JPS63145704A - Charging method for raw material in blast furnace - Google Patents

Charging method for raw material in blast furnace

Info

Publication number
JPS63145704A
JPS63145704A JP29216986A JP29216986A JPS63145704A JP S63145704 A JPS63145704 A JP S63145704A JP 29216986 A JP29216986 A JP 29216986A JP 29216986 A JP29216986 A JP 29216986A JP S63145704 A JPS63145704 A JP S63145704A
Authority
JP
Japan
Prior art keywords
ore
charging
layer
furnace
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29216986A
Other languages
Japanese (ja)
Other versions
JPH0586443B2 (en
Inventor
Emi Murakawa
村川 恵美
Seiji Taguchi
田口 整司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29216986A priority Critical patent/JPS63145704A/en
Publication of JPS63145704A publication Critical patent/JPS63145704A/en
Publication of JPH0586443B2 publication Critical patent/JPH0586443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To suitably maintain the permeability distribution of charging material and the temp. distribution in a furnace to be desirable to the furnace condition, etc., by adjusting layer thickness distribution and grain size distribution of ore and coke (charging material) in the dividing charging method only by changing the position of movable armor. CONSTITUTION:In the case of two divided charging of the ore, by changing the position of movable armor, the top position of the first charging ore O1 is charged from RO1 to R'O1 and in accordance with this, the layer thickness is changed, but the layer thickness as the total ore layer 1 is not changed, in case the sum of charging ore quantities O1 and O3 at first and second times is fixed. And, the layer thickness of ore layer 1 is fixed only by the surface shape of coke layer 2 at the lower stage and the surface shape of ore O2 layer, and therefore, the layer thickness distribution of charging material is adjusted by adjusting the above arm position at the time of charging the coke in accordance with the shape of the upper face of ore layer 1. Further, by changing the surface shape of ore O1 layer just before charging of ore O2 mixing fine grain, the grain distribution of charging material is adjusted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベル・ムーバブルアーマ式高炉操業において
、炉況および炉体にとって望ましい、装入物の通気性分
布および炉内温度分布を維持することを目的とするもの
であり、装入物の層厚分布および粒度分布を調整する方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention maintains the permeability distribution of the charge and the temperature distribution within the furnace that are desirable for the furnace conditions and the furnace body in bell-movable-armor blast furnace operation. The purpose of this invention is to adjust the layer thickness distribution and particle size distribution of a charge.

〔従来の技術〕[Conventional technology]

1−:I炉操業において炉頂部での鉱石・コークスの層
厚分4iおよび粒度分布(以ド合せて装入物分IH5と
記す)を適II:、に制御することは、炉内でのカス流
れを支配し、炉内温度骨IHjおよび5元反応進行度、
さらには融71”+L’の形状等を適正に制御すること
に人きく゛、ゼIJ、する。
1-: Controlling the layer thickness 4i and particle size distribution (hereinafter collectively referred to as charge IH5) of ore/coke at the top of the furnace to an appropriate II: during I furnace operation is the Controls the waste flow, the furnace temperature IHj and the five-dimensional reaction progress,
Furthermore, it is important to appropriately control the shape of the melt 71''+L'.

ベル・ムーバブルアーマ式高炉では、ベルレス回転シュ
ート式高炉と異なり、装入物を少jIiずつ、所91の
位置に堆積させることができないため、装入物分/14
の制御が難しいとされてきた。
In the bell/movable armor type blast furnace, unlike the bellless rotary chute type blast furnace, the charge cannot be deposited in small amounts at the position 91, so the charge amount/14
has been considered difficult to control.

i年、ベル・ムーバブルアーマ式での装入物分布制御の
自由度を増すため、装入物、特に鉱石の装入を2回以上
に分け、各装入に対する装入+、Hやれ度を変化させて
炉内で成層させ装入物分布を調節する方法が開発された
In 2015, in order to increase the degree of freedom in controlling the burden distribution using the bell/movable armor type, the charge, especially the ore, was divided into two or more times, and the charging + and H damage rates for each charge were adjusted. A method has been developed to control the charge distribution by varying the stratification in the furnace.

例えば特開昭57−134502では1回1−1の鉱石
らtを調節することによって、炉中心へ押し流されるコ
ークスj11を制御し、炉中心近傍において形成される
通気性の良い混合層の厚さを制御している。また特公昭
59−10403では2回[Iに装入される鉱石粒度を
1回[1のものより小さくする粒度分11.l装人法を
開発し、炉内全体としての通気性を向1−させている。
For example, in JP-A-57-134502, by adjusting the ore t of 1-1 at a time, the coke j11 that is swept toward the center of the furnace is controlled, and the thickness of the mixed layer with good air permeability formed near the center of the furnace is controlled. is under control. In addition, in Japanese Patent Publication No. 59-10403, the ore particle size charged in I was changed twice [1 time to reduce the particle size to be smaller than that in 1. We have developed a new loading method to improve ventilation throughout the furnace.

ところがl〕述した分割装入法では炉内ガス流れを最も
強く支配する炉壁近傍での装入物分布の通気性を定j1
1−的に制御することができなかった。
However, in the split charging method described above, the permeability of the charge distribution near the furnace wall, which most strongly controls the gas flow in the furnace, is determined by
1- could not be controlled.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このため、例えば細粒原料を多量に使用しようとする場
合に炉壁近傍をも含め、炉内全体の通気性を適+IEに
制御するための有効な定量的方法がなかった。
For this reason, for example, when a large amount of fine-grain raw material is used, there has been no effective quantitative method for controlling the air permeability of the entire furnace, including the vicinity of the furnace wall, to an appropriate level of +IE.

本発明の目的は、以上述べた従来の方法ではできなかっ
た分割装入法における炉壁近傍を含めた炉内装入物分布
の定着的な制御を精度良く行う方法をり―えるものであ
り、かつその方法はムーバブルアーマという高炉操業に
おいて操作し易い最もim ’i’−な手段によっての
み行われるものである。
An object of the present invention is to provide a method for accurately controlling the distribution of contents in the furnace including the vicinity of the furnace wall in the split charging method, which was not possible with the conventional methods described above. This method is carried out only by the most convenient means of movable armor, which is easy to operate in blast furnace operation.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は鉱石を粒径分、/liが異なる2以1−に分け
て炉内で成層させ、MII粒鉱石を最下段以外の層に積
層する高炉原料装入方法において、 (1) コークス装入時のムーバブルアーマ位置を鉱石
層14面の形状に応じて調整することによって装入物の
層厚分布を調整し、 (2)  、*++粒鉱石を混合した鉱石層直前の鉱石
層の表面形状を変更することによって装入物の粒度分1
1jを調整する、 ことを特徴的な技術手段とする高炉の原料装入方ノ人で
ある。
The present invention provides a blast furnace raw material charging method in which ore is divided into two layers with different particle sizes and /li and stratified in a furnace, and MII grain ore is layered in layers other than the bottom layer. (1) Coke charging By adjusting the movable armor position at the time of loading according to the shape of the ore layer 14 surface, the layer thickness distribution of the charge is adjusted, By changing the shape, the particle size of the charge can be reduced by 1
He is a person who charges raw materials into a blast furnace, whose characteristic technical means is to adjust 1j.

(f’I II+ ) 鉱石の分割比、ベル開度、ベル開速度あるいは原料の粒
度調整等装入物分布を制御する手段はいくつかあるが最
も定jIk的で自由度の大きい手段はムーバブルアーマ
位置の変更である。
(f'I II+) There are several means to control the charge distribution, such as adjusting the ore splitting ratio, bell opening degree, bell opening speed, or raw material particle size, but the most constant method with the greatest degree of freedom is movable armor. This is a change in position.

そこでまず鉱石2分割装入の場合について種々検討を行
った結果を以−ドに述べる。稼動中の高炉で2分;l1
IIした中の1回11の鉱石装入とコークス装入におけ
るムーバブルアーマ位置を、 (l゛)第1回目の鉱石装入時のムーバブルアーマ位置
指数NO+を1〜5、 ′2)  コークス装入時のムーバブルアーマ位置指数
NOを2〜6、 と種々変化させた時の鉱石・コークスの層厚分布を電極
式層厚計を用いてJlll定した。その層厚分率20/
(文o+9.c)を第1表に示す、この結果得られたN
(、またはNotとno / (Jlo +lc )と
の関係を第3図、第4図に示す。
First, we will discuss the results of various studies on the case of two-part ore charging. 2 minutes in an operating blast furnace; l1
The movable armor position in the 1st ore charging and coke charging during the second ore charging is as follows: The layer thickness distribution of ore and coke was determined using an electrode type layer thickness meter when the movable armor position index NO was varied from 2 to 6. Its layer thickness fraction 20/
(sentence o+9.c) is shown in Table 1, and the resulting N
(or Not and no/(Jlo +lc) are shown in FIGS. 3 and 4.

これらから装入物層厚分布はコークス装入時のムーバブ
ルアーマ位置指数Ncにのみ依存し、1回]−1の鉱石
装入時のムーバブルアーマ位こ指数Notには依存しな
いことが分った。従ってコーク装入時におけるムーバブ
ルアーマ位置指数Ncのみを変更することによって装入
物層厚分布を副面することができることが明らかになっ
た。
From these results, it was found that the charge layer thickness distribution depends only on the movable armor position index Nc at the time of coke charging, and does not depend on the movable armor position index Not at the time of ore charging. . Therefore, it has become clear that by changing only the movable armor position index Nc during coke charging, it is possible to improve the charge layer thickness distribution.

第 1 表 (liυ at  Z、−バブルアーマ(q置指数が大きい場合、
装入物はより炉中心側へ装入される。
Table 1 (liυ at Z, - bubble armor (when the q-position index is large,
The charge is charged closer to the center of the furnace.

tu各測定イメlは6〜8回の測定イ〆1をf均したも
のである。
Each measurement image 1 is obtained by averaging 6 to 8 measurement results 1 by f.

以上述べた現象は以丁の装入物分布制御機構に基づく。The above-mentioned phenomenon is based on Ito's charge distribution control mechanism.

ムーバブルアーマ位置指数を(No+、NO2、Nc)
= (502)から(302)に変更する場合、第1図
に示すように1回口の鉱石層の頂上の位置はRotから
R’01に変化し、これに伴って層厚も変化するが、鉱
石層l全体としての層厚は、1回[1鋸石縫と2回目鉱
石量との和が一定の場合は変化せず、下段のコークス層
の表面形状(すなわち、その上に載る鉱石層の下面形状
)と2回目に装入した鉱石層の表面形状によってのみ定
まる。徒って2回目の鉱石装入時のムーバブルアーマ位
置NO2を炉壁に固定すると、第1図より、鉱石層厚は
コークス装入時のムーバブルアーマ位置指数NOのみに
よって定まることが分る。
Movable armor position index (No+, NO2, Nc)
= When changing from (502) to (302), the position of the top of the first ore layer changes from Rot to R'01 as shown in Figure 1, and the layer thickness also changes accordingly. , the thickness of the ore layer as a whole does not change if the sum of the first saw and the second ore amount is constant, and the surface shape of the lower coke layer (i.e., the ore on top of it) It is determined only by the bottom surface shape of the layer) and the surface shape of the ore layer charged the second time. If the movable armor position NO2 at the time of second ore charging is fixed to the furnace wall, it can be seen from FIG. 1 that the ore layer thickness is determined only by the movable armor position index NO at the time of coke charging.

第2図に示すように実炉での層厚測定でもムーバブルア
ーマ位置が(302)と(502)とではほとんど同一
の鉱石層厚分布をした。これに対してムーバブルアーマ
位置を(302)から(304)に変更すると鉱石層厚
分率は炉中心から炉中間では低下し、逆に炉壁近傍では
増加した。
As shown in FIG. 2, the ore layer thickness distribution was almost the same at movable armor positions (302) and (502) even when layer thickness was measured in an actual furnace. On the other hand, when the movable armor position was changed from (302) to (304), the ore layer thickness fraction decreased from the furnace center to the middle of the furnace, and conversely increased near the furnace wall.

ところで第2図において、Ncが2.4いずれの場合も
炉1;?近傍では鉱石層厚が急激に増加している。この
ような層厚分41は炉壁から熱損失を抑えて炉壁を保、
:へする場合に都合がよい。しかし炉壁近傍での鉱石層
Jjが増加するといわゆる炉壁不活性の状遵:になり、
スリップが多発するようになる場合がある。これを防ぐ
には、通常後述の粒度分布の制御によって炉壁通気性を
確保するが、この効果によっても炉壁での通気性が上の
に保てなくなる場合がある。この場合は2回目の鉱石装
入時におけるムーバブルアーマ位′jIINo2を増加
させるとよい。
By the way, in Fig. 2, in both cases where Nc is 2.4, furnace 1;? In the vicinity, the thickness of the ore layer increases rapidly. Such a layer thickness 41 suppresses heat loss from the furnace wall and protects the furnace wall.
: Convenient when going to However, as the ore layer Jj increases near the furnace wall, the so-called furnace wall becomes inert.
Slips may occur frequently. To prevent this, the air permeability of the furnace wall is usually ensured by controlling the particle size distribution as described below, but even with this effect, the air permeability of the furnace wall may not be maintained at a high level. In this case, it is preferable to increase the movable armor position 'jIINo2 at the time of second ore charging.

ノ、(準のムーバブルアーマ位置を(302)として、
NO2をOから色々と変化させた時の鉱石層厚分4iの
変化を第5図に示す、NO2がNOより大きい場合、炉
壁での20/(交0+立C)は減少し、通気性が非常に
良くなる。このような装入物分布では炉壁での熱負荷が
高くなり、また炉中心近傍でのガス流速が低下し、温度
も低下する。適正なNO2の値は通常操業実績から決め
ればよい。
(Assuming the semi-movable armor position is (302),
Figure 5 shows the changes in the ore layer thickness 4i when NO2 is varied from O to O. When NO2 is larger than NO, 20/(AC0+vertical C) at the furnace wall decreases, and the air permeability decreases. becomes much better. With such a charge distribution, the heat load on the furnace wall becomes high, and the gas flow rate near the center of the furnace decreases, resulting in a decrease in temperature. An appropriate NO2 value may be determined from normal operation results.

次に1回口の鉱石装入時のムーバブルアーマ位だ指数N
otが装入物分布にJj−える影響について調べた。上
述のようにPJotは装入物層厚分布にはほとんど影響
しないが、第1図から分るように1回「1と2回[1に
装入する鉱石層の半径方向分布を支配する。このため、
2回目に装入される鉱石の中に細粒原料を混ぜである場
合、Notを増加すればするほど2回目の鉱石は炉壁近
傍に多く装入され、炉壁近傍での鉱石粒度は低下する。
Next is the movable armor position at the time of first ore charging, index N.
The influence of ot on the charge distribution was investigated. As mentioned above, PJot has little effect on the charge layer thickness distribution, but as can be seen from Fig. 1, it controls the radial distribution of the ore layer charged in 1 and 2 [1]. For this reason,
If the ore charged for the second time is mixed with fine raw materials, the more Not increases, the more ore is charged near the furnace wall, and the ore particle size near the furnace wall decreases. do.

このことを確認するため、先ず、稼動中の高炉において
各装入物表面での粒度の炉内半径方向分布を光フアイバ
一式粒度計により測定した。この結果を第6図に示す。
To confirm this, first, in an operating blast furnace, the radial distribution of particle size on the surface of each charge was measured using an optical fiber granulometer. The results are shown in FIG.

1回口に装入された鉱石層に比べ、2回目に装入された
鉱石粒度は小さいことが分る。ただし2回目に装入され
た鉱石の量は1回口のそれに比べて少ないため炉中心ま
で流れ込む賃が少なく、粒度偏析の度合が大きくなり、
炉中心付近では2回目に装入された鉱石層粒度は太きく
なった。
It can be seen that the grain size of the ore charged the second time is smaller than that of the ore layer charged the first time. However, since the amount of ore charged for the second time is smaller than that for the first time, less amount of ore flows to the center of the furnace, resulting in a greater degree of grain size segregation.
Near the center of the furnace, the grain size of the ore layer charged the second time became thicker.

この結果をもとにL −/<プルアーマ位置が(302
)と(502)について1回11と211I 11に装
入された鉱石層の厚さ分子1+を考慮し、鉱石層全体と
しての粒度分布を求めた。この結果を第7図に示す* 
Notを3〜5に増加すると、炉壁直近での鉱石層粒度
差は2〜3mm程度低ドし、通気性が低ドすることがわ
かった。
Based on this result, L −/< pull armor position is (302
) and (502), the particle size distribution of the entire ore layer was determined by considering the thickness molecule 1+ of the ore layer charged once in 11 and 211I 11. The results are shown in Figure 7*
It was found that when Not was increased to 3 to 5, the difference in grain size of the ore layer in the vicinity of the furnace wall was reduced by about 2 to 3 mm, and the air permeability was reduced.

以に述べたように分;l;1装人法で21r+l 11
の鉱石層装入時のムーバブルアーマ位置NO2を固定し
ている場合、鉱石層の粒度分4jは1回口の鉱石装入時
におけるムーバブルアーマ位置Notによって制御する
ことができる。
As mentioned above, minute; l; 21r + l in the 1 person method 11
When the movable armor position NO2 at the time of charging the ore layer is fixed, the grain size 4j of the ore layer can be controlled by the movable armor position Not at the time of the first ore charging.

以にムーバブルアーマ位置Not、 NO2、Ncが装
入物分布に尖える影響を明らかにしてきたが、これを要
約すると、 (1)  コークス装入時のムーバブルアーマ位11/
1を鉱石層に面の形状に応じて調整することによって装
入物の層厚分41を調整することができ、(2)  I
11粒鉱石を混合した鉱石層直前の鉱石層の表面形状を
変更することによって装入物の粒度分1(iを調整する
ことができる。
We have previously clarified the effects of movable armor positions Not, NO2, and Nc on the charge distribution, but to summarize this, (1) Movable armor position 11/
By adjusting 1 according to the shape of the surface of the ore layer, the layer thickness 41 of the charge can be adjusted, and (2) I
By changing the surface shape of the ore layer immediately before the ore layer in which 11-grain ore is mixed, the particle size of the charge 1 (i) can be adjusted.

゛実炉操業においては、先ず過去の操業実績より適正な
NO2とNOの組み合せを選ぶ。この状態でNotを変
化させて通気性分布を細かく制御する。
゛In actual furnace operation, first select an appropriate combination of NO2 and NO based on past operating results. In this state, Not is changed to finely control the air permeability distribution.

もしNotで制御しきれない時はNCを変化させる。そ
れでも制御しきれない時は新しいNO2とNQの組み合
せを選択する。
If it cannot be controlled with Not, change NC. If it still cannot be controlled, select a new combination of NO2 and NQ.

ただし、以上述べた装入物置II制御方法において、鉱
石層の上面は最終の鉱石装入時のムーバブルアーマ位置
のみによって決まり、それ以外の鉱石の装入時のムーバ
ブルアーマ位置によっては変化しないことを前提として
いる。
However, in the charging shed II control method described above, the top surface of the ore layer is determined only by the movable armor position at the time of final ore charging, and does not change depending on the movable armor position at the time of other ore charging. It is a premise.

このためには、最終鉱石層はその前の鉱石層を完全に覆
う必要がある。例えばNotを過剰に大きくすると2回
[1の鉱石層が1回目に装入した鉱石表面と炉壁との間
のポケットにのみ堆積し、炉中心へ到達しない状jrが
生じる。この場合、炉中心〜炉中間の領域では1回目の
鉱石表面が鉱石上面になり、NOIによっても鉱石上面
が変化してしまう。この論理は後述の鉱石3分割の場合
にもめてはまる。
For this, the final ore layer must completely cover the previous ore layer. For example, if Not is excessively increased, a situation occurs in which the ore layer of twice [1 is deposited only in the pocket between the surface of the ore charged the first time and the furnace wall, and does not reach the center of the furnace. In this case, in the region between the furnace center and the middle of the furnace, the first ore surface becomes the ore top surface, and the ore top surface also changes due to NOI. This logic also applies to the case of dividing ore into three parts, which will be described later.

次に鉱石を3回以1−に分;1.IIして装入する場合
の装入物層1’/および粒度分71」の制御について述
べる6例として第1O図に示したように鉱石を0、.0
2.034.13分割し、2回1.1 (7)鉱石層0
2に、I11粒原$1を使用する場合を考える。細粒原
料をなるべく炉壁に装入するため、2回11の鉱石装入
時のムーバブルアーマ位置は【1丁能な限り炉壁側にす
る。
Then divide the ore into 1-3 times or more; 1. As shown in FIG. 1O, as six examples of controlling the charge layer 1'/and the grain size 71 when ore is charged as 0, . 0
2.034.13 divided, twice 1.1 (7) Ore layer 0
2, consider the case where I11 grain original $1 is used. In order to charge the fine raw materials as close to the furnace wall as possible, the position of the movable armor during the second ore charging is as close to the furnace wall as possible.

鉱石・コークス両層の層厚分布はコークス表面形状と、
最後に装入した鉱石03の表面形状(コークス裏面形状
)によって決まるため、各々のムーバブルアーマ位置調
節によって層厚分布を制御することができる。
The thickness distribution of both the ore and coke layers depends on the coke surface shape,
Since it is determined by the surface shape (coke back surface shape) of the ore 03 charged last, the layer thickness distribution can be controlled by adjusting the position of each movable armor.

他方1,411粒原料02の存在分布は、その直前の鉱
石01層の表面形状で決定されるため、1回1−1(’
) it 石01装入時のムーバブルアーマ位置を調節
することによって装入物の粒度分布を制御することがで
きる。
On the other hand, the distribution of the 1,411-grain raw material 02 is determined by the surface shape of the ore 01 layer immediately before it, so the distribution of the 1-1 ('
) It is possible to control the particle size distribution of the charge by adjusting the position of the movable armor when charging stone 01.

〔実施例〕〔Example〕

従来、以」二述べた高炉の装入原料を分割して装入する
方法において、1回[1の鉱石装入時のムーバブルアー
マ位置指数Notに関して、?’Jotが大きくなると
炉壁近傍での鉱石層が低下するという考えに基づいてN
otによる鉱石層厚制御を行ってきたが、第8図のNO
lは変更期すなわちA時点からB時点に見られるように
NOIを変更してもあまり炉壁熱負荷は変化せず、その
変化方向も逆向きであった。
Conventionally, in the method of dividing and charging raw materials for blast furnaces as described below, once [1] Regarding the movable armor position index Not at the time of ore charging, ? ' Based on the idea that the ore layer near the furnace wall decreases as Jot increases,
Although we have been controlling the ore layer thickness using ot, NO in Figure 8
As seen in the changing period, that is, from time point A to time point B, the furnace wall heat load did not change much even if the NOI was changed, and the direction of change was also in the opposite direction.

そこでB時点から本発明の考え方に基づき、コークスム
ーバブルアーヤ位置指数NCを変更することによって層
厚コントロールを行った。 NQ変変更(B時点から時
点)では、Ncを2〜5に徐々に変更すると炉体熱負荷
が減少している。しかしNcが4以上ではスリップ数が
増加している。
Therefore, from point B, layer thickness was controlled by changing the coke mover position index NC based on the concept of the present invention. In the NQ variation change (from time point B to time point B), when Nc is gradually changed from 2 to 5, the furnace heat load decreases. However, when Nc is 4 or more, the number of slips increases.

そこでB時点からNcを4に固定してNotを5〜2ま
で低下させると、炉壁熱負荷を大きく増加させないでス
リップ数を低下することができた(C時点からD時点ま
でNo!変更期)。これは炉1〜?近傍でのM+1粒b
;口1比が低ドし1通気性が数円−されたことによる。
Therefore, by fixing Nc to 4 and lowering Not to 5 to 2 from point B, it was possible to reduce the number of slips without significantly increasing the furnace wall heat load (No from point C to point D! Change period ). Is this Furnace 1~? M+1 grain b in the vicinity
This is because the mouth ratio was lower and the air permeability was reduced by a few yen.

これらの期間において熱電対を用いた1lI11温ゾン
デによって炉壁近傍での温度分布を測定°した。
During these periods, the temperature distribution near the furnace wall was measured using a 1111 temperature sonde using a thermocouple.

この結果を第9図に示す。第9図中の曲線A、B、C,
Dはそれぞれ第8図中の時点A、B、C,Dに対応して
いる。Notを動かしてもへ曲線と8曲線で見られるよ
うに炉内温度はほとんど変化しなかったが、NOを増加
させるとC曲線のように炉内温度は低ドし、不活性にな
った。その後NOIによって粒度分布制御を行うと0曲
線で分るように少し熱負荷が回復した。
The results are shown in FIG. Curves A, B, C in Figure 9,
D corresponds to time points A, B, C, and D in FIG. 8, respectively. Even when NO was changed, the temperature inside the furnace hardly changed as seen in curves 1 and 8, but when NO was increased, the temperature inside the furnace decreased as shown in curve C and became inactive. After that, when the particle size distribution was controlled using NOI, the heat load was slightly recovered as shown by the 0 curve.

〔発明の効果〕〔Effect of the invention〕

高炉の原料を分割して装入する場合において従来明確で
なかった装入物層厚粒度分IHiの制御を本発明によっ
てムーバブルアーマ位置を変更させるだけで定;目的に
粘度良く制御することがFi(能になった。しかも粒度
分4jと層厚分4jを独立に変化させることができて両
者が高炉炉況にり°−える効果を明確にすることができ
るようになった。
When charging raw materials into a blast furnace in parts, the control of the charge layer thickness and grain size IHi, which was not clear in the past, can be achieved by simply changing the position of the movable armor; the purpose is to control the viscosity well. In addition, the particle size fraction 4j and the layer thickness fraction 4j can be changed independently, and the effects of both on the blast furnace furnace conditions can now be clearly seen.

このように本発明は分割装入法における装入物分4j制
御さらには炉内温度分布および融着イ1?形状制御のき
め細かい制御に対して非常に有用であり、分割装入技術
の向−Lに大いに寄与した。
As described above, the present invention provides control of the charge amount in the split charging method, as well as temperature distribution and fusion within the furnace. It is extremely useful for fine-grained shape control, and has greatly contributed to the advancement of split charging technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分割装入における装入物堆積状況を示す高炉炉
頂部の模式断面図、第2図は分割装入における鉱石層厚
分布の計算結果を示すグラフ、第3図はコークス装入時
のムーバブルアーマ位置指数が鉱石層厚分布に与える影
響を示すグラフ、第4図は1回目の鉱石装入時のムーバ
ブルアーマ指数位置が鉱石層厚分布に与える影響を示す
グラフ、第5図は2回[Iの鉱石装入面のムーバブルア
ーマ位置指数が鉱石層厚分布に与える影響を示すグラフ
、第6図は装入物粒度分布測定結果(表面観測による)
を示すグラフ、第7図は1回目の鉱石装入時のムーバブ
ルアーマ位置指数が鉱石粒度分布に与える影響を示すグ
ラフ、第8図は分割装入時の操業トレンドを示すチャー
ト、第9図は炉内Will温結果全結果グラフ、第10
図は鉱石3分;1,11装入法における装入物分1(i
制御を説IIする高炉炉lq部の装入物模式断面図であ
る。 l・・・鉱石層 2・・・コークス層 01・・・11i■l 11の装入鉱石02・・・21
11111の装入鉱石 03・・・3回11の装入鉱石 出、願人 川崎製鉄株式会社
Figure 1 is a schematic cross-sectional view of the top of the blast furnace showing the charge accumulation situation in split charging, Figure 2 is a graph showing the calculation results of ore layer thickness distribution in split charging, and Figure 3 is during coke charging. Figure 4 is a graph showing the influence of the movable armor index position on the ore layer thickness distribution during the first ore charging, Figure 5 is a graph showing the influence of the movable armor index position on the ore layer thickness distribution during the first ore charging. A graph showing the influence of the movable armor position index on the ore charging surface of [I] on the ore layer thickness distribution, Figure 6 shows the measurement results of the burden particle size distribution (based on surface observation)
Figure 7 is a graph showing the influence of the movable armor position index on the ore particle size distribution during the first ore charging, Figure 8 is a chart showing the operational trend during split charging, and Figure 9 is a graph showing the influence of the movable armor position index on the ore particle size distribution during the first ore charging. Furnace Will temperature results full result graph, 10th
The figure shows ore 3 minutes; charge amount 1 (i
It is a schematic sectional view of the charge of the blast furnace furnace lq part explaining control II. l...Ore layer 2...Coke layer 01...11i■l 11 charging ore 02...21
11111 charged ore 03...3 times 11 charged ore discharged, applicant Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 1 鉱石を粒径分布が異なる2以上に分けて炉内で成層
させ、細粒鉱石を最下段以外の層に積層する高炉原料装
入方法において、コークス装入時のムーバブルアーマ位
置を鉱石層上面の形状に応じて調整することによって装
入物の層厚分布を調整し、細粒鉱石を混合した鉱石層直
前の鉱石層の表面形状を変更することによって装入物の
粒度分布を調整することを特徴とする高炉の原料装入方
法。
1 In a blast furnace raw material charging method in which ore is divided into two or more layers with different particle size distributions and stratified in a furnace, and fine-grained ore is stacked in layers other than the bottom layer, the movable armor position during coke charging is set to the top surface of the ore layer. The layer thickness distribution of the charge is adjusted by adjusting it according to the shape of the charge, and the particle size distribution of the charge is adjusted by changing the surface shape of the ore layer immediately before the ore layer in which fine-grained ore is mixed. A method for charging raw materials into a blast furnace characterized by the following.
JP29216986A 1986-12-08 1986-12-08 Charging method for raw material in blast furnace Granted JPS63145704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29216986A JPS63145704A (en) 1986-12-08 1986-12-08 Charging method for raw material in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29216986A JPS63145704A (en) 1986-12-08 1986-12-08 Charging method for raw material in blast furnace

Publications (2)

Publication Number Publication Date
JPS63145704A true JPS63145704A (en) 1988-06-17
JPH0586443B2 JPH0586443B2 (en) 1993-12-13

Family

ID=17778448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29216986A Granted JPS63145704A (en) 1986-12-08 1986-12-08 Charging method for raw material in blast furnace

Country Status (1)

Country Link
JP (1) JPS63145704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368268B1 (en) * 2000-12-20 2003-01-24 주식회사 포스코 Method for preventing from big scab formation at the bosh and belly of all stave cooled blast furnace
US11479832B2 (en) 2016-04-22 2022-10-25 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
US11608543B2 (en) * 2016-04-27 2023-03-21 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368268B1 (en) * 2000-12-20 2003-01-24 주식회사 포스코 Method for preventing from big scab formation at the bosh and belly of all stave cooled blast furnace
US11479832B2 (en) 2016-04-22 2022-10-25 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
US11608543B2 (en) * 2016-04-27 2023-03-21 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method

Also Published As

Publication number Publication date
JPH0586443B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
JPS63145704A (en) Charging method for raw material in blast furnace
JP4792797B2 (en) Method of charging ores containing high crystal water into a bell-less blast furnace
JPS6314808A (en) Raw material charging method for bell-less type blast furnace
JPH0254706A (en) Method for operating blast furnace
JP2797917B2 (en) Blast furnace operation method
JP3750148B2 (en) Raw material charging method and apparatus for blast furnace
JP2006131979A (en) Method for charging coke into bell-less blast furnace
JP3995380B2 (en) Raw material charging method to blast furnace
JPS62224608A (en) Operating method for bell-less type blast furnace
JPS61227109A (en) Charging method for blast furnace charge
JPH06271908A (en) Method for charging raw material in multi-batches into bell-less blast furnace
JP4211617B2 (en) Berles blast furnace ore charging method
JP3787231B2 (en) How to charge the blast furnace center
KR20000028285A (en) Method for mounting and controlling of object in furnace when placing large amount of fine powdered coal
JP3632290B2 (en) Blast furnace operation method
JPH01287212A (en) Method for charging raw material in blast furnace
JPS599133A (en) Operating method of sintering
JPH0512403B2 (en)
JPH05239514A (en) Blast furnace operation method by bell-less blast furnace
KR101510546B1 (en) Method for charging materials into blast furnace
JP2600803B2 (en) Blast furnace raw material charging method
JPH05239513A (en) Raw material charging method of blast furnace
JPH02225607A (en) Method for operating blast furnace
JPH1060507A (en) Operation of blast furnace
JPS62177109A (en) Method for charging starting material into bell-less blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees