1 is measured with a load gauge 2, and the flow rate of prereduced ore 10 is adjusted on the basis of a change in the amount of molten iron in the furnace 1. The volume and composition of gas exhausted from the furnace 1 are measured with a flowmeter 3, an N2 analyzer 4 and a CO2 analyzer 5, and the charge rate of coal 11 is controlled on the basis of the measured values. The flow rates of primary oxygen and secondary oxygen are controlled by regulating control valves 8, 9. Optimum conditions during the blowing of iron ore, coal and oxygen are maintained at all times, so very satisfactory operation can be stably carried out.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉄鉱石を加熱溶解しながら還元し溶鉄を得る方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for obtaining molten iron by reducing iron ore while heating and melting it.

従来技術 従来、鉄の製造は尚炉による銑鉄の製造、またはシャフ
ト炉あるいはロータリーキルンによる予備還元鉱を電気
炉で溶解する方法がとられており、溶融した酸化鉄を還
元するいわゆる溶融還元の例は少ない。
Conventional technology Conventionally, iron has been produced by producing pig iron in a shaft furnace or by melting pre-reduced ore in a shaft furnace or rotary kiln in an electric furnace. few.

本発明者らは先に特願昭58−249o4o号において
、予備還元炉を有し、これによる予備還元鉱石を石炭、
酸素などと底吹きすることを特徴とする製鉄システムを
発明した。しかし、このシステムは溶融還元炉の操業上
若干の問題点があることが判明した。すなわち、該溶融
還元炉は、予備還元鉱石9石炭などをキャリアガスを用
いて気体輸送し、そのまま炉底に設置した羽口から鉄浴
中に吹込むよう設計されているが、気体輸送される粉体
の流量を正確に把握する技術が不完全で・このため炉の
安尾な操業が困難である。すなわち、該浴融還元炉にお
いては、1500℃付近−の高温で反応が進行するため
、反応速−が極めて速く、したがって炉に装入でれる反
応物の流量、成分などが所定値から偏位すると・物質収
支、熱収支がたちまち維持できなくなシ、操業が不安定
になる。
The present inventors previously disclosed in Japanese Patent Application No. 58-249O4O that they had a pre-reducing furnace, and that the pre-reduced ore could be converted into coal, coal, etc.
He invented a steelmaking system characterized by bottom blowing with oxygen. However, it was found that this system had some problems in the operation of the smelting reduction furnace. That is, the smelting reduction furnace is designed to transport pre-reduced ore 9 coal etc. in a gaseous manner using a carrier gas and blow it into the iron bath through a tuyere installed at the bottom of the furnace. The technology to accurately grasp the flow rate of powder is incomplete, making it difficult to operate the furnace smoothly. That is, in the bath smelting and reduction furnace, the reaction proceeds at a high temperature of around 1500°C, so the reaction rate is extremely fast, and therefore the flow rate and components of the reactants charged into the furnace deviate from predetermined values. As a result, material balance and heat balance quickly become unmaintainable, and operations become unstable.

前記発明では、流体輸送される固体装入物(鉄鉱石2石
炭などプの流量を監視するため、コリオリカを利用した
測定装置などを用いでいたが、固体の物性(成分、比重
など〕が変化すると誤差が大きかった。該還元シスアム
においては・予備還元工程を有しているが、プロセスと
して不可避的に存在する成品の還元率の変動などにより
溶融還元炉への鉄鉱石の装入速度が特に把握困難であり
、このため間欠的に排出される溶鉄・溶滓の計測のみで
は、炉内溶鉄貯留量が予測を外れた)、石炭吹込量との
比が変化して熱収支が崩れたりすることがあった。
In the above invention, a measuring device using Coriolica was used to monitor the flow rate of solid charges (iron ore, coal, etc.) transported by fluid, but the physical properties of the solids (components, specific gravity, etc.) changed. The error was large.The reduction system has a preliminary reduction process, but due to fluctuations in the reduction rate of the product that inevitably exist in the process, the charging speed of iron ore to the smelting reduction furnace was particularly slow. Therefore, the amount of molten iron stored in the furnace could not be predicted by only measuring the molten iron and slag that are intermittently discharged), and the ratio with the amount of coal injected may change, causing the heat balance to collapse. Something happened.

発明の目的 本発明は、鉄鉱石1石炭などの装入物装入速度把握の困
難を回避し、溶融還元炉の安定な操業を行うためのもの
である。
OBJECTS OF THE INVENTION The present invention is intended to avoid the difficulty of grasping the charging rate of iron ore, coal, etc., and to perform stable operation of a smelting reduction furnace.

発明の構成・作用 本発明は、炭素を含む溶鉄に予備還元した鉄鉱石、およ
び石炭、造滓剤、酸素を吹込み・さらに〃・の上部に2
次酸素を吹き込んで、鉄浴より発生する可燃カスを燃焼
させる鉄鉱石の溶融還元炉の操業方法において、該還元
炉の重量変化および該炉から排出されるガスの量および
組成を測定し、該測定値に基いて鉄鉱石9石炭、酸素の
吹き込み条件を設定することを特徴とするものである。
Structure and operation of the invention The present invention involves blowing iron ore that has been pre-reduced into molten iron containing carbon, coal, a slag-forming agent, and oxygen into the upper part of the molten iron.
In a method for operating an iron ore smelting reduction furnace in which combustible scum generated from an iron bath is combusted by blowing secondary oxygen, changes in the weight of the reduction furnace and the amount and composition of gas discharged from the furnace are measured. This method is characterized in that conditions for blowing iron ore, coal, and oxygen are set based on measured values.

すなわち本発明は、第一に所定の生産速度に対応する鉄
鉱石吹き込み速度を制御する目的で、荷重計により炉内
溶鉄蓋の時々刻々の変化を把握し、第二に鉄鉱石9石炭
、臥素の流電把握の不確実性から生じる反応状況の変化
を速かに検知し、対策を立てるため、流量や組成のオン
ライン計測が容易なガス側の情報を用いてプロセス制御
を行−うことを特徴とする。
That is, the present invention firstly uses a load meter to grasp the momentary changes in the molten iron lid in the furnace in order to control the iron ore injection rate corresponding to a predetermined production rate, and secondly, the iron ore 9 coal, In order to quickly detect changes in reaction conditions caused by uncertainties in understanding the current current and take countermeasures, process control is performed using gas-side information that allows easy online measurement of flow rate and composition. It is characterized by

以下本発明の詳細な説明する。第1図は本発明方法を実
施する溶融還元炉の制御ブロック図で、1は溶融還元炉
、2は該炉の重量を測定する荷重計である。3は該溶融
還元炉1から排出されるガスの流量を測定する流量計、
4は該排出ガス中のN2分析器、5は同じ<002分析
器である。また6は荷重計2の測定値によ請求めた溶鉄
重量変化に基いて得られた予価還元鉱lOの装入速度を
適正値に保つための流量調節器、7はガス流量計3およ
びN2分析器4の測定値によ!J得られたN2流量によ
り石炭(造滓剤を含む)11の装入速度を制御する調貢
自器、8および9はN2.CO2それぞれの分析値から
めたN / C比によりそれぞれ1次11bFiおよび
2次ば累の匠蓋會制御するコントロールパルプである。
The present invention will be explained in detail below. FIG. 1 is a control block diagram of a smelting-reduction furnace for carrying out the method of the present invention, in which 1 is a smelting-reduction furnace, and 2 is a load meter for measuring the weight of the furnace. 3 is a flow meter that measures the flow rate of gas discharged from the melting reduction furnace 1;
4 is the N2 analyzer in the exhaust gas, and 5 is the same <002 analyzer. Further, 6 is a flow rate regulator for maintaining the charging rate of pre-reduced ore 1O obtained based on the change in molten iron weight calculated from the measured value of the load cell 2 at an appropriate value, and 7 is a gas flow meter 3 and N2 Based on the measurement value of analyzer 4! 8 and 9 are N2. This is a control pulp that controls the primary 11bFi and secondary filter ratios based on the N/C ratio calculated from the respective CO2 analysis values.

本発明は、荷重計2により溶融還元!P1の重賞を測定
することによ!ll炉内浴鉄量の時々刻々の変化を把握
し、流量調節器6を制御して炉内に装入される予備還元
鉱10の流量を調節するとともに、溶融還元炉lから排
出されるガス量および該ガスの組成を流量計3.N2分
析器4.Co2分析器5によシ測定し、その測定値によ
り調節器7を調節して石炭lユの装入速度を制御し、ま
たコントロールパルプ8および9を調節して1次酸素お
よび2次酸素の流量を制御することにより溶融還元炉1
を最適条件で操業しようとするものである。
The present invention melts and reduces using the load cell 2! By measuring the major prize of P1! It grasps the momentary changes in the amount of iron bathed in the furnace and controls the flow rate regulator 6 to adjust the flow rate of the pre-reduced ore 10 charged into the furnace. 3. Measure the amount and composition of the gas with a flowmeter. N2 analyzer4. Co2 is measured by the Co2 analyzer 5, and the regulator 7 is adjusted based on the measured value to control the charging rate of 1 liter of coal, and the control pulps 8 and 9 are adjusted to control the primary oxygen and secondary oxygen. Melting reduction furnace 1 by controlling the flow rate
The aim is to operate the system under optimal conditions.

ここで、該溶融還元炉lに装入される物質の機能につい
て述べると、石炭中の炭素の一部は次式に従って、鉄鉱
石の還元に用いられると同時にCOガスを発生する。
Here, to describe the function of the material charged into the smelting reduction furnace 1, part of the carbon in the coal is used to reduce iron ore and at the same time generates CO gas according to the following equation.

FeO+X−C=Fe+X、−Co ・−−−・(1)
(但しXは予備還元の程度に応じて1.5〜0の間の値
をとる、また炭素は直接酸化鉄と反応するのではなく一
旦鉄浴中に溶解し反応するとされている。〕 また、炭素の残部は同時に鉄浴に吹込まれる酸素(−次
酸素とする)によシ酸化され、熱を発生し、石炭自身が
熱分解し水系を発生させるための熱、および鉄鉱石の還
元熱を供給する。
FeO+X-C=Fe+X,-Co・---・(1)
(However, X takes a value between 1.5 and 0 depending on the degree of preliminary reduction, and it is said that carbon does not react directly with iron oxide, but rather dissolves in the iron bath and reacts.) , the remainder of the carbon is simultaneously oxidized by oxygen (denoted as suboxygen) blown into the iron bath, generating heat, the heat for the coal itself to thermally decompose and generate a water system, and the reduction of the iron ore. Provides heat.

C!mHn+−02= m−C0+−=H2−−・−・
(、IJ2 (但しm、Hは石炭の成分によって定まる値でnが大き
くなると分解のための必要熱量が大きくなる。〕 また、熱の不足を補うため、上記反応により生成したC
O・およびN2の一部ケ反応炉の上部において酸素(2
次酸素とするうにより燃焼させる。
C! mHn+-02= m-C0+-=H2--・-・
(, IJ2 (However, m and H are values determined by the components of the coal, and as n increases, the amount of heat required for decomposition increases.) In addition, in order to compensate for the lack of heat, the carbon produced by the above reaction
Oxygen (2
Burn with secondary oxygen and sulfur.

さらに、石灰など造滓剤は・鉄鉱石および石炭中に含1
れる脈石分の融点を下げ、鉄と脈石成分を始めSなど不
純v/Jυ分離を容易にするために、生成するスラグの
塩基度(Oa O/S 102 )が所定の値、例えば
13になるように冷加される。
Furthermore, slag-forming agents such as lime are contained in iron ore and coal.
In order to lower the melting point of the gangue components and facilitate separation of impurities such as iron and gangue components and S, the basicity (Oa O/S 102 ) of the generated slag is set to a predetermined value, for example 13 It is cooled so that

一方、該反応rの炉内は萬温であり、がっ強攪拌状況に
あ月炉円に装入される装入物は、殆んど一時に反応が完
了するため、反応、にががゎる物質収支1熱収支ケ常に
保持する必要がある。っまり、石炭、酸素、造滓剤など
は、鉄鉱石の還元速度に常に対応した速度で供給されな
ければならない。
On the other hand, the temperature inside the reactor is 1000,000 yen, and the charge charged into the reactor under strong stirring completes the reaction almost all at once. It is necessary to maintain the mass balance and heat balance at all times. In short, coal, oxygen, slag forming agents, etc. must be supplied at a rate that always corresponds to the rate of reduction of iron ore.

本発明の荷重計2による反応炉重量の常時計測は、把握
が困難々鉄鉱石の装入速度計測に代って鉄鉱石供給制御
に確実な根拠を与える。すなわち、所定の生産速厩に対
応する溶鉄重量増になるように鉄鉱石(予備還元f11
)を供給すれば、鉱石性状特に予備還元率変動に左右さ
れない制御が可能となる。なお、醪鉄を連続的に排出す
る場合には、反比;炉’MWが一定となるよう制御する
ことになる。
The constant measurement of the reactor weight by the load cell 2 of the present invention provides a reliable basis for iron ore supply control in place of measuring the iron ore charging rate, which is difficult to grasp. In other words, iron ore (preliminary reduction f11
), it becomes possible to control the ore properties without being influenced by fluctuations in the preliminary reduction rate. In addition, when the mortar is discharged continuously, the furnace's MW is controlled to be constant.

以上により、反応rに装入される鉄量は制御可能であシ
、これに対応して熱・物質収支のとれる石炭、酸素を計
算して〃■えればよいが・鉄鉱石の場合と同様、石炭の
装入速度の把握が困難であるし、また例えば操業中鉱石
の予備還元率が変化した場合には熱収支をとるために1
次酸素と2次酸素蓋を応答性よく変化させる必要がある
ため、炉内反応を信頼性筒く把握する検出端情報が必要
である。
From the above, the amount of iron charged to reaction r can be controlled, and the amount of coal and oxygen that can maintain a heat and mass balance can be calculated accordingly - similar to the case of iron ore. , it is difficult to grasp the coal charging rate, and for example, if the preliminary reduction rate of ore changes during operation, 1.
Since it is necessary to change the secondary oxygen and the secondary oxygen lid with good responsiveness, detection end information is required to reliably understand the reaction inside the reactor.

石炭吹込み速度の把握は、反応炉から排出されるガス中
のN2流量の測定によって可能である。
The coal injection rate can be determined by measuring the N2 flow rate in the gas discharged from the reactor.

排出ガス中N2の起源は、吹込み酸素中のN2、粉体輸
送のためのキャリアガスおよび石炭中に含まれるN2で
あるが、前2者はガスであり流量把握が容易であるから
排出ガス中のN2からこれらを差引けば石炭由来のN2
量が計算でき、一方石炭中のN濃度は石炭銘柄がaすれ
ば一定だから、結局石炭流量が計算可能となる。なお、
炉内に装入される装入物およびガス中の湿分が正確に把
握できるときは、Nの替りにHを指標に用いることが可
能であシ、さらに石炭のみに言まれるガス成分があれば
、この成分をNの機能に替えて操業に用いることができ
る。
The origin of N2 in exhaust gas is N2 in blown oxygen, carrier gas for transporting powder, and N2 contained in coal, but the former two are gases and their flow rates are easy to determine, so they are not included in exhaust gas. If you subtract these from the N2 inside, you will get the N2 derived from coal.
On the other hand, since the N concentration in coal is constant if the coal brand is a, the coal flow rate can be calculated. In addition,
When the moisture content of the charge charged into the furnace and the gas can be accurately determined, it is possible to use H as an indicator instead of N, and furthermore, it is possible to use H as an indicator instead of N. If present, this component can be used in the operation to replace the function of N.

次に、操業中何らかの原因により、還元条件が変シ、そ
のため炉内状況が変化する時の対応策について述べる。
Next, we will discuss countermeasures when the reduction conditions change for some reason during operation, and the situation inside the furnace changes accordingly.

これは、主として予備還元鉱の還元率が変化した時に起
り、前記のような方法で操業している場合・鉄分1石炭
共に正常に装入されているように見えるにもかかわらず
、実際には還元率が変化しているため還元に必要な還元
剤および熱量が変化しており、この′1ま操業を続ける
と熱・物質収支がとれなくなり操業不能に陥いる。
This mainly occurs when the reduction rate of the pre-reduced ore changes, and when operating in the manner described above, even though it appears that both iron and coal are being charged normally, in reality Since the reduction rate is changing, the reducing agent and amount of heat required for reduction are changing, and if the operation continues for this period of time, the heat and material balance will not be maintained and the operation will become impossible.

具体的に示せば、予備還元率が低位へずれた場合、溶鉄
中の炭素と熱を消費するため、溶鉄の温度が低下すると
共に石炭からの炭素供給が追付かずC濃度が世下し、遂
には第1式に示すような還元反応、が進行しなくなる。
Specifically, when the preliminary reduction rate shifts to a low level, the carbon and heat in the molten iron are consumed, the temperature of the molten iron decreases, and the carbon supply from the coal cannot keep up, causing the C concentration to decline. Eventually, the reduction reaction shown in equation 1 stops proceeding.

逆に予備還元率が高位にずれた場合には、加炭と熱供給
が余剰と力沙媒発生に至ったシする。
On the other hand, if the preliminary reduction rate deviates to a high level, carburization and heat supply will result in surplus and generation of molten metal.

このように反応炉に装入される鉱石の還元率の把握は、
安定操業に不可欠であるが、これのオンライン分析も困
難が多い。この問題を解決するため、本発明では排出ガ
ス中のNZC比を利用する。
In this way, understanding the reduction rate of ore charged into the reactor is
Although it is essential for stable operation, there are many difficulties in online analysis. In order to solve this problem, the present invention utilizes the NZC ratio in the exhaust gas.

排出ガスからサンプリングしたガスを完全酸化した後、
N2分析器4およびC02分析器5によってN2と00
2を精密に分析するとカス中の全N/全Cが計算できる
。前述のような状況では、定常操業では一定である鉄浴
中のCが増減するためガス中のCが変化する。石炭供給
量は不変であるから排ガス中のNは一定であシ、従って
ガス中のN/C4化はT内O物質収支に異′帛を来たし
たことの証明になるので、前記のようにこれを是正する
制御を行えばよいことになる。
After completely oxidizing the gas sampled from the exhaust gas,
N2 and 00 by N2 analyzer 4 and C02 analyzer 5
2 can be precisely analyzed to calculate the total N/total C in the waste. In the above-mentioned situation, C in the gas changes because C in the iron bath, which is constant in steady operation, increases or decreases. Since the amount of coal supplied remains unchanged, the amount of N in the exhaust gas remains constant. Therefore, the change in N/C4 in the gas proves that there is a change in the O mass balance in T. It would be better to implement controls to correct this.

実施例 次に本発明の実施例を示す。Example Next, examples of the present invention will be shown.

予備還元率′70%の鉄鉱石を用いて溶鉄を製造する際
、鉄トン当シ石炭(発熱量e 980 Fdz4’−e
L、a、f、灰分8.5ンフ; 84 B、11(g、
’ 、石灰;11BΔV。
When manufacturing molten iron using iron ore with a preliminary reduction rate of 70%, coal (calorific value e 980 Fdz4'-e
L, a, f, ash 8.5 mph; 84 B, 11 (g,
', lime; 11BΔV.

−次酸素; 409Nゴ、2次酸素;172N−を使用
して操業していた。この時、流量計3の示すガスの発生
量は荷重計1の示す溶鉄の生成トン当り1709N−で
あシ、N2分析器4からめたN2流量は1 B、9 N
i 、 co2分析器5の測定結果から計算したNZC
比は0.0150であった。しかるに、鉄鉱石の切出し
ホッパーを変更した後、荷重計の推移、およびN2流量
に変化がないにもかかわらずNZC比が0.014に低
下した。これは鉄分および石炭の装入量が適正であるに
もかかわらず、酸化鉄による鉄浴からの脱炭反応が選択
的に進行していることを示しているためコントロールパ
ルプ8により一次酸素を379N−に減少させ、脱炭反
応の熱補償を加味してコントロールパルプ9により2次
酸素を212N−に増加させた所、暫くしてN10比が
0.0150に復帰した。
- Secondary oxygen: 409N, secondary oxygen: 172N- was used for operation. At this time, the amount of gas generated as indicated by the flow meter 3 is 1709 N per ton of molten iron produced as indicated by the load cell 1, and the N2 flow rate calculated from the N2 analyzer 4 is 1 B, 9 N.
i, NZC calculated from the measurement results of the co2 analyzer 5
The ratio was 0.0150. However, after changing the iron ore cutting hopper, the NZC ratio decreased to 0.014 despite the change in the load meter and the N2 flow rate. This indicates that the decarburization reaction from the iron bath due to iron oxide is progressing selectively, even though the amounts of iron and coal charged are appropriate. -, and when the secondary oxygen was increased to 212 N- by Control Pulp 9, taking thermal compensation of the decarburization reaction into consideration, the N10 ratio returned to 0.0150 after a while.

実際には、鉄鉱石の予備還元率が70%に達しておらず
6ozしか無かったことに寄因する他家である。もし、
条件を変更せずに操業を継続していれば・成品鉄トン当
p33Q相当の炭素が溶鉄から失なわれることとなり、
溶鉄中の炭素による還元を前提としている本プロセスで
は操業が維持できなくなる。
In reality, this was due to the fact that the preliminary reduction rate of iron ore had not reached 70% and there was only 6 oz. if,
If the operation continues without changing the conditions, carbon equivalent to p33Q per ton of finished iron will be lost from the molten iron,
This process, which relies on reduction by carbon in molten iron, will no longer be able to maintain operation.

なお、NZC比が変化した場合の条件変更基準は、予備
還元前の鉄鉱石分析値9石炭分析値、酸素純度などを用
い溶融還元炉、予備還元炉を始めとする各種装置特性を
考慮した操業シミュレーションにより予めめて置く。ま
た、実1M?llでは酸素のみで対応したが、鉄鉱石の
予備還元率の上昇、尚発熱量石炭の装入など他の方法で
対応することも用層である。
In addition, the criteria for changing conditions when the NZC ratio changes is based on the iron ore analysis value 9 before preliminary reduction, coal analysis value, oxygen purity, etc., and operation that takes into account the characteristics of various equipment such as the smelting reduction furnace and preliminary reduction furnace. Place it in advance by simulation. Also, is it actually 1M? In 1.1, only oxygen was used, but other methods such as increasing the preliminary reduction rate of iron ore and charging calorific value coal may also be considered.

発明の詳細 な説明したように、本発明は尚速反応であるために島い
応答性を要求される反応炉への装入条件変更を、困難な
固体流量計測音回避し、反応容器の重量変化、ガス流量
2岨成のように簡単な計測情報に基づいて行なうことを
特徴としておシ、これにより極めて良好な操業の安定性
會得ることができた。
As described in detail, the present invention avoids the difficult sound of measuring the solids flow rate by changing charging conditions to the reactor, which requires slow response due to a fast reaction, and reduces the weight of the reaction vessel. It is characterized by the fact that it is based on simple measurement information such as the change in gas flow rate and the gas flow rate, and as a result, extremely good operational stability can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する溶融還元炉の制御ブロッ
ク図である。 l・・・・・・溶融還元炉 2・・・・・・荷重計 3・・・・・・流量計 4・・・・・・N2分析器 5・・・・・・C02分析器 6・・ ・・・・流量調節器 7・・ ・・・・調節器 8.9・・嘲・暑コントロールパルプ 10・・・・・予備還元鉱 11・・・・・石炭 出 願 人 社団法人日本隊鋼連盟
FIG. 1 is a control block diagram of a smelting reduction furnace that implements the method of the present invention. l... Melting reduction furnace 2... Load cell 3... Flow meter 4... N2 analyzer 5... C02 analyzer 6.・・・・Flow rate regulator 7・・・・・・Adjuster 8.9・・Hot control pulp 10・・Preliminary reduced ore 11・・・・Coal applicant Japan Corps steel federation

Claims (1)

【特許請求の範囲】[Claims] 炭素を含む溶鉄に予備還元した鉄鉱石、および石炭、造
滓剤、酸素を吹込み、さらに炉の上部に2次醗素を吹き
込んで、鉄浴より発生する可熱ガスを燃焼させる鉄鉱石
の溶融還元炉の操業方法において、該還元炉の重量変化
および該炉から排出されるガスの量および組成音測定し
、該測定値に基いて鉄鉱石1石炭、酸素の吹き込み条件
を設定することを特徴とする溶融還元炉の操業方法。
Iron ore is pre-reduced to molten iron containing carbon, and coal, slag-forming agent, and oxygen are blown into the furnace. Secondary nitrogen is blown into the upper part of the furnace to burn the hot gas generated from the iron bath. In the operating method of the smelting reduction furnace, the weight change of the reduction furnace, the amount of gas discharged from the furnace, and the composition sound are measured, and the conditions for blowing iron ore 1 coal and oxygen are set based on the measured values. Characteristic method of operating a melting reduction furnace.
JP7195984A 1984-04-11 1984-04-11 Method for operating melt reducing furnace Pending JPS60215705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7195984A JPS60215705A (en) 1984-04-11 1984-04-11 Method for operating melt reducing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7195984A JPS60215705A (en) 1984-04-11 1984-04-11 Method for operating melt reducing furnace

Publications (1)

Publication Number Publication Date
JPS60215705A true JPS60215705A (en) 1985-10-29

Family

ID=13475519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7195984A Pending JPS60215705A (en) 1984-04-11 1984-04-11 Method for operating melt reducing furnace

Country Status (1)

Country Link
JP (1) JPS60215705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035038A1 (en) * 1996-03-22 1997-09-25 Steel Technology Corporation Stable operation of a smelter reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035038A1 (en) * 1996-03-22 1997-09-25 Steel Technology Corporation Stable operation of a smelter reactor
US6171364B1 (en) 1996-03-22 2001-01-09 Steel Technology Corporation Method for stable operation of a smelter reactor

Similar Documents

Publication Publication Date Title
US3748122A (en) Method for dynamically controlling decarburization of steel
US3920447A (en) Steel production method
JPS60215705A (en) Method for operating melt reducing furnace
US3489518A (en) Carbon determination method and apparatus
NL1006553C2 (en) Method for controlling a melt reduction process.
JPH0689393B2 (en) Method for estimating molten iron C concentration in iron-containing cold material melting method
Meyer et al. Static and dynamic control of the basic oxygen process
KR910009867B1 (en) Process for producing chromium containing molten iron
JPS59568B2 (en) Oxygen converter blowing control method
JP2897363B2 (en) Hot metal production method
Deo et al. Mathematical model for computer simulation and control of steelmaking
McBride The Physical Chemistry of Oxygen Steelmaking
JPH02190412A (en) Method for operating smelting reduction furnace
Mei et al. Real-Time Carbon and Temperature Model of Converter Based on the Weights of Elemental Reaction Rate
JPH05239522A (en) Production of molten iron
JP2608495B2 (en) Control method of Si concentration in blast furnace hot metal
JPH0798968B2 (en) Operation method of smelting reduction furnace
RU2017830C1 (en) Method of metal purification process control in direct-flow steel melting aggregate
JP2021031684A (en) Converter blowing control device, statistic model construction device, converter blowing control method, statistic model construction method and program
RU2180004C1 (en) Method of operation of blast furnace
AIS Dynamic EAF Energy and Material Balance Model for On-Line Process Optimization
Sun et al. Numerical analysis of reactions in a cupola melting furnace
SU540924A1 (en) The method of smelting nitrogen-containing steel in an induction furnace
JPH01195218A (en) Operation of melting and reducing furnace
JPH01283309A (en) Method for operating smelting reduction furnace