JP3702008B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP3702008B2
JP3702008B2 JP18666495A JP18666495A JP3702008B2 JP 3702008 B2 JP3702008 B2 JP 3702008B2 JP 18666495 A JP18666495 A JP 18666495A JP 18666495 A JP18666495 A JP 18666495A JP 3702008 B2 JP3702008 B2 JP 3702008B2
Authority
JP
Japan
Prior art keywords
raw material
gas flow
furnace
iron raw
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18666495A
Other languages
Japanese (ja)
Other versions
JPH0920904A (en
Inventor
正義 高尾
哲也 塩田
基樹 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18666495A priority Critical patent/JP3702008B2/en
Publication of JPH0920904A publication Critical patent/JPH0920904A/en
Application granted granted Critical
Publication of JP3702008B2 publication Critical patent/JP3702008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

【0001】
【産業上の利用分野】
この発明は高炉炉内の装入物分布を制御することで常に安定したガス流を確保して炉況の安定維持を図るための操業方法に関するものである。
【0002】
【従来の技術】
現在、高炉においては、炉頂より粒径50mm以下の焼結鉱、鉄鉱石、ペレット等の鉄原料および燃料としてコ−クスが装入され、それら鉄原料および燃料は炉下部から上昇する高温のガスとの接触により複雑な化学変化を起こし、溶銑の生成へと至っている。しかし、前記鉄原料の粒度、装入分布状態などは常に一定ではなく、この変動に伴って炉内のガス流分布は大きく変わり、そしてこのガス流分布の変動は炉況の安定に大きく影響している。
【0003】
このため、例えば特開昭55−62106号公報に提案のように炉壁側に細粒、中心部には粗粒の鉄原料およびコ−クスを装入してガス流分布を調整し、これによりガス利用効率を向上して燃料比の低減を図る方法がある。
【0004】
【発明が解決しようとする課題】
しかし、近年は5000m3 級の超大型高炉が主流となり、その炉口径は10m程度と非常に大きい。この炉口径が大きいということは、中心部と炉壁部の距離が遠くなる。こうなれば中心部から炉壁部となる全域においての装入物の分布調整は不十分であり、特に、通常の鉄原料粒度(50mm〜25mm:20%、25mm未満〜15mm:40%、15mm未満〜5mm:36%、5mm以下:4%)では、鉄原料の各鉱石の形状(表面の凹凸)が一定でないため炉壁から中心部に流れ込む状態、つまり装入物分布が大きく変動し、装入物分布の再現性が殆ど無いことよりガス流分布の制御性は低いものである。
【0005】
このため、適切なガス流分布の確立は困難となり、高炉炉内反応効率の低下を惹起する等の問題を有し、高炉炉況に悪影響を与える原因になる。
本発明は、前記問題を有することなく超大型高炉においても炉壁から中心まで確実に装入物分布を調整でき、安定したガス流分布を確保することを課題とするものである。
【0006】
【課題を解決しようとする手段】
本発明は上記課題を解決するためになされたものでありその手段1は、高炉炉内にコ−クスと粒径50mm以下の鉄原料を交互に装入して高炉を操業する方法において、前記鉄原料を複数バッチに分割し、その複数バッチを順次装入するに際し、高炉炉頂部の炉径方向における複数位置のガス流量比を求め、炉中心部のガス流量比が該位置の基準ガス流量比より高く側壁部または中間部のガス流量比が該位置の基準ガス流量比より低いときには、前記複数バッチのうちの最初に装入するバッチ以外のいずれか1つのバッチの鉄原料細粒部分の配合割合を増調整し、炉中心部のガス流量比が該位置の基準ガス流量比より低く側壁部または中間部のガス流量比が該位置の基準ガス流量比より高いときには、前記複数バッチのうちの最初に装入するバッチ以外のいずれか1つのバッチの鉄原料細粒部分の配合割合を減調整する方法である。
【0007】
さらに、手段2は、前記手段1の配合割合を調整する鉄原料中の細粒部分の粒径を7mm以下としたものである。
また、前記炉径方向複数位置のガス流量を測定する方法としては、ゾンデに流量計を設けて直接測定しても良く、また、ゾンデに流速計を設けて炉内ガス流速を求め、これから流量を算定しても良い。さらにその他の方法で求めてもよい。
【0008】
【作用】
図1に実炉を1/3のサイズにしたモデル高炉で、鉄原料装入バッチの一つに7mm以下の細粒分の配合割合を調整した際のガス流分布の影響を試験した結果を示す。この際の鉄原料の装入モ−ドは鉄原料Aを装入した後、鉄原料Bを装入したものである。
【0009】
ここでは、表1に示すように、鉄原料Bには7mm未満の細粒鉄原料を鉄原料Aより多量に配合し、その配合割合は1バッチに於ける鉄原料量に対して鉄原料Aは3.9%、鉄原料Bは12.9%である。
【0010】
【表1】

Figure 0003702008
【0011】
図1より細粒鉄原料を3.9%配合した鉄原料Aは12.9%配合した鉄原料Bに比べ、非常に中心部分の層厚が厚いことが確認される。しかし、中心部分の層厚の差が大きいのにも係わらず、壁際の層厚の差は中心部の差程大きくないことが判明した。
これは、今度装入した鉄原料が前に装入された鉄原料上を転がって炉中心方向に流れ込む際に、この装入した鉄原料が堆積する過程で主に粗粒鉄原料によって凹凸を有する状態になる。そして、この凹凸内に細粒鉄原料が流入して平面が平滑状態となって滑り易くなることから、前記鉄原料Aに比して鉄原料Bの方が中心部分へ流れ込む割合が高くなるものと推定できる。
【0012】
また、鉄原料の1チャ−ジは複数バッチに分割して装入されており、最初に装入するバッチは比較的柔らかいコ−クス層上に落下して、その上を炉中心方向に流れ込むことから装入した鉄原料の流れ込み状態が悪く、しかも、その調整が難しい。反面、前記最初のバッチ以外のバッチは固い鉄原料上に落下して、その上を炉中心方向に流れ込むことから装入した鉄原料の流れ込み状態が良く、さらに、その調整が容易になる。
そして、この鉄原料の層厚が厚ければ炉内を上昇するガス流は抑えられる方向であり、試験では細粒鉄原料の配合割合を調整することにより上記ガス流分布の制御が可能となることがわかる。
【0013】
さらに、配合割合を調整する鉄原料中の細粒部分の粒径を7mm以下とするのは、これ以上の粒径であると前記流れ込み状態の大幅な向上がなく、しかも、その変化量が小さくなる。これは、粒径が7mm以下になると安息角が急激に小さくなり、細粒の流れ込み状態が悪化する結果、炉中心側になるに従って、粗粒鉄原料で形成された凹凸部を埋める細粒が少なくなることに起因するものと推測される。
【0014】
【実施例】
以下、本発明の1実施例を内容積が5000m3 の鉄原料とコ−クスの装入チャ−ジが各々2バッチ(C1↓、C2↓、O1↓、O2)であるベル式超大型高炉を用いて説明する。
表2の装入物は焼結鉱80%、鉄鉱石20%の割合の鉄原料であり、7mm以下の細粒鉄原料は全量焼結鉱とした。
また、細粒焼結鉱を増配合したバッチのみ炉内に設けたア−マ−プレイト(MA)のノッチは0(壁際装入)とした。これは、壁際のガス流制御と炉中心部へ鉄原料が過度に流れ込むことによる中心ガス流の減少を防ぐためである。
また、炉径方向における複数位置のガス流量の測定はシャフト、上部に設けた流量計を有するゾンデを用いて、炉壁際部、炉中心部、中間部のガス量を測定した。
【0015】
【表2】
Figure 0003702008
【0016】
【表3】
Figure 0003702008
【0017】
表2に示すように、比較例1においてO2として表3の鉄原料Bを使用しているため、その細粒部が8%で、炉中心部のガス流量比が基準ガス流量比(42%)より高く、さらに、壁側部のガス量比が基準ガス流量比(28%)より低く、ガス利用率が低いので、実施例1のようにO2に鉄原料Aを使用して細粒部の配合割合を11%(3%増加)にして操業した結果、炉径方向の各位置のガス流量比が各基準ガス流量比に近づき、ガス利用率の向上を図れた。
【0018】
比較例2において装入鉄原のO2として鉄原料Bを使用しているため、その細粒部が8%で、炉中心部のガス流量比が基準ガス流量比より低く、中間部は基準ガス流量比(30%)より高く、ガス利用率が低いので、実施例2のようにO2に鉄原料Cを使用して細粒部を5%(3%減)にして操業した結果、炉径方向の各位置のガス流量比が基準ガス流量比に近づき、ガス利用率の向上を図れた。
【0019】
比較例はO1、O2として表3の鉄原料Cを使用しているため、炉中心部のガス流量比が基準ガス流量比より高く、壁側部のガス量比が基準ガス流量比より低く、ガス利用率が低いので、比較例のようにO1、O2の両方に鉄原料Bを使用して細粒部の配合割合を3%増加(5%→8%)して操業した結果、炉径方向の各位置のガス流量比には殆ど変化がなく、ガス利用率の向上は殆どなかった。
【0020】
このように、実施例1、2は比較例1、2に対し、炉内ガス流分布が適正になり、これにより、ガス利用率も上昇し、燃料比の低減を図ることができた。
【0021】
さらに、比較例3、4よりO1、O2の両バッチにおける鉄原料中の細粒部の配合割合を同時に調整してもガス流量比の調整量は極めて小さいことが分かる。このため、O1、O2のいずれか片方バッチの細粒部の調整をしないとその効果を十分に享受できないことが分かる。
【0022】
【発明の効果】
以上説明したように、本発明は鉄原料装入チャ−ジの一つのバッチの鉄原料中における細粒部の配合割合を調整することにより、所望の炉内ガス流分布を得ることが可能となり、燃料比の低減が図れると共に安定した高炉操業を継続維持できる等の多大な効果を奏するものである。
【図面の簡単な説明】
【図1】細粒鉄原料の配合割合と炉径方向の層厚分布の関係を示した図[0001]
[Industrial application fields]
The present invention relates to an operation method for always maintaining a stable gas flow by controlling the distribution of charges in a blast furnace furnace so as to maintain stable furnace conditions.
[0002]
[Prior art]
Currently, in blast furnaces, coke is charged as an iron raw material and fuel such as sintered ore, iron ore, pellets and the like having a particle size of 50 mm or less from the top of the furnace, and the iron raw material and fuel are heated at a high temperature rising from the lower part of the furnace. Contact with gas causes complex chemical changes that lead to the production of hot metal. However, the particle size and charging distribution of the iron raw material are not always constant, and the gas flow distribution in the furnace changes greatly with this fluctuation, and the fluctuation of the gas flow distribution greatly affects the stability of the furnace condition. ing.
[0003]
For this reason, for example, as proposed in Japanese Patent Laid-Open No. 55-62106, a fine-grained iron raw material and coke are introduced into the furnace wall side to adjust the gas flow distribution. Therefore, there is a method for improving the gas utilization efficiency and reducing the fuel ratio.
[0004]
[Problems to be solved by the invention]
However, in recent years, ultra-large blast furnaces of 5000 m 3 class have become mainstream, and the diameter of the furnace is as large as about 10 m. This large furnace diameter means that the distance between the center and the furnace wall is increased. In this case, the distribution of the charge in the entire region from the central part to the furnace wall part is insufficient, and in particular, the normal iron raw material particle size (50 mm to 25 mm: 20%, less than 25 mm to 15 mm: 40%, 15 mm Less than 5 mm: 36%, 5 mm or less: 4%), the shape (surface irregularities) of each ore of the iron raw material is not constant, so that the state of flowing from the furnace wall to the center, that is, the distribution of the charge greatly fluctuates. Since there is almost no reproducibility of the charge distribution, the controllability of the gas flow distribution is low.
[0005]
For this reason, it is difficult to establish an appropriate gas flow distribution, which causes problems such as a decrease in reaction efficiency in the blast furnace, and causes a bad influence on the blast furnace condition.
It is an object of the present invention to ensure stable gas flow distribution by adjusting the charge distribution from the furnace wall to the center even in a very large blast furnace without having the above problems.
[0006]
[Means to solve the problem]
The present invention has been made to solve the above-mentioned problems, and means 1 is a method for operating a blast furnace by alternately charging coke and an iron raw material having a particle size of 50 mm or less into a blast furnace. When dividing the iron raw material into multiple batches and sequentially charging the multiple batches, obtain the gas flow ratio at multiple positions in the furnace radial direction at the top of the blast furnace furnace, and the gas flow ratio at the furnace center is the reference gas flow rate at that position When the gas flow rate ratio of the side wall portion or the intermediate portion is higher than the ratio and lower than the reference gas flow rate ratio of the position, the iron raw material fine particle portion of any one batch other than the first batch charged among the plurality of batches When the mixing ratio is increased and the gas flow ratio at the furnace center is lower than the reference gas flow ratio at the position and the gas flow ratio at the side wall or the middle is higher than the reference gas flow ratio at the position, First charge Tsu is a method of adjusting reducing the blending ratio of the iron raw material granules portions of any one batch of non-switch.
[0007]
Furthermore, the means 2 makes the particle size of the fine grain part in the iron raw material which adjusts the mixture ratio of the means 1 be 7 mm or less.
In addition, as a method of measuring the gas flow rate at a plurality of positions in the furnace radial direction, a flowmeter may be provided directly on the sonde, or a flowmeter may be provided on the sonde to obtain the gas flow velocity in the furnace, and the flow rate from this May be calculated. Further, it may be obtained by other methods.
[0008]
[Action]
Figure 1 shows the results of testing the effect of gas flow distribution when adjusting the blending ratio of fine particles of 7 mm or less in one of the iron raw material charging batches in a model blast furnace with an actual furnace of 1/3 size. Show. The charging mode of the iron raw material at this time is the one in which the iron raw material B is charged after the iron raw material A is charged.
[0009]
Here, as shown in Table 1, iron raw material B is blended with iron raw material B in a larger amount than iron raw material A, and the blending ratio is iron raw material A with respect to the amount of iron raw material in one batch. Is 3.9% and iron raw material B is 12.9%.
[0010]
[Table 1]
Figure 0003702008
[0011]
From FIG. 1, it is confirmed that the iron raw material A containing 3.9% of the fine-grained iron raw material has a much thicker central portion than the iron raw material B containing 12.9%. However, it was found that the difference in the layer thickness near the wall was not as great as the difference in the central portion, despite the large difference in the layer thickness at the central portion.
This is because when the charged iron raw material is rolled on the previously charged iron raw material and flows toward the furnace center, the roughened iron raw material mainly causes unevenness in the process of depositing the charged iron raw material. It will have a state. And since the fine-grained iron raw material flows into the irregularities and the flat surface becomes smooth and becomes slippery, the proportion of the iron raw material B flowing into the central portion is higher than that of the iron raw material A. Can be estimated.
[0012]
In addition, one charge of the iron raw material is divided and charged into a plurality of batches, and the first charged batch falls on a relatively soft coke layer and flows into the center of the furnace. For this reason, the state of the charged iron raw material is poor and its adjustment is difficult. On the other hand, batches other than the first batch fall on the hard iron raw material, and flow onto it in the direction of the center of the furnace, so that the charged state of the iron raw material is good and the adjustment becomes easy.
And if the layer thickness of this iron raw material is thick, the gas flow rising in the furnace is in a direction to be suppressed. In the test, the gas flow distribution can be controlled by adjusting the mixing ratio of the fine-grained iron raw material. I understand that.
[0013]
Furthermore, the particle size of the fine-grained portion in the iron raw material for adjusting the blending ratio is set to 7 mm or less. When the particle size is larger than this, there is no significant improvement in the flowing state, and the change amount is small. Become. This is because when the particle size is 7 mm or less, the angle of repose sharply decreases and the flow of fine particles deteriorates. As a result, the fine particles filling the uneven portions formed of the coarse iron raw material become closer to the furnace center side. This is presumed to be due to the decrease.
[0014]
【Example】
In the following, one embodiment of the present invention is a bell-type super-large blast furnace with an internal volume of 5000 m 3 of iron raw material and coke charging charge in two batches (C1 ↓, C2 ↓, O1 ↓, O2). Will be described.
The charge in Table 2 was an iron raw material with a ratio of 80% sintered ore and 20% iron ore, and the fine iron raw material of 7 mm or less was all sintered ore.
Moreover, the notch of the armor plate (MA) provided in the furnace only for the batch in which the fine-grained sintered ore was added was set to 0 (charging by the wall). This is to prevent a decrease in the central gas flow due to excessive control of the gas flow at the wall and excessive iron flow into the furnace center.
Further, the gas flow rate at a plurality of positions in the furnace radial direction was measured by using a sonde having a shaft and a flow meter provided at the upper part, and measuring the gas amounts at the furnace wall edge, the furnace center, and the middle part.
[0015]
[Table 2]
Figure 0003702008
[0016]
[Table 3]
Figure 0003702008
[0017]
As shown in Table 2, since the iron raw material B of Table 3 is used as O2 in Comparative Example 1, the fine-grained portion is 8%, and the gas flow ratio in the furnace center is the reference gas flow ratio (42% ), And the wall side portion gas volume ratio is lower than the reference gas flow rate ratio (28%), and the gas utilization rate is low. As a result, the gas flow ratio at each position in the furnace radial direction approached each reference gas flow ratio, and the gas utilization rate was improved.
[0018]
In Comparative Example 2, since the iron raw material B is used as O2 of the charged iron raw material, the fine-grained portion is 8%, the gas flow ratio in the furnace center is lower than the reference gas flow ratio, and the intermediate portion is the reference gas. As the gas flow rate is higher than the flow rate ratio (30%) and the gas utilization rate is low. The gas flow ratio at each position in the direction approached the reference gas flow ratio, and the gas utilization rate was improved.
[0019]
Since the comparative example 3 uses the iron raw material C of Table 3 as O1 and O2, the gas flow rate ratio of a furnace center part is higher than a reference gas flow rate ratio, and the gas amount ratio of a wall side part is lower than a reference gas flow rate ratio. Since the gas utilization rate is low, as a result of operation using the iron raw material B for both O1 and O2 as in Comparative Example 4 and increasing the blending ratio of the fine-grained portion by 3% (5% → 8%), There was almost no change in the gas flow ratio at each position in the furnace radial direction, and the gas utilization rate was hardly improved.
[0020]
As described above, the gas flow distribution in the furnace in Examples 1 and 2 was more appropriate than those in Comparative Examples 1 and 2 , thereby increasing the gas utilization rate and reducing the fuel ratio.
[0021]
Furthermore, it can be seen from Comparative Examples 3 and 4 that the adjustment amount of the gas flow rate ratio is extremely small even if the blending ratio of the fine-grained portion in the iron raw material in both batches O1 and O2 is adjusted simultaneously. For this reason, it turns out that the effect cannot fully be enjoyed unless the fine grain part of either one batch of O1 and O2 is adjusted.
[0022]
【The invention's effect】
As described above, the present invention makes it possible to obtain a desired in-furnace gas flow distribution by adjusting the mixing ratio of the fine-grained portion in the iron raw material of one batch of the iron raw material charging charge. As a result, the fuel ratio can be reduced and a great effect can be achieved, such as the continuous maintenance of stable blast furnace operation.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the mixing ratio of fine iron raw material and the layer thickness distribution in the furnace radial direction.

Claims (2)

高炉炉内にコ−クスと粒径50mm以下の鉄原料を交互に装入して高炉を操業する方法において、前記鉄原料を複数バッチに分割し、その複数バッチを順次装入するに際し、高炉炉頂部の炉径方向における複数位置のガス流量比を求め、炉中心部のガス流量比が該位置の基準ガス流量比より高く側壁部または中間部のガス流量比が該位置の基準ガス流量比より低いときには、前記複数バッチのうちの最初に装入するバッチ以外のいずれか1つのバッチの鉄原料細粒部分の配合割合を増調整し、炉中心部のガス流量比が該位置の基準ガス流量比より低く側壁部または中間部のガス流量比が該位置の基準ガス流量比より高いときには、前記複数バッチのうちの最初に装入するバッチ以外のいずれか1つのバッチの鉄原料細粒部分の配合割合を減調整することを特徴とする高炉の操業方法。In the method of operating a blast furnace by alternately charging coke and iron raw material having a particle size of 50 mm or less into a blast furnace furnace, the iron raw material is divided into a plurality of batches, and when the plurality of batches are sequentially charged, Obtain the gas flow ratio at multiple positions in the furnace radial direction at the top of the furnace, the gas flow ratio at the furnace center is higher than the reference gas flow ratio at the position, and the gas flow ratio at the side wall or in the middle is the reference gas flow ratio at the position When it is lower, the blending ratio of the iron raw material fine grain portion of any one batch other than the batch charged first among the plurality of batches is increased and the gas flow ratio in the furnace center is the reference gas at the position. When the gas flow ratio of the side wall or the intermediate portion is lower than the flow rate ratio and higher than the reference gas flow rate ratio at the position, the iron raw material fine particle portion of any one batch other than the batch charged first among the plurality of batches Decrease blending ratio of Blast furnace method operation, characterized by. 請求項1において配合割合を調整する鉄原料中の細粒部分の粒径を7mm以下としたことを特徴とする高炉の操業方法。  A method for operating a blast furnace according to claim 1, wherein the particle size of the fine-grained portion in the iron raw material for adjusting the blending ratio is 7 mm or less.
JP18666495A 1995-06-30 1995-06-30 Blast furnace operation method Expired - Lifetime JP3702008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18666495A JP3702008B2 (en) 1995-06-30 1995-06-30 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18666495A JP3702008B2 (en) 1995-06-30 1995-06-30 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH0920904A JPH0920904A (en) 1997-01-21
JP3702008B2 true JP3702008B2 (en) 2005-10-05

Family

ID=16192516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18666495A Expired - Lifetime JP3702008B2 (en) 1995-06-30 1995-06-30 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3702008B2 (en)

Also Published As

Publication number Publication date
JPH0920904A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
JP3702008B2 (en) Blast furnace operation method
JP3787237B2 (en) Method of charging high-pellet iron ore into a blast furnace
JP2005290511A (en) Method for operating blast furnace
JP3829516B2 (en) Blast furnace operation method
JP3787240B2 (en) How to charge the blast furnace center
JP3608485B2 (en) Raw material charging method in bell-less blast furnace
JP2001049312A (en) Method for charging raw material in bell-less blast furnace
JP2020012127A (en) Blast furnace operation method
JP2797917B2 (en) Blast furnace operation method
JP3787238B2 (en) Charging method into the center of the blast furnace
JP4045897B2 (en) Raw material charging method for bell-less blast furnace
KR100376480B1 (en) Burden distribution control method in blast furnace by using coke
JP3995380B2 (en) Raw material charging method to blast furnace
JP3835041B2 (en) Blast furnace raw material charging method
JP3014549B2 (en) Blast furnace operation method
JP3787231B2 (en) How to charge the blast furnace center
JPS6314808A (en) Raw material charging method for bell-less type blast furnace
JP2000204407A (en) Charging of charging material into center part of blast furnace
JP2996803B2 (en) Blast furnace operation method by bellless blast furnace
JP3978105B2 (en) Raw material charging method for blast furnace
JPS5910401B2 (en) Blast furnace raw material charging method
JPH06228615A (en) Method for charging coke into blast furnace
JP2005060797A (en) Method for charging material to blast furnace
JP2000199005A (en) Method for controlling center gas flow in blast furnace
JPH0841511A (en) Control of blast furnace and device therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term