JPH02225607A - Method for operating blast furnace - Google Patents
Method for operating blast furnaceInfo
- Publication number
- JPH02225607A JPH02225607A JP4620789A JP4620789A JPH02225607A JP H02225607 A JPH02225607 A JP H02225607A JP 4620789 A JP4620789 A JP 4620789A JP 4620789 A JP4620789 A JP 4620789A JP H02225607 A JPH02225607 A JP H02225607A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- gas flow
- blast furnace
- coke
- terrace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000000571 coke Substances 0.000 claims abstract description 26
- 230000008021 deposition Effects 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 5
- 238000011017 operating method Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract 1
- 239000002994 raw material Substances 0.000 description 31
- 238000010586 diagram Methods 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 3
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉の操業方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method of operating a blast furnace.
(従来の技術)
一般に高炉操業において、その装入物分布調整は、炉内
のガス流分布を制御する手段として操業アクションの重
要な位置を占めている。(Prior Art) Generally, in blast furnace operation, adjustment of the charge distribution occupies an important position as a means of controlling the gas flow distribution within the furnace.
近年、特にベルレス装入装置および連続駆動型ムーバブ
ルアーマ−等の導入により、装入物分布に対する自由度
が向上し、炉内半径方向任意の装入位置にコークスおよ
び鉱石が装入できるようになり、従来とは異なる装入物
堆積形状を作り出すことが可能となった。In recent years, especially with the introduction of bellless charging equipment and continuously driven movable armor, the degree of freedom in charge distribution has improved, and coke and ore can now be charged at any charging position in the radial direction of the furnace. , it became possible to create a charge pile shape that was different from the conventional one.
また、μ波プロフィールメータ、層厚:1゛等の使用に
より、装入物堆積形状の情報が細部まで手軽に入手でき
るようになり、炉内ガス流の変化に対応した堆積形状が
把握できるようになってきている。In addition, by using a μ-wave profile meter with a layer thickness of 1゛, etc., it becomes possible to easily obtain detailed information on the shape of the charge deposition, making it possible to understand the shape of the deposition in response to changes in the gas flow in the furnace. It is becoming.
これらの技術的背景により、高炉操業においては、操業
状態と装入物堆積形状とを比較することにより、安定し
た高炉操業を維持することが可能となった。With these technical backgrounds, it has become possible to maintain stable blast furnace operation by comparing the operating state and the shape of the burden pile.
このような考えに基づく例としては、特開昭59−50
102号公報に、炉内における装入物の炉半径方向にお
ける堆積層を、炉内壁から山部までの距離をり、炉中心
部側の装入物層堆積斜面の堆積角をθ1、炉壁側の装入
物層堆積面の堆積角をθ2とするとき、L:0.5〜1
.5mかつコークス層のθ :25°〜35°でθ2:
±lO″以内、鉱石層のθ : 20’〜30°でθ2
:±io’以内となるように管理することにより目標ガ
ス流分布となる炉内堆積形状を維持することができると
いう開示がある。An example based on this idea is JP-A-59-50.
102, the deposition layer of the charge in the furnace radial direction is calculated by calculating the distance from the furnace inner wall to the mountain part, the deposition angle of the charge layer deposition slope on the furnace center side by θ1, and the furnace wall. When the deposition angle of the side charge layer deposition surface is θ2, L: 0.5 to 1
.. 5m and θ of coke layer: θ2 at 25° to 35°:
Within ±lO'', θ of ore layer: θ2 between 20' and 30°
There is a disclosure that the in-furnace deposition shape that corresponds to the target gas flow distribution can be maintained by controlling the gas flow to be within ±io'.
一方、装入原料を粒度別に分割し、細粒原料を炉周辺部
に装入することは周知の操業方法であり、例えば、特開
昭55−62106号、特開昭57− H4503号の
各公報には、装入原料を粒度別に分割し、細粒原料を炉
周辺部に装入することによりガス利用率の向上あるいは
低(Si)銑を製造する方法が提案されている。On the other hand, it is a well-known operation method to divide the charged raw material according to particle size and charge the fine-grained raw material to the surrounding area of the furnace. The publication proposes a method of improving the gas utilization rate or producing low (Si) pig iron by dividing the charged raw material by particle size and charging the fine grained raw material around the furnace.
(発明が解決しようとする課題)
前述した特開昭59−50102号公報には、炉内装入
原料の堆積形状を所定範囲内に管理すること、特に炉内
壁から山部までの距MLを0.5〜1.5mの範囲内に
管理することによって安定した高炉操業を維持できると
しているが、本発明者らはコークスの堆積形状に着目し
て実験を行った結果、特開昭59−5(1102号公報
に開示された上記範囲内には高炉の安定操業が可能とな
る領域は存在しないことを知見した。(Problem to be Solved by the Invention) The above-mentioned Japanese Patent Application Laid-open No. 59-50102 describes the management of the deposition shape of the raw material input into the furnace within a predetermined range, and in particular, the distance ML from the furnace inner wall to the mountain portion is 0. It is said that stable blast furnace operation can be maintained by controlling the coke within the range of . (It has been found that there is no region within the above range disclosed in Publication No. 1102 in which stable operation of the blast furnace is possible.
即ち、第7図に示すようにLが0.5〜1,5mの範囲
では、コークスの傾斜角θ1が35″以上となってしま
いコークス堆積状態が不安定となり、指尺変動が発生す
ることを突止めた。That is, as shown in Fig. 7, when L is in the range of 0.5 to 1.5 m, the coke inclination angle θ1 becomes more than 35'', making the coke deposition state unstable and causing finger-scale fluctuations. I found out.
一方、細粒原料を高炉周辺部に装入する高炉操業におい
ては、細粒原料の堆積状態が安定せず、細粒原料が炉中
心部へ流れ込んだ場合には、中心ガス流を極端に悪化さ
せて通気阻害を発生したり、細粒原料をIII所に堆積
した場合は未還元、未溶融鉱石の炉下部への降下を生じ
、操業変動を引き起こす可能性がある。従って細粒原料
は炉周辺部に広く薄く装入することは望ましいが、従来
法では、このような装入物形状を形成するのに必要な堆
積形状を提示した知見はない。On the other hand, in blast furnace operations in which fine-grained raw materials are charged into the periphery of the blast furnace, the deposition state of fine-grained raw materials is not stable, and if the fine-grained raw materials flow into the center of the furnace, the central gas flow will be extremely deteriorated. This may cause ventilation obstruction, or if fine grain raw materials are deposited in place III, unreduced and unmelted ore may fall to the lower part of the furnace, which may cause operational fluctuations. Therefore, it is desirable to charge fine-grained raw material widely and thinly around the furnace periphery, but in the conventional method, there is no knowledge that presents the deposition shape necessary to form such a charge shape.
(課題を解決するための手段)
本発明は、高炉炉内におけるガス流分布を定量的に評価
し、それと対応する装入物堆積形状との関係を明確にす
ることにより高炉の安定操業、言い換えれば目標とする
ガス流分布を達成できる堆積形状を与えること、および
細粒原料を炉周辺部に安定的に堆積しうる装入物の堆積
形状を与え、安定した高炉操業を可能ならしめることを
目的とするものであって、
(1)高炉内のガス流を管理しながら高炉操業を行う方
法において、炉内におけるコークスの堆積形状を、炉壁
から肩部までの距離をRとするとき、Rを1.5mを超
えるように管理することを特徴とする高炉操業法、
(2)高炉内のガス流を管理しながら高炉操業を行う方
法において、炉内におけるコークス及び鉱石の堆積形状
を、炉壁から肩部までの距離をRとするとき、Rをそれ
ぞれ1,5mを超えるように管理すると共に、鉱石を粒
度別に分割して細粒鉱石を炉周辺部に装入することを特
徴とする高炉操業法、
を要旨とするものである。(Means for Solving the Problems) The present invention aims to improve the stable operation of a blast furnace by quantitatively evaluating the gas flow distribution in the blast furnace and clarifying the relationship between it and the corresponding burden pile shape. In other words, it is possible to provide a deposition shape that can achieve the target gas flow distribution, and to provide a deposition shape of the charge that allows fine grain raw materials to be stably deposited around the furnace, thereby enabling stable blast furnace operation. (1) In a method of operating a blast furnace while controlling the gas flow in the blast furnace, the shape of coke deposition in the furnace is defined as the distance from the furnace wall to the shoulder, where R is the distance from the furnace wall to the shoulder. A blast furnace operation method characterized by controlling R to exceed 1.5 m, (2) A method of operating a blast furnace while controlling the gas flow in the blast furnace, in which the deposition shape of coke and ore in the furnace is When R is the distance from the furnace wall to the shoulder, R is controlled to exceed 1.5 m, and the ore is divided by particle size and fine-grained ore is charged to the area around the furnace. The main points of this paper are the following: blast furnace operating methods.
以下図面に基づいて本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.
一般に、高炉操業は、炉内のガス流分布に支配され、そ
の最適ポイントで操業を維持することが長期安定操業に
つながる。Generally, blast furnace operation is controlled by the gas flow distribution within the furnace, and maintaining operation at the optimum point leads to long-term stable operation.
炉内半径方向のガス流れを知るための手段として、シャ
フトゾンデ等による半径方向ガス成分を測定する装置が
あり、その測定データーより炉内半径方向の還元率分布
が計算でき、炉内各ポイントのガス流速分布が算出でき
る。As a means of knowing the gas flow in the radial direction inside the furnace, there is a device that measures the radial gas component using a shaft sonde, etc. From this measurement data, the reduction rate distribution in the radial direction inside the furnace can be calculated, and it is possible to calculate the distribution of the reduction rate in the radial direction inside the furnace. Gas flow velocity distribution can be calculated.
炉内半径方向に3分割した同心円で区画される各部位を
流れるガス流を、それぞれ中心ガス流分布、中間ガス流
分布および周辺ガス流分布とし、内容積の異なる高炉の
データーを第1図のように三角図に整理した結果、高炉
の大小に関わらず操業の安定しているガス流分布は、中
心ガス流分布が25〜35%、中間ガス流分布が30±
2%、周辺ガス流分布が35〜45%の範囲にあること
がわかった。The gas flows flowing through each part divided into three concentric circles in the radial direction of the furnace are defined as the center gas flow distribution, intermediate gas flow distribution, and peripheral gas flow distribution, respectively, and the data of blast furnaces with different internal volumes are shown in Figure 1. As a result of organizing it into a triangular diagram, the gas flow distribution that is stable for operation regardless of the size of the blast furnace is that the center gas flow distribution is 25 to 35% and the intermediate gas flow distribution is 30±.
2%, and the ambient gas flow distribution was found to be in the range of 35-45%.
この中で特に中間ガス流分布の安定範囲が狭く、これを
達成することが操業安定化の絶対条件となる。すなわち
、中間ガス流の不足は、高炉中間部の通気抵抗が大きく
、原料の還元および昇温か悪いことを示し、この部分が
軟化融着帯まで降下した場合、溶融滴下遅れによる融着
帯の肥大化が生じ、通気の悪化および装入物降下の乱れ
を発生する。逆に中間ガス流の過多は、必然的に中心部
および周辺部のガス流れ不足となり、炉芯温度の低下あ
るいは炉下部不活性状態などのトラブルの原因となる。Among these, the stable range of intermediate gas flow distribution is particularly narrow, and achieving this is an absolute condition for stable operation. In other words, the lack of intermediate gas flow indicates that the ventilation resistance in the middle part of the blast furnace is large and the reduction and rising of the raw material are poor.If this part descends to the softened cohesive zone, the cohesive zone will enlarge due to the delay in melt dripping. This causes deterioration of ventilation and disturbance of charge descent. On the other hand, an excessive flow of intermediate gas inevitably results in insufficient gas flow in the center and periphery, causing troubles such as a drop in furnace core temperature or an inactive state in the lower part of the furnace.
次に、装入物堆積形状をガス流分布と比較するため、第
2図に示すように、炉中心から炉壁へ向かって堆積物表
面の傾斜角が15°未満となる付近より炉壁までを1テ
ラス0と呼び、その長さを定義した。すなわち、テラス
より炉中心側の斜面の延長線をa1テラスの堆積表面の
延長線をbとしたとき、そのaとbが交わる交点と炉壁
との距離をテラス長さRとした。また、a線と水平線と
の角度を傾斜角θと定義した。Next, in order to compare the shape of the charge deposition with the gas flow distribution, as shown in Fig. 2, from the vicinity where the inclination angle of the deposit surface is less than 15° from the furnace center toward the furnace wall, to the furnace wall. is called 1 terrace 0, and its length is defined. That is, when the extension line of the slope on the furnace center side from the terrace is a1 and the extension line of the deposition surface of the terrace is b, the distance between the intersection point where a and b intersect and the furnace wall is the terrace length R. Further, the angle between the a-line and the horizontal line was defined as the inclination angle θ.
中間ガス流分布とコークステラス長さとの関係を第3因
に示す。同図に示すようにテラス長さが長くなるほど中
間ガス流分布の増加が認められるが、これはテラス長さ
が長くなるほどコークスの傾斜角が減少しコークスの堆
積形状が安定するため、原料装入によるコークスの崩し
量が減少し、その結果、中間部のOre/ Cokeが
減少するためである。The relationship between intermediate gas flow distribution and coke terrace length is shown in the third factor. As shown in the figure, the intermediate gas flow distribution increases as the terrace length increases, but this is because the longer the terrace length becomes, the smaller the coke inclination angle becomes, and the coke deposition shape becomes more stable. This is because the amount of coke that is broken down is reduced, and as a result, Ore/Coke in the middle portion is reduced.
第3図より中間流30%を確保するためには、コークス
テラス長さが1.5rnを超えるようなコークスの堆積
形状が必要であることが判明した。From FIG. 3, it was found that in order to ensure an intermediate flow of 30%, a coke deposition shape such that the coke terrace length exceeds 1.5 rn is required.
また、細粒原料を高炉周辺部に装入する方法において、
細粒原料は、第4図に示すように、その使用量を変化さ
せることによって、周辺部のコークスおよび原料の層厚
を変えることなく周辺のガス流分布を調整でき、前述し
た目標ガス流分布維持に有効な手段であることがわかっ
た。In addition, in the method of charging fine raw materials into the surrounding area of the blast furnace,
As shown in Figure 4, by changing the amount of fine-grained raw material used, the peripheral gas flow distribution can be adjusted without changing the layer thickness of coke and raw material in the peripheral area, and the target gas flow distribution described above can be adjusted. It was found to be an effective means of maintenance.
また、表1に示すような粗粒と細粒との平均粒度差Δp
pが4〜15mmあるような細粒原料を使用した場合、
第5図に示すように、細粒原料を含んだ1回あたりの装
入物量が、原料全体の1回あたりの総装入量の1696
以下となるとき、安定操業領域となる。In addition, the average particle size difference Δp between coarse particles and fine particles as shown in Table 1
When using fine grain raw materials with p of 4 to 15 mm,
As shown in Figure 5, the amount of charge per batch including fine raw materials is 1696 of the total charge amount of all raw materials per batch.
When the following conditions are met, it becomes a stable operation area.
表 1
また、以上のような方法にて細粒原料を使用する場合、
細粒原料を周辺部に安定的に堆積させるためには、1.
5mを超える鉱石(粗粒原料)のテラス長さが必要であ
ることも判明した。Table 1 In addition, when using fine grain raw materials in the above method,
In order to stably deposit fine grain raw materials in the peripheral area, 1.
It has also been found that a terrace length of ore (coarse grain raw material) exceeding 5 m is required.
(実 施 例)
内容積40B3rriの大型高炉における本発明の実施
例を第6図に示す。(Embodiment) FIG. 6 shows an embodiment of the present invention in a large blast furnace having an internal volume of 40 B3 rri.
同図に示すように、コークスおよび鉱石(粗粒原料)の
テラス長さを変化させると指尺乱れ回数が変化するが、
コークステラスはその長さが1.5mを超える時点より
指尺乱れ回数が顕著に減少し、安定操業の継続が可能と
なった。コークスおよび鉱石(粗粒原料)のテラス長さ
を更に延長させたところ、テラス長さがコークスでは2
−5 m s鉱石(粗粒原料)では211rr1に達す
るまで安定操業が継続できた。As shown in the figure, changing the terrace length of coke and ore (coarse grain raw material) changes the number of finger-shape disturbances.
When the coke terrace exceeded 1.5 m in length, the number of finger-shaft disturbances decreased significantly, making it possible to continue stable operation. When the terrace length of coke and ore (coarse raw material) was further extended, the terrace length was 2 for coke.
-5 ms ore (coarse grain raw material) was able to continue stable operation until reaching 211rr1.
なお、鉱石テラスが15mを超える8期より総原料装入
量の18%に相当する細粒原料を炉周辺部へ装入したが
、鉱石(粗粒原料)テラス上に安定的に堆積しているこ
とを確認した。In addition, from the 8th period when the ore terrace exceeded 15 m, fine grain raw material equivalent to 18% of the total raw material charge was charged to the surrounding area of the furnace, but it was stably deposited on the ore (coarse grain raw material) terrace. I confirmed that there is.
(発明の効果)
本発明により、コークステラスが1,5mを超えるよう
な装入物堆積形状を作り込むことにより、安定操業継続
が可能となった。(Effects of the Invention) According to the present invention, it has become possible to continue stable operation by creating a burden pile shape in which the coke terrace exceeds 1.5 m.
さらに、鉱石(粗粒原$4.)テラスの延長により、細
粒原料が安定的に炉周辺部に堆積し、安定操業継続が可
能となった。Furthermore, by extending the ore (coarse grain raw material $4.) terrace, fine grain raw material was stably deposited around the furnace, making it possible to continue stable operation.
第1図は本発明に係る炉内ガス流分布三角図、第2図は
本発明に係る炉内堆積形状定義図、第3図は炉内堆積形
状と炉内ガス流分布の関係を示す図、第4図は細粒原料
使用量と周辺ガス流分布との関係を示す図、第5図は細
粒原料使用割合と燃料比との関係を示す図、第6図は本
発明の実施例を示す操業推移図、第7図は炉内壁から山
部までの距離りとコークスの傾斜角との関係を示す図で
ある。
第3図
コークステラス長乞〔屑〕
第4図
細較互科侠用量Et/c^)
第1図
用、mカ゛スン走脅6市($3
第5図
第6因Fig. 1 is a triangular diagram of the gas flow distribution in the furnace according to the present invention, Fig. 2 is a definition diagram of the in-furnace deposition shape according to the present invention, and Fig. 3 is a diagram showing the relationship between the in-furnace deposition shape and the in-furnace gas flow distribution. , Figure 4 is a diagram showing the relationship between the amount of fine raw material used and peripheral gas flow distribution, Figure 5 is a diagram showing the relationship between the usage rate of fine raw material and fuel ratio, and Figure 6 is an example of the present invention. FIG. 7 is a diagram showing the relationship between the distance from the furnace inner wall to the peak and the inclination angle of coke. Fig. 3 Coke Terrace Long Beg [Scrap] Fig. 4 Detailed Comparison Et/c^)
Claims (2)
法において、炉内におけるコークスの堆積形状を、炉壁
から肩部までの距離をRとするとき、Rを1.5mを超
えるように管理することを特徴とする高炉操業法。(1) In a method of operating a blast furnace while controlling the gas flow in the blast furnace, the coke deposition shape in the furnace is set so that R is greater than 1.5 m, where R is the distance from the furnace wall to the shoulder. A blast furnace operating method characterized by the following:
法において、炉内におけるコークス及び鉱石の堆積形状
を、炉壁から肩部までの距離をRとするとき、Rをそれ
ぞれ1.5mを超えるように管理すると共に、鉱石を粒
度別に分割して細粒鉱石を炉周辺部に装入することを特
徴とする高炉操業法。(2) In a method of operating a blast furnace while controlling the gas flow in the blast furnace, the shape of the coke and ore deposits in the furnace is 1.5 m each, where R is the distance from the furnace wall to the shoulder. This blast furnace operating method is characterized by controlling the ore to exceed 100 yen, dividing the ore by particle size, and charging fine ore to the surrounding area of the furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4620789A JPH0680165B2 (en) | 1989-02-27 | 1989-02-27 | Blast furnace operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4620789A JPH0680165B2 (en) | 1989-02-27 | 1989-02-27 | Blast furnace operation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02225607A true JPH02225607A (en) | 1990-09-07 |
JPH0680165B2 JPH0680165B2 (en) | 1994-10-12 |
Family
ID=12740639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4620789A Expired - Lifetime JPH0680165B2 (en) | 1989-02-27 | 1989-02-27 | Blast furnace operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0680165B2 (en) |
-
1989
- 1989-02-27 JP JP4620789A patent/JPH0680165B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0680165B2 (en) | 1994-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5696814B2 (en) | Raw material charging method for bell-less blast furnace | |
JPH02225607A (en) | Method for operating blast furnace | |
EP3896177B1 (en) | Method for charging raw material into bell-less blast furnace, and blast furnace operation method | |
JP2730751B2 (en) | Blast furnace operation method | |
JP6627718B2 (en) | Raw material charging method for blast furnace | |
JP4604788B2 (en) | Blast furnace operation method | |
JP4759985B2 (en) | Blast furnace operation method | |
JP2996803B2 (en) | Blast furnace operation method by bellless blast furnace | |
JP2020012127A (en) | Blast furnace operation method | |
JPH0225507A (en) | Method and apparatus for charging raw material in bell-less type blast furnace | |
JP5493885B2 (en) | Rotating chute for bellless type furnace top charging equipment for blast furnace | |
JP6627717B2 (en) | Raw material charging method for blast furnace | |
JP2006131979A (en) | Method for charging coke into bell-less blast furnace | |
JP3835041B2 (en) | Blast furnace raw material charging method | |
JP2021175822A (en) | Method for charging center coke | |
JP2001049312A (en) | Method for charging raw material in bell-less blast furnace | |
JP4211617B2 (en) | Berles blast furnace ore charging method | |
JPS61227109A (en) | Charging method for blast furnace charge | |
JP3750148B2 (en) | Raw material charging method and apparatus for blast furnace | |
JP3702008B2 (en) | Blast furnace operation method | |
JP2005060797A (en) | Method for charging material to blast furnace | |
JP2003138304A (en) | Method for operating blast furnace | |
JP2000199005A (en) | Method for controlling center gas flow in blast furnace | |
JPH1060507A (en) | Operation of blast furnace | |
JP2000273508A (en) | Method for strengthening center gas flow in blast furnace |