JPH0254706A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH0254706A
JPH0254706A JP20390088A JP20390088A JPH0254706A JP H0254706 A JPH0254706 A JP H0254706A JP 20390088 A JP20390088 A JP 20390088A JP 20390088 A JP20390088 A JP 20390088A JP H0254706 A JPH0254706 A JP H0254706A
Authority
JP
Japan
Prior art keywords
coke
ore
furnace
charging
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20390088A
Other languages
Japanese (ja)
Inventor
Nobuhiro Takashima
暢宏 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20390088A priority Critical patent/JPH0254706A/en
Publication of JPH0254706A publication Critical patent/JPH0254706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To easily execute blast furnace operation matching to the aimed operating condition by charging while adjusting mixed material of ore kind and coke kind when the layer thickness ratio of the ore kind and the coke kind at the furnace wall side exceeds the specific value at the time of executing in order layer charge of only the ore kind and layer charge of only the coke kind. CONSTITUTION:A furnace top bunker 2a for the ore kind, furnace top bunker 2b for the coke kind and a furnace top bunker 2c for the mixed material of the ore kind and the coke kind are arranged so as to be possible to charge in the blast furnace 1 with a swing chute 4 through flow adjusting gates 3, respectively. By this constitution, the coke kind and the ore kind are charged into the blast furnace 1 in order layer by layer and the average layer thickness in the range of <= about 700mm from the wall side in the blast furnace is measured with the measuring instruments 5, 5a. When the ratio (Lo/Lc) of the ore layer thickness (Lc) and the coke layer thickness (Lc) exceeds 1.20, the charging quantity and charging position of the mixed material of the ore kind and the coke kind are adjusted and charged in accordance with the layer thickness ratio. By this method, the stable and good blast furnace operation is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は旋回シュートを用いて、コークス類と鉱石類の
混合物を装入する高炉の操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method of operating a blast furnace in which a mixture of coke and ore is charged using a rotating chute.

〔従来の技術1 高炉操業において、安定で良好な操業を実施するための
1つの重要な要素として、炉内のガス流れ分布とガスの
通気性を適正な状態に維持し、炉内でのガス−固体熱・
交換や原料の還元を効率よく行わせることが挙げられる
[Conventional technology 1] In blast furnace operation, one of the important elements for stable and good operation is to maintain the gas flow distribution and gas permeability in the furnace in an appropriate state. −Solid heat・
One example is efficient exchange and reduction of raw materials.

そのために一般には鉱石類とコークス類のガスに対する
通気抵抗の差を利用して炉内ガス流れを制御するために
、炉内への層状装入時に、炉内半径方向の鉱石類とコー
クス類の層厚比の調整が実施されており、炉内に旋回シ
ュートを有する高炉においては、鉱石類とコークス類を
十数旋回で装入する際に、それぞれ違った旋回シュート
の傾動角の組み合わせで装入することにより、上記層厚
比の調整を行っている。
For this purpose, in order to control the gas flow in the furnace by utilizing the difference in gas ventilation resistance between ores and coke, when charging the furnace in layers, ore and coke are separated in the radial direction of the furnace. The layer thickness ratio has been adjusted, and in blast furnaces with rotating chutes inside the furnace, when ore and coke are charged in more than a dozen turns, they are charged using different combinations of tilting angles of the rotating chutes. The above layer thickness ratio is adjusted by inputting the above.

しかるに、最近の高炉操業に対しては、生産調整、溶銑
成分制御、製鉄所内のエネルギーバランスに基づいた目
標燃料比への調整など、その要求が厳しく、上記層厚比
の調整手段だけでは、安定した高炉I%¥業を行うこと
は困難であった。
However, recent blast furnace operations have strict requirements such as production adjustment, hot metal composition control, and adjustment to a target fuel ratio based on the energy balance within the steelworks, and the above method of adjusting the layer thickness ratio alone is not sufficient to ensure stability. It was difficult to carry out the blast furnace I%¥ business.

そこで、さらに新しい装入物分布手段を加えるべく、特
開昭52−96916において、旋回シュートを有する
高炉の原料装入で、コークス類と鉱石類の混合物を炉頂
装入物表面の炉壁から500mmの距離にある同心円の
内側に装入し、鉱石が半溶融状態になる融着帯領域の通
気抵抗を低減させる高炉原料の装入方法が提案されてい
る。
Therefore, in order to add a new burden distribution means, in Japanese Patent Application Laid-Open No. 52-96916, a mixture of coke and ores is transferred from the furnace wall on the surface of the top charge when charging raw materials to a blast furnace having a rotating chute. A method of charging blast furnace raw materials has been proposed in which the blast furnace raw materials are charged inside concentric circles at a distance of 500 mm to reduce ventilation resistance in the cohesive zone region where the ore is in a semi-molten state.

〔発明が解決しようとする課題1 しかし、ただ単に類m装入物表面の炉壁か6500mm
の距離にある同心円の内側に、混合原料を繰返し装入す
るという装入方法では、次の問題がある。
[Problem to be solved by the invention 1 However, the furnace wall on the surface of the type M charge is simply 6500 mm.
The charging method in which mixed raw materials are repeatedly charged inside concentric circles at a distance of , has the following problems.

(1)  その領域の通気抵抗が低下し、全体の通気抵
抗が低下する効果はあるが、その領域において不必要に
通気抵抗が大幅に低下した場合に、ガス流速が速くなり
、ガスと固体の熱交換や鉱石の還元効率が低下して、燃
料比が増加する場合がある。
(1) Although there is an effect of lowering the ventilation resistance in that area and lowering the overall ventilation resistance, if the ventilation resistance in that area is unnecessarily reduced significantly, the gas flow rate increases and the gas and solid Heat exchange and ore reduction efficiency may decrease and the fuel ratio may increase.

■ 半径方向の炉内ガス流れ分布において、炉壁側への
ガス流れが極端に抑制されて、熱不足となり、炉壁側に
不活性領域が形成されて、装入物の安定降下やその不活
性物の落下時には羽口破損を起こすなどの懸念がある。
■ In the radial gas flow distribution in the furnace, the gas flow toward the furnace wall is extremely suppressed, leading to a lack of heat and the formation of an inert region on the furnace wall, which prevents the stable descent of the charge and its failure. There are concerns that the tuyeres may be damaged when active materials fall.

■ 従って、融着帯部分の通気抵抗を低減させるために
は有効な装入方法である混合装入方法を有効に活用する
ことができない。
(2) Therefore, the mixed charging method, which is an effective charging method, cannot be used effectively in order to reduce the ventilation resistance in the cohesive zone portion.

〔課題を解決するための手段] 前記欠点を解決するために、過去の高炉操業データを解
析したところ、コークス類と鉱石類の層状装入において
は、炉壁側の鉱石層厚(LO)とコークス層厚(Lc)
の層厚比(L o / L c )が1.20を超える
と、スリップ、いわゆる装入物降下不順が多くなったり
、炉頂ガス成分の変動が大きくなったり、炉内通過ガス
量の炉半径方向における適正な分布が得られないなど、
高炉操業が急激に不安定になっているという知見が得ら
れた。
[Means for solving the problem] In order to solve the above-mentioned drawbacks, we analyzed past blast furnace operation data and found that in layered charging of coke and ore, the ore layer thickness (LO) on the furnace wall side Coke layer thickness (Lc)
When the layer thickness ratio (L o / L c ) exceeds 1.20, slippage, so-called irregularity in the descent of the charge, increases, fluctuations in the top gas composition increase, and the amount of gas passing through the furnace increases. Proper distribution in the radial direction cannot be obtained, etc.
It was discovered that blast furnace operations were rapidly becoming unstable.

そこで本発明は、L o / L cの値が1.20未
満の時は、通常のL o / L cの層厚調整で対処
できるものの、1.20以上では鉱石の層厚増加には自
ずと限界があり、操業安定を図るには壁際のL0/ L
 cを調整する従来の分布制御卸では対処し切れないこ
とから、炉壁側の鉱石類コークス類の層厚を測定できる
測定装置の測定結果に対応して、コークス類と鉱石類の
混合物の装入量と装入位置を調整することで、従来壁際
のL o / L cの調整だけでは困難であったガス
分布制御を容易に適正化できるようにしたものである。
Therefore, in the present invention, when the value of L o / L c is less than 1.20, it can be dealt with by normal layer thickness adjustment of L o / L c, but when it is 1.20 or more, it is impossible to increase the layer thickness of the ore. There is a limit, and in order to stabilize operation, L0/L near the wall
Since the conventional distribution control wholesaler that adjusts By adjusting the charging amount and charging position, it is possible to easily optimize gas distribution control, which was conventionally difficult to do by simply adjusting L o / L c near the wall.

すなわち本発明は、旋回シュートを用いて原料を装入し
、鉱石類のみの層状装入、コークス類のみの層状装入お
よびコークス類と鉱石類の混合物の層状装入を行う高炉
操業方法において、鉱石類のみの層状装入とコークス類
のみの層状装入における炉壁側鉱石類とコークス類の層
厚比が1.20を超えたとき、該層厚比に応じて、前記
混合物の装入量および装入位置の調整を行うことを特徴
とする。
That is, the present invention provides a blast furnace operating method in which raw materials are charged using a rotating chute, and stratified charging of only ores, stratified charging of only coke, and stratified charging of a mixture of coke and ores is performed. When the layer thickness ratio of ore and coke on the furnace wall side exceeds 1.20 in layered charging of only ores and layered charging of only coke, charging of the mixture according to the layer thickness ratio. It is characterized by adjusting the amount and charging position.

第1図は本発明の操業方法の説明図である。FIG. 1 is an explanatory diagram of the operating method of the present invention.

高炉lはコークス類、鉱石類、混合物の炉頂バンカ2を
備え、各炉頂バンカには各原料の装入量を調整する流調
ゲート3が付設されている。各装入物を炉内に装入する
旋回シ1−ト4のシュートの傾動角θを設定することに
よって、炉内半径方向の任意の位置にそれぞれの装入物
を装入することが可能である。
The blast furnace 1 is equipped with a top bunker 2 for coke, ores, and a mixture, and each top bunker is provided with a flow control gate 3 for adjusting the charging amount of each raw material. By setting the tilt angle θ of the chute of the rotating seat 4 that charges each charge into the furnace, each charge can be charged at any position in the radial direction of the furnace. It is.

炉内装入物の層厚測定装置5.5aは高炉内の壁際から
700mm以内の範囲の平均的な層厚を測定する。最低
限、上記範囲内の定まった1箇所の層厚が測定可能であ
れば良い0層厚測定装置5.5aとしては一定レベルか
ら装入物表面までの距離を測定する機械式サウンジング
計やマイクロ波タイプのサウンジング計など一般的な装
置で良いが、各装入毎に連続して測定可能なマイクロ波
タイプの方が好ましい。
The furnace contents layer thickness measuring device 5.5a measures the average layer thickness within a range of 700 mm from the wall inside the blast furnace. As long as the layer thickness can be measured at least at one fixed point within the above range, the zero layer thickness measuring device 5.5a may be a mechanical sounding meter or micrometer that measures the distance from a certain level to the surface of the charge. A general device such as a wave-type sounding meter may be used, but a microwave type that can continuously measure each charge is preferable.

固定温度ゾンデ6は、炉内のガス流れ分布を検知するた
めの測定装置である。この装置については固定温度ゾン
デ6に限らず、シャフトゾンデによる半径方向のガス成
分測定やステーブ抜熱量。
Fixed temperature sonde 6 is a measuring device for detecting gas flow distribution within the furnace. This device is not limited to the fixed temperature sonde 6, but can also measure gas components in the radial direction with a shaft sonde and heat extraction from a stave.

炉体温度計など、炉内のガス流れを検知する測定装置で
あればよく、これらの測定結果を組み合わせて炉内のガ
ス流れ分布を判断する方が好ましい。
Any measuring device that detects the gas flow in the furnace, such as a furnace body thermometer, may be used, and it is preferable to combine these measurement results to determine the gas flow distribution in the furnace.

本発明は、第1表に示すような壁際のLo/Lcの値に
応じた装入混合物の装入アクションを定めた表を用意し
ておき、それに従った装入アクションを実施する。第1
表の境界値やアクション1は、操業する高炉の大きさ、
使用原燃料の性状によって修正を必要とする0通常L 
o / L cが大きな値でなければ装入混合物の装入
位置はできるだけ炉中心部分に必要最小量の装入にし、
混合物中のコークス割合は、融着帯までのソリューショ
ンロス反応による消費量と融着帯での通気低減効果を考
えて、15重遺漏以上にすることが好まししA+ 層厚測定装置5.5aの層厚測定結果に基づき、第1表
に従ってアクションを実施するが1層厚測定は装入物装
入毎(バッチ毎)に実施し、混合物装入アクションや、
その戻しアクションを実施するには、少なくとも10チ
ヤージの測定値の平均値を用いる。混合装入物を装入す
る場合は、1チヤージ(コークス類のみ生鉱石類のみ生
温合物)の合計のコークス類と鉱石類は変更しないよう
にする方が、高炉の操業変動が少なく好ましい。
In the present invention, a table as shown in Table 1 is prepared in which the charging action of the charging mixture is determined according to the value of Lo/Lc near the wall, and the charging action is carried out in accordance with the table. 1st
The boundary values and action 1 in the table are the size of the blast furnace being operated,
0 Normal L that requires modification depending on the properties of the raw fuel used
If o/Lc is not a large value, the charging mixture should be placed in the center of the furnace as much as possible, with the minimum amount required.
The coke ratio in the mixture is preferably 15 or more, considering the amount consumed by the solution loss reaction up to the cohesive zone and the effect of reducing ventilation in the cohesive zone.A+ Layer thickness measuring device 5.5a Based on the layer thickness measurement results, actions are taken according to Table 1, but one layer thickness measurement is performed for each charge (each batch), and the mixture charging action,
An average value of at least 10 charge measurements is used to perform the reversal action. When charging a mixed charge, it is preferable not to change the total amount of coke and ore in one charge (coke, raw ore, raw mixture) as this will reduce fluctuations in blast furnace operation. .

混合装入については、第1図に示すように鉱石類炉頂バ
ンカ2a、コークス類炉頂バンカ2bの他に混合装入用
炉頂バンカ2Cを設けて、予め混合した混合物を類mバ
ンカを経由して炉内に装入してもよ(、コークス類炉頂
バンカ2aと鉱石炉頂バンカ2bのそれぞれの下部流調
ゲート3を必要なだけ、同時開にして混合させても良い
For mixed charging, as shown in Fig. 1, in addition to the ore top bunker 2a and the coke top bunker 2b, a mixed charging top bunker 2C is provided to transfer the pre-mixed mixture to the type m bunker. Alternatively, the lower flow control gates 3 of the coke top bunker 2a and the ore top bunker 2b may be simultaneously opened as many times as necessary to allow mixing.

混合物の高炉内装入位置の調整は、旋回シュート4の傾
動角θを調整して実施することは言うまでもない。
Needless to say, the position at which the mixture is introduced into the blast furnace is adjusted by adjusting the tilting angle θ of the rotating chute 4.

[実施例1 本発明の実施例の一例を示す。[Example 1 An example of an embodiment of the present invention is shown.

実施高炉の内容積は4500rrl’であり、炉頂には
、炉壁か6500mm内側の位置の装入物層厚を測定す
るためにマイクロ波レベル計を設置しである。ガス流れ
分布を判断するために、炉r百には固定温度ゾンデを設
置し半径方向のガス温度の測定を実施し、特に炉壁ガス
流れの検知のために、炉壁ステーブの冷却水抜熱1を連
続的に測定している。
The internal volume of the blast furnace used was 4,500 rrl', and a microwave level meter was installed at the top of the furnace to measure the thickness of the charge layer at a position 6,500 mm inside the furnace wall. In order to determine the gas flow distribution, a fixed temperature probe was installed in the furnace to measure the gas temperature in the radial direction. are measured continuously.

実施高炉は、旋回シュートを有するベルレス型高炉で、
3つの炉丁頁バンカにより、コークス類のみ、鉱石類の
み、コークス類と鉱石類との混合物それぞれを装入可能
にしである。
The blast furnace used was a bellless type blast furnace with a rotating chute.
The three furnace bunkers make it possible to charge only coke, only ore, and a mixture of coke and ore.

本発明を利用した装入物分布制御を行った操業推移を第
2図に示す。第2図中に1印で示した部分で装入物分布
アクションを実施している。
FIG. 2 shows the operational history in which charge distribution control was performed using the present invention. Charge distribution action is carried out in the area marked with 1 in Figure 2.

送風l:600ONITll/min 鉱石類:1141;/チャージ コークス類=34し/チャージ の層状装入を実施していた。以下装入物分布制御アクシ
ョンについて説明する。
Blow rate: 600 ONITll/min Ores: 1141;/Charge coke=34/Charge was charged in a layered manner. The charge distribution control action will be explained below.

(1)■のアクション ステーブ抜熱量が管理値(400〜600×10 ’ 
k Ca l / H)の下限以下になったために、炉
壁側の通過ガス等が少なくなったので。
(1) ■The amount of heat removed from the action stave is the control value (400 to 600 x 10'
kCal/H) was below the lower limit, so the amount of gas passing through the furnace wall decreased.

炉際装入鉱石量を低下させて対処した通常のアクション
である。
This is a normal action taken by reducing the amount of ore charged near the furnace.

(2)■のアクション 送風量の上昇に伴うステーブ抜熱量の大幅な上昇に対処
するために、炉壁ll111通過ガス雀の抑制を図るべ
く鉱石を炉壁側に多く装入したアクションである。(鉱
石類のみ114t、/チャージ、コークス類のみ34t
/チヤージ)(3)■のアクション ■のアクションに伴い炉壁側の鉱石層厚が上界し、L 
o / L cが1.2を超え、さらに又テープ抜熱量
が管理上限を超えたために、第1表に準じて、炉中心部
の通過ガス頃を増やすため混合物を装入したアクション
である。(鉱石類のみ106t/チヤージ、コークス類
のみ32t/チヤージ、混合物10 t/チャージ、(
鉱石8t/チヤージ、コークス2t、/チャージ))混
合物の装入は第1表の!<0.2になるように旋回シュ
ート4の傾動角θ=0にして装入した。
(2) Action (2) In order to cope with the large increase in the amount of heat removed from the stave due to the increase in the amount of air blown, this action is to charge a large amount of ore to the furnace wall side in order to suppress the gas passing through the furnace wall ll111. (114 tons for ores only, 34 tons for charge and coke only)
/Charge) (3) Action of ■ With the action of ■, the ore layer thickness on the furnace wall side increases, and L
Since o/Lc exceeded 1.2 and the amount of heat extracted from the tape exceeded the control upper limit, a mixture was charged in accordance with Table 1 to increase the amount of gas passing through the center of the furnace. (Ores only 106t/charge, coke only 32t/charge, mixture 10t/charge, (
8t of ore/charge, 2t of coke/charge)) Charge the mixture as shown in Table 1! The tilting angle θ of the rotating chute 4 was set to 0 so that <0.2.

(4)■のアクション ■のアクションからL o / L cが1.20近傍
でステーブ抜熱量も管理値内で安定していたが、さらに
送風量が上界したのに伴い、ステ−ブ抜熱用が上昇し、
その一対処として炉壁側の通過ガス量を抑制すべく、鉱
石類を壁際に多く装入した。
(4) Action ■ From the action ■, L o / L c was around 1.20 and the amount of heat extracted from the stave was stable within the control value, but as the air flow rate further increased, it became necessary to remove the stave. fever rises,
As a solution to this problem, more ores were charged near the wall in order to suppress the amount of gas passing through the furnace wall.

(5)■のアクション ■のアクションでL o / L cが1.30を超え
て、なおステーブ抜熱量が高いために、炉中心部のガス
を増すため中心位置における混合物の装人用を第1表に
準じて増加させた。
(5) Action ■ In the action ■, L o / L c exceeds 1.30 and the amount of heat extracted from the stave is still high, so in order to increase the gas in the center of the furnace, the charging of the mixture at the center position is started. Increased according to Table 1.

(f、石類のみ98t/チヤージ、コークス類のみ30
t/チヤージ、混合物20t/チャジ、(鉱石16 t
、/チャージ、コークス4t/チヤージ)) 混合物の装入量が増加したために、混合物の炉内への装
入の際に、■のアクションのような旋回シュートの傾動
角θ=Oの装入と0=5度の装入を実施して、中心部分
に偏析しないよう第1表のε〈0.4の範囲内で均一に
なるよう装入した。
(f, stone only 98t/charge, coke only 30t
t/charge, mixture 20t/charge, (ore 16t
, /charge, coke 4t/charge)) Due to the increase in the charging amount of the mixture, when charging the mixture into the furnace, the tilting angle of the rotating chute θ = O as in the action of Charging was carried out at 0=5 degrees, and the charging was carried out uniformly within the range of ε<0.4 shown in Table 1 to prevent segregation in the center portion.

(6)■のアクション (つのアクションの効果で、ステーブ抜熱量が低下した
ので、壁際の鉱石装入量を低下させた。
(6) Due to the effect of the action ■, the amount of heat extracted from the stave was reduced, so the amount of ore charged near the wall was reduced.

(7>■のアクション ■のアクションにより、ややステーブ抜熱量は上昇した
が、管理値内でL o / L cが1.20に低下し
たために、炉中心部の混合物の装入量を低下させた(■
のアクションの戻し)。
(7> Action of ■ As a result of the action of ■, the amount of heat removed from the stave increased slightly, but since L o / L c decreased to 1.20 within the control value, the amount of charge of the mixture in the center of the furnace was reduced. It was (■
action).

(8)■、■のアクション ■と■アクションと同様な戻しアクションである。(8) Actions of ■ and ■ This is a return action similar to ■ and ■ actions.

以上操業の実施例であるが、このような本発明による装
入物分布制御により、安定した高炉操業を継続している
The above is an example of operation, and stable blast furnace operation is continued by controlling the charge distribution according to the present invention.

第1表の混合物装入アクションの内容は、定期的な見直
しを実施しながら操業を継続させている。
The contents of the mixture charging actions shown in Table 1 are reviewed periodically as operations continue.

〔発明の効果1 内容積4500rn’の高炉で、設定送風温度850℃
〜900℃、設定送風量6000〜6300 Nrn’
/m i n、出銑量22OxlO3t/月の操業条件
で、所内エネルギーバランスに合わせた燃料比での操箔
を実施しているが、本発明により次のような効果が得ら
れた。
[Effect of the invention 1: In a blast furnace with an internal volume of 4500 rn', the air blowing temperature is set at 850°C.
~900℃, set air flow rate 6000~6300 Nrn'
Foil operation was carried out at a fuel ratio that matched the in-plant energy balance under the operating conditions of 22 OxlO3 t/min and a pig iron output of 22 OxlO3 t/month, and the following effects were obtained by the present invention.

■ 炉[百ガス成分の変動が少な(なり、炉頂でのガス
利用率+7co二CO2/ (CO2+CO)のばらつ
きが第3図に示すように低下した。また、操衷の変動が
少なくなり、送風圧力と炉頂圧力の差のばらつきが第4
図に示すように低下した。
■ Furnace [100] Fluctuations in gas components are small (and the variation in gas utilization rate + 7 CO2 CO2/ (CO2 + CO) at the top of the furnace is reduced as shown in Figure 3. Also, fluctuations in operation are reduced, The fourth factor is the variation in the difference between blast pressure and furnace top pressure.
It decreased as shown in the figure.

■ その結果、溶銑中[Si]in度のばらつきも、第
5図に示すように減少し、溶銑品質も安定した。
(2) As a result, the variation in the degree of [Si]in in the hot metal was reduced as shown in Figure 5, and the quality of the hot metal was stabilized.

このように操業変動が低下したことにより、目標操業条
件に合わせた高炉操業が容易に実施できるようになった
By reducing operating fluctuations in this way, it has become easier to operate blast furnaces in accordance with target operating conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を示す構成図、第2図は本発明を11用
した操業方法の例、第3図は炉頂ガス利用率の変動低下
、第4図は送風圧力の変動低下、第5図は溶銑中[5i
la度の変動低下を示す図である。 l・・・高炉 2・・・炉rIバンカ 2a・・・鉱6類の炉頂バンカ 2b・・・コークス類の炉mバンカ 2c・・・鉱石類とコークス類の混合物の炉頂バンカ 3・・・流調ゲート 4・・・旋回シュート 5.5a・・・層厚測定装置 6・・・固定?品用ゾンデ
Fig. 1 is a block diagram showing the present invention, Fig. 2 is an example of an operating method using the present invention, Fig. 3 is a reduction in fluctuation in the furnace top gas utilization rate, Fig. 4 is a reduction in fluctuation in blowing pressure, Figure 5 shows hot metal [5i
It is a figure showing the fluctuation reduction of la degree. l... Blast furnace 2... Furnace rI bunker 2a... Furnace top bunker 2b for ore type 6... Furnace m bunker 2c for coke... Furnace top bunker 3 for a mixture of ore and coke. ...Flow control gate 4...Swivel chute 5.5a...Layer thickness measuring device 6...Fixed? Sonde for goods

Claims (1)

【特許請求の範囲】[Claims] 1 旋回シュートを用いて原料を装入し、鉱石類のみの
層状装入、コークス類のみの層状装入およびコークス類
と鉱石類の混合物の層状装入を行う高炉操業方法におい
て、鉱石類のみの層状装入とコークス類のみの層状装入
における炉壁側鉱石類とコークス類の層厚比が1.20
を超えたとき、該層厚比に応じて、前記混合物の装入量
および装入位置の調整を行うことを特徴とする高炉の操
業方法。
1. In the blast furnace operation method in which raw materials are charged using a rotating chute and stratified charging of ores only, stratified charging of coke only, and stratified charging of a mixture of coke and ores is carried out, In layered charging and layered charging with only coke, the layer thickness ratio between ore and coke on the furnace wall side is 1.20.
A method for operating a blast furnace, which comprises adjusting the charging amount and charging position of the mixture according to the layer thickness ratio when the ratio exceeds the layer thickness ratio.
JP20390088A 1988-08-18 1988-08-18 Method for operating blast furnace Pending JPH0254706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20390088A JPH0254706A (en) 1988-08-18 1988-08-18 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20390088A JPH0254706A (en) 1988-08-18 1988-08-18 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH0254706A true JPH0254706A (en) 1990-02-23

Family

ID=16481573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20390088A Pending JPH0254706A (en) 1988-08-18 1988-08-18 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH0254706A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046204A (en) * 1990-04-24 1992-01-10 Kawasaki Steel Corp Method for charging raw material into blast furnace
JPH046205A (en) * 1990-04-24 1992-01-10 Kawasaki Steel Corp Method for charging raw material into blast furnace
JPH0421706A (en) * 1990-05-14 1992-01-24 Kawasaki Steel Corp Method for charging raw material into blast furnace
KR20150004840A (en) * 2012-05-18 2015-01-13 제이에프이 스틸 가부시키가이샤 Method for loading raw material into blast furnace
JP2017020078A (en) * 2015-07-10 2017-01-26 新日鐵住金株式会社 Blast furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046204A (en) * 1990-04-24 1992-01-10 Kawasaki Steel Corp Method for charging raw material into blast furnace
JPH046205A (en) * 1990-04-24 1992-01-10 Kawasaki Steel Corp Method for charging raw material into blast furnace
JPH0421706A (en) * 1990-05-14 1992-01-24 Kawasaki Steel Corp Method for charging raw material into blast furnace
KR20150004840A (en) * 2012-05-18 2015-01-13 제이에프이 스틸 가부시키가이샤 Method for loading raw material into blast furnace
JP2017020078A (en) * 2015-07-10 2017-01-26 新日鐵住金株式会社 Blast furnace

Similar Documents

Publication Publication Date Title
RU2613007C2 (en) Method of blast furnace operation and method of molten cast iron production
US4329171A (en) Steel making method
Gupta et al. Burden distribution control and its optimisation under high pellet operation
JPH0254706A (en) Method for operating blast furnace
JP4792753B2 (en) Blast furnace operation method
CN111270029A (en) Method for representing molten iron temperature and application thereof
US4273577A (en) Blast-furnace operation method
JP4759985B2 (en) Blast furnace operation method
JP2897363B2 (en) Hot metal production method
US20240167111A1 (en) Method for producing pig iron
JPH10298620A (en) Method for charging ore and the like into blast furnace
JPH06271908A (en) Method for charging raw material in multi-batches into bell-less blast furnace
JPH11269513A (en) Charging of charging material into center part of blast furnace
JP2875376B2 (en) Method and apparatus for producing hot metal containing chromium
JP2000226608A (en) Operation of blast furnace
JPS6296607A (en) Blast furnace operation method for blowing slack into furnace
JPH10140218A (en) Method for controlling furnace bottom of blast furnace
JPS63114911A (en) Method for operation smelting/reducing furnace
JP2022048698A (en) Control device for blast furnace, operation method for blast furnace, and program
JPH1060507A (en) Operation of blast furnace
JPH0512403B2 (en)
JPH01268813A (en) Method for controlling fluidized bed type smelting reduction furnace
JPS63145704A (en) Charging method for raw material in blast furnace
JPS60110804A (en) Method for operating blast furnace
JPS62224610A (en) Method for controlling temperature of melt reducing furnace