JPH1060507A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH1060507A
JPH1060507A JP22236196A JP22236196A JPH1060507A JP H1060507 A JPH1060507 A JP H1060507A JP 22236196 A JP22236196 A JP 22236196A JP 22236196 A JP22236196 A JP 22236196A JP H1060507 A JPH1060507 A JP H1060507A
Authority
JP
Japan
Prior art keywords
furnace
iron source
ore
reduced iron
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22236196A
Other languages
Japanese (ja)
Inventor
Takanobu Inada
隆信 稲田
Masaru Ujisawa
優 宇治澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22236196A priority Critical patent/JPH1060507A/en
Publication of JPH1060507A publication Critical patent/JPH1060507A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for suitably controlling a fusing zone base level by stabilizing a gas flow distribution in a furnace. SOLUTION: At the time of alternately and repeatedly charging coke and ore layers layer by layer into a blast furnace having >=2500m<3> inner vol. in the furnace, a part of the ore is charged to a reduced iron source (reduced pellet, spherical scrap or cold pig), and the coke and the ore are dropped in the range of <=0.6 times of the furnace opening hole diameter in the radius directional distance from the axis of the furnace, and only the reduced iron source is dropped in the range of >=0.6 times of the furnace opening hole diameter in the radius directional distance from the axis of the furnace. Such method can be adopted that a part of the ore is beforehand changed into the reduced iron source and mixed and this dropping position is made to in the range of <=0.6 times of the furnace opening hole diameter in the radius directional distance from the axis of the furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の操業方法、
具体的には、炉内半径方向のガス流分布を安定化させる
とともに、融着帯の炉壁部におけるレベルを適正に制御
して、炉体を保護しつつ操業の安定度を確保できる高炉
の操業方法に関する。
TECHNICAL FIELD The present invention relates to a method for operating a blast furnace,
Specifically, while stabilizing the gas flow distribution in the radial direction inside the furnace, and appropriately controlling the level at the furnace wall of the cohesive zone, the blast furnace that can secure operation stability while protecting the furnace body Regarding the operation method.

【0002】[0002]

【従来の技術】高炉操業においては、鉄源原料(以下、
「鉱石」と記す)を円滑に還元・溶解して、課せられた
量の銑鉄を安定に製造することが基本使命である。もと
より、操業の安定度は炉内を上昇する還元ガスに対し
て、装入物の荷下がり、溶鉄および溶滓の流下を如何に
円滑に維持するかに掛かっている。このため、実操業で
は、炉頂半径方向の装入物分布を制御して、炉内気体・
固体・液体の物流バランスを調整することが日常的に行
われている。
2. Description of the Related Art In a blast furnace operation, an iron source material (hereinafter, referred to as an iron source material) is used.
Its basic mission is to smoothly reduce and dissolve "ore" to produce the required amount of pig iron. Of course, the stability of the operation depends on how smoothly the unloading of the charge and the falling down of the molten iron and slag are maintained for the reducing gas rising in the furnace. For this reason, in actual operation, the charge distribution in the furnace top radial direction is controlled to
It is a routine practice to adjust the distribution balance between solids and liquids.

【0003】一般に、実操業では、シャフト上部レベル
に設けた測温およびガス採取用ゾンデを用いて半径方向
のガス状態分布を測定し、炉内半径方向の物流バランス
を把握する手段が採られている。従って、半径方向の物
流バランス、より具体的には、上記ゾンデの測定値から
推定されるガス流分布を的確に制御するには、炉頂の装
入物分布を目標とするプロフィールに確実かつ安定に積
層させることが重要であり、特に、炉口径の大きな大型
高炉においてはその重要度は高い。
[0003] Generally, in actual operation, means for measuring the gas state distribution in the radial direction using a temperature measuring and gas sampling sonde provided at the upper level of the shaft to grasp the distribution balance in the furnace in the radial direction is employed. I have. Therefore, in order to accurately control the distribution of the logistics in the radial direction, more specifically, the gas flow distribution estimated from the measured values of the sonde, it is necessary to ensure that the distribution of the charge at the furnace top is a stable and stable profile. It is important to stack the layers, especially in large blast furnaces having a large furnace diameter.

【0004】高炉内のガス流分布制御においては、炉内
通気性を向上させること、およびガス流分布の変動を少
なくすることが重要である。そして、前者については、
炉中心部ガス流量を強めた分布を指向することにより炉
内通気性を向上させ得ることが、従来から知られてい
る。このようなガス流分布を確実に形成させる方法とし
て、特公昭64−9373号公報に開示された、いわゆ
る「コークス中心装入法」がある。同法は、先端を炉中
心部に臨ませたコークス供給パイプを用いて装入コーク
スの一部を炉中心部に直接装入することにより、同部の
ガス流を強化するとともに同部の装入物分布の変動を抑
え、ガス流を安定化させる効果もある。
In controlling the gas flow distribution in a blast furnace, it is important to improve the gas permeability in the furnace and to reduce the fluctuation of the gas flow distribution. And for the former,
It has been conventionally known that the air permeability in the furnace can be improved by directing the distribution in which the gas flow rate at the furnace center is enhanced. As a method for surely forming such a gas flow distribution, there is a so-called "coke center charging method" disclosed in Japanese Patent Publication No. 64-9373. According to the law, a part of the charged coke is directly charged into the furnace center using a coke supply pipe with the tip facing the furnace center, thereby strengthening the gas flow in the section and installing the coke. It also has the effect of suppressing fluctuations in the distribution of incoming substances and stabilizing the gas flow.

【0005】一方、後者のガス流分布の変動低減につい
ては、炉内半径方向および円周方向における装入物の分
布状況が、操作可能因子以外の装入物分布形成過程に関
与する外乱影響因子により変動するのを最小限に抑える
ことに帰される。なお、外乱影響因子としては、例え
ば、炉内に積層されたコークス層上に鉱石を装入したと
きに、その落下衝撃により生じるコークス層崩れ等があ
る。
On the other hand, regarding the latter method of reducing the fluctuation of the gas flow distribution, the distribution state of the charged material in the radial direction and the circumferential direction of the furnace depends on disturbance influence factors involved in the process of forming the charged material distribution other than the operable factors. To minimize fluctuations. The disturbance influence factors include, for example, a coke layer collapse caused by a drop impact when ore is charged on a coke layer stacked in a furnace.

【0006】このような外乱に起因するガス流分布の変
動は、前記の特公昭64−9373号公報や、特開昭6
1−227109号公報に開示されている炉中心部に原
料を直接装入する方法によれば、炉中心近傍部では低減
される。しかし、炉壁周辺部では変動低減の直接の効果
はない。
The fluctuation of the gas flow distribution caused by such a disturbance is described in Japanese Patent Publication No. 64-9373 and Japanese Patent Application Laid-Open No.
According to the method disclosed in Japanese Patent Application Laid-Open No. 1-227109, in which the raw material is directly charged into the furnace center, the amount is reduced near the furnace center. However, there is no direct effect of reducing fluctuations around the furnace wall.

【0007】通常、ベル式あるいはベルレス式装入装置
を用いる装入法は、いずれも装入原料の大半を炉壁部近
傍に装入するようにしているため、装入位置を細かく調
整して炉壁周辺部の装入物分布制御が行われている。し
かし、実操業を見たとき、炉壁周辺部の装入物分布は外
乱影響因子により変動するので、上述の装入位置での微
調整では炉壁周辺部のガス流分布の変動が充分低減され
ているとはいえない。
[0007] In the charging method using a bell-type or bell-less type charging apparatus, most of the charged materials are generally charged near the furnace wall, so that the charging position is finely adjusted. The charge distribution control around the furnace wall is performed. However, when looking at the actual operation, the charge distribution around the furnace wall fluctuates due to disturbance influence factors, so the fine adjustment at the charging position described above sufficiently reduces the fluctuation of the gas flow distribution around the furnace wall. It cannot be said that it has been done.

【0008】炉壁周辺部の装入物分布制御性が炉中心部
のそれに勝るとも劣らず重要である理由は、炉壁周辺部
が炉断面積の大半を占めているからであり、炉全体のガ
ス流バランスを調整する上で、その制御精度を高めると
ともにその変動を低減することが要求されることにな
る。さらに、現状の装入物分布制御が半径方向制御であ
ることを考慮すると、円周方向(特に炉壁周辺部)の装
入物分布変動の低減も同様に重要であるといえる。
The reason why the charge distribution controllability at the periphery of the furnace wall is as important as that at the center of the furnace is that the periphery of the furnace wall occupies most of the furnace cross-sectional area, and In order to adjust the gas flow balance, it is required to increase the control accuracy and reduce the fluctuation. Furthermore, considering that the current charge distribution control is radial control, it can be said that reducing the charge distribution fluctuation in the circumferential direction (particularly, around the furnace wall) is also important.

【0009】しかるに、ベル式高炉においては、ムーバ
ブル・アーマの内側プレートと外側プレートとで装入原
料の反発状況が異なり、その落下軌跡に差を生じる。ま
た、炉壁直近部に原料を落下させ、その位置を制御しよ
うとする際、装入原料がアーマプレートに部分的にしか
反発しない制御域が存在する。上述の構造的な変動要因
に加え、アーマプレートや大ベルの偏損耗なども外乱変
動要因となり、炉内装入物の分布偏差をもたらすことに
なる。
However, in the bell-type blast furnace, the repulsion of the charged material is different between the inner plate and the outer plate of the movable armor, which causes a difference in the falling locus. In addition, when the raw material is dropped to the vicinity of the furnace wall and its position is to be controlled, there is a control region in which the charged raw material only partially repels the armature plate. In addition to the structural fluctuation factors described above, uneven wear of the armor plate and the large bell and the like also become disturbance fluctuation factors, resulting in a distribution deviation of the furnace interior contents.

【0010】一方、ベルレス式高炉においては、炉壁部
から炉中心方向に向かって比較的広範囲に分布させる装
入形態を取っている。しかし、分配シュートを旋回させ
ながら装入するため、装入開始および装入終了タイミン
グによって円周方向に堆積量の偏差を生じたり、装入原
料粒径の変動で分配シュートからの原料落下軌跡(換言
すれば、原料の炉内落下位置)が変動する。これらは、
ベルレス式高炉の外乱変動要因となり、炉内装入物の分
布偏差を惹き起こすことになる。
On the other hand, the bellless blast furnace has a charging mode in which the blast furnace is relatively widely distributed from the furnace wall toward the center of the furnace. However, since the charging is performed while the distribution chute is swung, a deviation in the amount of deposition occurs in the circumferential direction depending on the charging start and charging end timings, or the material falling trajectory from the distribution chute due to the fluctuation of the charged material particle diameter ( In other words, the position at which the raw material falls in the furnace varies. They are,
It becomes a factor of disturbance fluctuation of the bellless blast furnace, and causes a distribution deviation of the furnace interior contents.

【0011】上述のような炉壁周辺部の装入物分布変動
がガス流分布変動を招き、炉況変動につながる事例は少
なくない。
There are many cases in which the fluctuation in the charge distribution around the furnace wall as described above causes a fluctuation in the gas flow distribution, leading to a fluctuation in the furnace condition.

【0012】そこで、本発明者らの一人は、先に、内容
積2500m3 以上の中型〜大型高炉を対象に、原料装
入に際し、コークスおよび鉱石の落下位置を炉中心線か
らの半径方向距離で炉口半径の0.6倍以下の範囲内に
制御することによって炉中心部はもとより炉壁周辺部の
装入物分布の変動を低減し、炉内ガス流分布を安定化さ
せる操業方法を提案した(特願平7−261731号、
以下、これを「先願」と記す)。
In view of this, one of the inventors of the present invention first set the falling position of coke and ore in the radial direction from the furnace center line when charging raw materials for medium to large blast furnaces having an inner volume of 2500 m 3 or more. In order to reduce fluctuations in the charge distribution not only in the center of the furnace but also in the periphery of the furnace wall by controlling the furnace radius to within 0.6 times the furnace opening radius, an operation method to stabilize the gas flow distribution in the furnace Proposed (Japanese Patent Application No. Hei 7-261173,
Hereinafter, this is referred to as “first application”).

【0013】これにより炉内ガス流分布を制御し、高炉
の安定操業を維持することが可能となった。しかし、高
炉操業においては、操業の安定を確保することに加え、
炉体の保護を図ることも重要な課題である。
This makes it possible to control the gas flow distribution in the furnace and maintain a stable operation of the blast furnace. However, in blast furnace operation, in addition to ensuring stable operation,
Protecting the furnace body is also an important issue.

【0014】通常、炉内半径方向の状態分布を考える上
で、融着帯、すなわち炉内に装入された鉱石が昇温され
て軟化し、融着、溶解する領域の形状が一つの指標とな
っているが、炉体保護を指向する上で、融着帯の炉壁部
におけるレベル(以下、これを「融着帯根部レベル」と
記す)が重要な指標である。この融着帯根部レベルが異
常に上昇すれば、炉壁部の熱負荷が増加して、ステー
ブ、さらには鉄皮の破損を招き、逆に低すぎれば、炉下
部の側壁部における不活性や、荷下がり不順、あるいは
未還元ないし未溶解鉱石の羽口部流入による炉況不調に
陥ることが経験的に知られている。特に、後者の炉下部
側壁部が不活性化した状況に陥った場合、通常のガス流
分布制御では正常化することは難しく、コークス比(燃
料比)の増加による低負荷操業を行うことによって建て
直しすることが必要となる。
Usually, when considering the state distribution in the furnace radial direction, the shape of the cohesive zone, that is, the shape of the area where the ore charged in the furnace is heated and softened, fused and melted, is one index. However, in order to protect the furnace body, the level of the cohesive zone at the furnace wall (hereinafter referred to as “cohesive zone root level”) is an important index. If the cohesive zone root level rises abnormally, the thermal load on the furnace wall will increase, leading to breakage of the staves and even the steel shell. It has been empirically known that the reactor condition may be deteriorated due to unloading irregularities or unreduced or undissolved ore flowing into the tuyere. In particular, when the latter is deactivated, it is difficult to normalize by normal gas flow distribution control, and rebuilding is performed by low load operation by increasing the coke ratio (fuel ratio). It is necessary to do.

【0015】[0015]

【発明が解決しようとする課題】本発明の課題は、操業
の安定を確保するとともに、炉体の保護を図るという観
点から、先願の高炉の操業方法をベースに、融着帯根部
レベルを即効的に制御できる方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the cohesive zone root level based on the blast furnace operating method of the prior application from the viewpoint of securing the stability of operation and protecting the furnace body. An object of the present invention is to provide a method that can be controlled quickly.

【0016】[0016]

【課題を解決するための手段】本発明の要旨は、下記
(1)および(2)の高炉の操業方法にある。
The gist of the present invention resides in the following (1) and (2) blast furnace operating methods.

【0017】(1)炉内容積2500m3 以上の高炉に
固体還元剤(コークス)と鉱石を交互に繰り返して層状
に装入するに際し、前記鉱石の一部を既還元鉄源に替
え、炉軸心からの半径方向距離で炉口半径の0.6倍以
下の範囲内にコークスと鉱石を落下させ、炉軸心からの
半径方向距離で炉口半径の0.6倍以上の範囲内に前記
の既還元鉄源のみを落下させることを特徴とする高炉の
操業方法。
(1) When a solid reducing agent (coke) and ore are repeatedly and alternately charged into a blast furnace having a furnace internal volume of 2500 m 3 or more in layers, a part of the ore is replaced with a reduced iron source and the furnace shaft is Drop coke and ore within a range of 0.6 times or less of the furnace opening radius at a radial distance from the core, and within a range of 0.6 times or more of the furnace opening radius at a radial distance from the furnace axis. A method of operating a blast furnace, wherein only the reduced iron source is dropped.

【0018】(2)炉内容積2500m3 以上の高炉に
コークスと鉱石を交互に繰り返して層状に装入するに際
し、前記鉱石の一部を既還元鉄源に替えてあらかじめ鉱
石に混合しておき、炉軸心からの半径方向距離で炉口半
径の0.6倍以下の範囲内に前記コークスと鉱石を落下
させることを特徴とする高炉の操業方法。
(2) When charging coke and ore alternately and repeatedly into a blast furnace having a furnace internal volume of 2500 m 3 or more in a layered manner, part of the ore is previously mixed with the ore instead of the reduced iron source. A method for operating the blast furnace, wherein the coke and the ore are dropped within a range of 0.6 times or less of a furnace opening radius in a radial distance from a furnace axis.

【0019】[0019]

【発明の実施の形態】以下、本発明(前記(1)および
(2)の発明、なお、これらの発明を本発明方法ともい
う)について詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention (the inventions of the above (1) and (2), and these inventions are also referred to as the method of the present invention) will be described in detail below.

【0020】(1)の発明は、前記のように、炉内容積
2500m3 以上の高炉にコークスと鉱石を交互に繰り
返して層状に装入する際に、鉱石の一部を既還元鉄源に
替えて、炉軸心からの半径方向距離で炉口半径の0.6
倍以下の範囲内に前記コークスと鉱石を落下させ、既還
元鉄源は炉軸心からの半径方向距離で炉口半径の0.6
倍以上の範囲内に落下させる方法である。なお、既還元
鉄源としては、還元ペレット、球形状のスクラップまた
は冷銑が使用できる。
According to the invention of (1), as described above, when coke and ore are alternately and repeatedly charged into a blast furnace having a furnace internal volume of 2500 m 3 or more in a layered manner, part of the ore is converted into a reduced iron source. Instead, the radius of the furnace port is 0.6
The coke and the ore are dropped within a range of less than twice, and the reduced iron source is 0.6 mm of the furnace opening radius at a radial distance from the furnace axis.
It is a method of dropping within a range of more than double. In addition, as a reduced iron source, reduced pellets, spherical scrap, or cold iron can be used.

【0021】この方法において、装入原料(コークスお
よび鉱石)の落下位置を炉軸心からの半径方向距離で炉
口半径の0.6倍(0.6R0 、ただし、R0 は炉口半
径)以下の範囲内とするのは、先願で説明したように、
次に述べる理由によるものである。すなわち、原料落下
位置を0.6R0 以下の範囲内とすると、原料堆積層
は、炉中間部あるいは炉中心部から炉壁部に向かって下
り勾配の斜面を形成する。そして、前記のコークス層崩
れは鉱石落下位置に対応する炉の中心寄りで発生する
が、層崩れしたコークスは面積の大きな炉壁周辺部に向
かって流れ込むため、コークス層崩れによる炉壁周辺部
のコークス層厚の上昇量は小さく、一方、層崩れしたコ
ークスの炉中心部への流入量はもともと僅かなので、炉
中心部におけるコークス層厚の上昇量も小さくなるから
である。これによって、炉中心部はもとより炉壁周辺部
の装入物分布の変動を低減し、炉内ガス流分布を安定化
させることができる。
In this method, the drop position of the charged materials (coke and ore) is 0.6 times the furnace opening radius (0.6R 0 , where R 0 is the furnace opening radius) as a radial distance from the furnace axis. ) Within the following range, as explained in the earlier application,
This is for the following reason. That is, when the raw material falling position and 0.6R 0 within the range, the raw material deposition layer includes, from the furnace middle portion or the furnace center portion in the furnace wall portion forms a slope with a descending slope. And the above-mentioned coke layer collapse occurs near the center of the furnace corresponding to the ore drop position, but since the layered coke flows toward the periphery of the furnace wall having a large area, the coke layer collapse due to the coke layer collapse This is because the amount of rise in the coke layer thickness is small, and on the other hand, since the amount of the broken coke flowing into the center of the furnace is originally small, the amount of rise in the coke layer thickness in the center of the furnace is also small. Thus, it is possible to reduce the variation of the charge distribution not only in the central portion of the furnace but also in the peripheral portion of the furnace wall, and to stabilize the gas flow distribution in the furnace.

【0022】この方法を実施する高炉を炉内容積250
0m3 以上の高炉とするのは、同じく先願で説明したよ
うに、炉壁周辺部の装入物分布の変動低減効果が250
0m3 以上の炉内容積を有する高炉で明瞭に認められる
からである。
The blast furnace in which this method is carried out has a furnace internal volume of 250.
A blast furnace of 0 m 3 or more is used because, as described in the same application, the effect of reducing the fluctuation of the charge distribution around the furnace wall is 250 m.
This is because it is clearly recognized in a blast furnace having a furnace internal volume of 0 m 3 or more.

【0023】コークスと鉱石の高炉内への装入は交互に
繰り返して層状になるように行うが、この層状に装入す
る鉱石の一部を既還元鉄源に替えるのは、通常の未還元
の鉱石を還元、溶解するに要する熱的負荷を軽減し、高
さ方向の温度分布を引き上げて融着帯根部レベルの上昇
を図るためである。
The charging of coke and ore into the blast furnace is performed alternately and repeatedly so as to form a layer. A part of the ore charged in the layer is replaced with a source of reduced iron in the usual unreduced state. The purpose is to reduce the thermal load required for reducing and dissolving the ore, and to raise the temperature distribution in the height direction to raise the level of the cohesive zone root.

【0024】これを効果的に実施するには、前記の既還
元鉄源を炉壁部近傍に堆積させることが必要である。そ
のための方法として、既還元鉄源を直接炉壁部近傍に落
下、装入する方法と、既還元鉄源として堆積角の小さな
粒子形状を持つもの、すなわち球に近い形状のものを使
用し、斜面を転動させて炉壁部近傍に流入、堆積させる
方法が考えられるが、前者の方法だけに依存したやり方
では、先述した先願発明の解決した問題、すなわち、装
入原料の大半を炉壁部近傍に装入しているため、炉壁周
辺部の装入物分布が外乱影響因子により変動し、炉壁周
辺部のガス流分布の変動低減が充分ではない、という問
題を再び惹起する危険がある。従って、後者の方法を主
体として考えることが望ましい。
In order to effectively carry out this, it is necessary to deposit the above-mentioned reduced iron source near the furnace wall. As a method for that, a method of dropping and charging the reduced iron source directly near the furnace wall, and using a reduced iron source having a particle shape with a small deposition angle, that is, a shape close to a sphere, A method of rolling the slope to flow into the vicinity of the furnace wall and depositing it is conceivable.However, in a method depending only on the former method, the problem solved by the above-mentioned prior application invention, that is, most of the charged materials are Since the gas is charged near the wall, the charge distribution around the furnace wall fluctuates due to disturbance influence factors, causing a problem that the fluctuation of the gas flow distribution around the furnace wall is not sufficiently reduced. There is danger. Therefore, it is desirable to mainly consider the latter method.

【0025】そこで、この(1)の発明では、既還元鉄
源として球に近い形状のものを使用し、その装入位置を
炉壁部近傍に限定せず、炉軸心からの半径方向距離で炉
口半径の0.6倍(0.6R0 )以上の炉壁部側とす
る。これによって、後述する実施例に示すように、既還
元鉄源の炉壁部での堆積歩留まりを良好ならしめること
ができ、融着帯根部レベルを適正に、しかも迅速に制御
することができる。
Therefore, in the invention of (1), a reduced iron source having a shape close to a sphere is used, and its charging position is not limited to the vicinity of the furnace wall, and the distance in the radial direction from the furnace axis is not limited. At the furnace wall side that is at least 0.6 times (0.6R 0 ) the furnace opening radius. As a result, as shown in the examples described later, the yield of the reduced iron source on the furnace wall can be improved, and the root level of the cohesive zone can be appropriately and promptly controlled.

【0026】装入鉱石に対する既還元鉄源の代替比率は
特に限定はしないが、2〜10重量%とするのが好まし
い。2重量%未満では明瞭な効果が認められず、10重
量%を超えると操業諸元に大きな影響を与えたり、融着
帯根部レベルの過度な上昇をもたらしたりするからであ
る。
The substitution ratio of the reduced iron source to the charged ore is not particularly limited, but is preferably 2 to 10% by weight. If the content is less than 2% by weight, a clear effect is not recognized. If the content is more than 10% by weight, the operation specifications are greatly affected, or the root level of the cohesive zone is excessively increased.

【0027】既還元鉄源の代替装入に、特別の手段は必
要ではない。例えば、ベルレス式高炉においては、分配
シュートを旋回させながら装入する際、既還元鉄源の旋
回装入を適宜はさんで上記の代替比率になるようにすれ
ばよい。
No special measures are required for the alternative charging of the reduced iron source. For example, in a bellless blast furnace, when charging while swirling the distribution chute, the above-described alternative ratio may be set by appropriately interposing the swirl charging of the reduced iron source.

【0028】前記の既還元鉄源としては、前記のよう
に、還元ペレット、球形状のスクラップまたは冷銑を用
いる。これらの鉄源は、形状が球に近く、斜面を転動さ
せて炉壁部近傍に流入、堆積させるのに好適だからであ
る。
As the above-mentioned reduced iron source, reduced pellets, spherical scraps or cold iron are used as described above. This is because these iron sources have a shape close to a sphere, and are suitable for rolling on a slope to flow in and deposit near the furnace wall.

【0029】前記(2)の発明は、炉内容積2500m
3 以上の高炉にコークスと鉱石を交互に繰り返して層状
に装入する際に、前記鉱石の一部を既還元鉄源に替えて
あらかじめ鉱石に混合しておき、これらコークスおよび
鉱石の落下位置を炉軸心からの半径方向距離で炉口半径
の0.6倍(0.6R0 )以下の範囲内とする方法であ
る。
The invention of the above (2) is characterized in that the furnace internal volume is 2500 m
When charging coke and ore alternately and repeatedly into three or more blast furnaces and charging them in layers, a part of the ore is replaced with a reduced iron source and mixed with the ore in advance, and the drop position of these coke and ore is determined. This is a method in which the radial distance from the furnace axis is within 0.6 times (0.6R 0 ) or less of the furnace opening radius.

【0030】この方法は、先願における装入形態をベー
スとしたもので、このようにコークスおよび鉱石の落下
位置を炉軸心からの半径方向距離で炉口半径の0.6倍
(0.6R0 )以下の範囲内とすることによって、前述
したように、炉中心部はもとより、炉壁周辺部の装入物
分布の変動を低減することができる。
This method is based on the charging mode in the prior application, and the coke and ore drop position is 0.6 times the furnace opening radius (0. 0) as the radial distance from the furnace axis. 6R 0 ) or less, as described above, it is possible to reduce the fluctuation of the charge distribution not only in the furnace center part but also in the peripheral part of the furnace wall.

【0031】既還元鉄源としては、(1)の発明の場合
と同様、還元ペレット、球形状のスクラップまたは冷銑
を用いる。このような球に近い形状のものを使用する
と、鉱石を炉内に落下(装入)させたときに、鉱石に混
合した既還元鉄源の方が斜面を転動しやすいので、既還
元鉄源を炉壁部近傍に流入、堆積させることができる。
すなわち、通常の未還元の鉱石との形状の差異による分
級効果によって、既還元鉄源が炉壁部近傍へ選択的に堆
積させ、その結果、(1)の発明の場合と同様、融着帯
根部レベルを適正に制御することができる。
As the reduced iron source, as in the case of the invention (1), reduced pellets, spherical scrap or cold iron is used. If such a shape close to a sphere is used, when the ore is dropped (charged) into the furnace, the reduced iron source mixed with the ore is more likely to roll on the slope, so the reduced iron The source can flow and deposit near the furnace wall.
That is, the reduced iron source is selectively deposited near the furnace wall by the classification effect due to the difference in shape from the ordinary unreduced ore, and as a result, as in the case of the invention of (1), the cohesive zone The root level can be properly controlled.

【0032】あらかじめ鉱石に代替混合させておく既還
元鉄源の量は、(1)の発明の場合と同様、2〜10重
量%とするのが好ましい。
The amount of the reduced iron source previously mixed with the ore is preferably 2 to 10% by weight as in the case of the invention (1).

【0033】[0033]

【実施例】【Example】

(実施例1)炉内容積5050m3 に相当する実炉を1
/20に縮小したベルレス式模型炉を使用して模型実験
を行った。
(Example 1) One actual furnace corresponding to a furnace inner volume of 5050 m 3
A model experiment was performed using a bellless model furnace reduced to / 20.

【0034】実験条件を表1に示す。装入条件は、フル
ード数(Froude数)と幾何学的相似比を合わせる
ことを前提に設定した。
Table 1 shows the experimental conditions. The charging conditions were set on the assumption that the Froude number and the geometric similarity ratio were matched.

【0035】表1において、装入O/C比とは、装入し
たコークス(C)に対する鉱石(O)の重量比であり、
既還元鉄源比とは、全鉄源装入量に対する既還元鉄源
(実験では、還元ペッレットを使用)の重量比率であ
る。また、原料落下位置の欄に示した1から9までの数
字は、ベルレス分配シュートの傾動ノッチNo.で、そ
れぞれ表2に示した原料落下位置を表す。つまり、傾動
ノッチNo.6〜9が、前記の炉軸心からの半径方向距
離で炉口半径の0.6倍(0.6R0 )以下の範囲内
(炉中心側)に相当し、傾動ノッチNo.1〜5が炉口
半径の0.6倍(0.6R0 )以上の範囲内(炉壁周辺
側)に相当する。なお、表示されるように、装入旋回数
はコークス、鉱石ともに10回とし、既還元鉄源につい
ては3回とした。
In Table 1, the charged O / C ratio is a weight ratio of ore (O) to charged coke (C).
The reduced iron source ratio is the weight ratio of the reduced iron source (in the experiment, a reduced pellet is used) to the total iron source charge. The numbers 1 to 9 shown in the column of the material falling position are the tilt notches No. of the bellless distribution chute. Represents the raw material drop position shown in Table 2, respectively. That is, the tilt notch No. Nos. 6 to 9 correspond to a radial distance from the furnace axis within a range of 0.6 times (0.6R 0 ) or less (furnace center side) the furnace opening radius. 1 to 5 correspond to the range (0.6R 0 ) or more of the furnace opening radius (0.6R 0 ) or more (furnace wall peripheral side). As shown, the number of charging turns was 10 for both coke and ore, and 3 for the reduced iron source.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】実験は、各装入条件(ケースA〜D)に対
して3回行い、炉壁部での全堆積鉄源に対する既還元鉄
源の比(既還元鉄源比)を測定した。
The experiment was performed three times for each charging condition (cases A to D), and the ratio of the reduced iron source to the total deposited iron source at the furnace wall (ratio of the reduced iron source) was measured.

【0039】結果を図1に示す。図中に示したcaseA〜
caseDは、表1のケースA〜Dにそれぞれ対応する。ca
seA(表1のケースA)は装入原料の大半を炉壁部近傍
に装入する装入形態に基づく従来例であり、caseB〜D
(表1のケースB〜D)は本発明例で、caseBおよびC
が前記の(1)の発明例、caseDが既還元鉄源を通常の
未還元の鉱石に混合して装入する前記の(2)の発明例
に相当するものである。
FIG. 1 shows the results. Case A shown in the figure
caseD corresponds to cases A to D in Table 1, respectively. ca
seA (case A in Table 1) is a conventional example based on a charging mode in which most of the charged materials are charged near the furnace wall, and cases B to D are used.
(Cases B to D in Table 1) are examples of the present invention, and cases B and C
The case D corresponds to the invention example of the above (1), and case D corresponds to the invention example of the above (2) in which the reduced iron source is mixed with ordinary unreduced ore and charged.

【0040】この結果から、本発明例(caseB〜D)の
いづれにおいても、炉壁部において既還元鉄源比率が高
く、既還元鉄源の炉壁部堆積歩留まりが良好であった。
なお、実験毎のバラツキも少なかった。
From these results, in each of the examples of the present invention (cases B to D), the ratio of the reduced iron source in the furnace wall was high, and the yield of the reduced iron source in the furnace wall was good.
In addition, there was little variation in each experiment.

【0041】(実施例2)実炉(炉内容積5050m
3 )において本発明(前記(1)の発明)を適用し、融
着帯根部レベルの制御性について試験を行った。
(Example 2) Actual furnace (volume inside the furnace: 5050 m)
In 3 ), the present invention (the invention of the above (1)) was applied, and a test was conducted on the controllability of the cohesive zone root level.

【0042】試験条件を表3に示す。表3において、装
入O/C比、および既還元鉄源比率の意味は、表1にお
けると同じである。また、原料落下位置の欄に示した1
から9までの数字の意味も表1の場合と同じで、それぞ
れ前記の表2に示した原料落下位置を表す。なお、表示
していないが、コークスおよび鉱石の粒径は、実施例1
におけると同じくそれぞれ5mmおよび4mmである。
Table 3 shows the test conditions. In Table 3, the meanings of the charged O / C ratio and the reduced iron source ratio are the same as in Table 1. In addition, 1 shown in the column of the material drop position
The meanings of the numbers from 1 to 9 are the same as those in Table 1, and represent the raw material falling positions shown in Table 2 above. Although not shown, the particle diameters of coke and ore were determined in Example 1.
5 mm and 4 mm, respectively.

【0043】[0043]

【表3】 [Table 3]

【0044】炉内における融着帯根部レベルの動きの検
証は、炉壁部に装入した垂直ゾンデ(垂直方向のガス採
取用ゾンデ)による高さ方向における温度分布の測定、
および炉下部側壁のステーブ温度の測定によって行っ
た。
The movement of the cohesive zone at the root level in the furnace was verified by measuring the temperature distribution in the height direction using a vertical sonde (a vertical gas sampling sonde) inserted in the furnace wall.
And the stave temperature of the lower wall of the furnace was measured.

【0045】結果を図2および図3に示す。図2は炉体
に設置されている温度計によるステーブの温度測定結果
で、B1〜B3はベリー・ボッシュ部に相当するステー
ブであり、S1〜S4はシャフト下段に相当するステー
ブであるが、本発明方法を適用する前(図中に○で表
示)に比べて、本発明方法の適用後(図中に●で表示)
はステーブ温度が上昇していることがわかる。また、図
3は炉壁部に装入した垂直ゾンデにより測定した高さ方
向の炉内温度分布であるが、ベリー・ボッシュ部に相当
する部分の炉内温度も上昇している。これらの結果か
ら、融着帯根部レベルが上方に移動したことがわかる。
The results are shown in FIG. 2 and FIG. FIG. 2 shows the results of the stave temperature measurement by a thermometer installed in the furnace body. B1 to B3 are the staves corresponding to the Berry-Bosch portion, and S1 to S4 are the staves corresponding to the lower stage of the shaft. After applying the method of the present invention (indicated by ● in the figure) compared to before applying the method of the invention (indicated by ○ in the figure)
Indicates that the stave temperature has increased. FIG. 3 shows the furnace temperature distribution in the height direction measured by a vertical sonde inserted into the furnace wall, and the furnace temperature in a portion corresponding to the Berry-Bosch section also increases. These results indicate that the cohesive zone root level has moved upward.

【0046】[0046]

【発明の効果】本発明方法によれば、炉内のガス流分布
を安定化させるとともに、融着帯根部レベルを適正に制
御することができる。これにより、炉内容積の大きい高
炉における炉体の保護ならびに操業の安定性向上に大い
に寄与することができる。
According to the method of the present invention, the gas flow distribution in the furnace can be stabilized and the cohesive zone root level can be properly controlled. Thereby, it is possible to greatly contribute to protection of the furnace body and improvement of operation stability in a blast furnace having a large furnace volume.

【図面の簡単な説明】[Brief description of the drawings]

【図1】既還元鉄源の炉壁部歩留まりと原料の装入の仕
方との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a furnace wall yield of a reduced iron source and a method of charging raw materials.

【図2】本発明方法を適用する前と適用した後における
ステーブの温度測定結果で、本発明方法による融着帯根
部レベルの制御性を示す図である。
FIG. 2 is a diagram showing temperature control results of a stave before and after application of the method of the present invention, showing the controllability of the cohesive zone root level by the method of the present invention.

【図3】炉壁部に装入した垂直ゾンデによる炉内温度の
測定結果で、本発明方法による融着帯根部レベルの制御
性を示す図である。
FIG. 3 is a graph showing the controllability of the root level of the cohesive zone according to the method of the present invention, based on the measurement results of the temperature in the furnace by a vertical sonde inserted into the furnace wall.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炉内容積2500m3 以上の高炉に固体還
元剤と鉄源原料を交互に繰り返して層状に装入するに際
し、前記鉄源原料の一部を既還元鉄源に替え、炉軸心か
らの半径方向距離で炉口半径の0.6倍以下の範囲内に
固体還元剤と鉄源原料を落下させ、炉軸心からの半径方
向距離で炉口半径の0.6倍以上の範囲内に前記の既還
元鉄源のみを落下させることを特徴とする高炉の操業方
法。
When a solid reducing agent and an iron source material are alternately and repeatedly charged into a blast furnace having a furnace internal volume of 2500 m 3 or more in layers, a part of the iron source material is replaced with a reduced iron source, Drop the solid reducing agent and the iron source material within a range of 0.6 times or less the furnace radius at a radial distance from the core, and at least 0.6 times the furnace radius at a radial distance from the furnace axis. A method for operating a blast furnace, wherein only the reduced iron source is dropped within the range.
【請求項2】炉内容積2500m3 以上の高炉に固体還
元剤と鉄源原料を交互に繰り返して層状に装入するに際
し、前記鉄源原料の一部を既還元鉄源に替えてあらかじ
め鉄源原料に混合しておき、炉軸心からの半径方向距離
で炉口半径の0.6倍以下の範囲内に固体還元剤と鉄源
原料を落下させることを特徴とする高炉の操業方法。
2. When a solid reducing agent and an iron source material are alternately and repeatedly charged into a blast furnace having a furnace internal volume of 2500 m 3 or more in a layered manner, a part of the iron source material is replaced with a reduced reduced iron source beforehand. A method for operating a blast furnace, comprising: mixing a solid reducing agent and an iron source material within a range of 0.6 times or less the radius of the furnace opening at a radial distance from the furnace axis in a state of being mixed with the source material.
JP22236196A 1996-08-23 1996-08-23 Operation of blast furnace Pending JPH1060507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22236196A JPH1060507A (en) 1996-08-23 1996-08-23 Operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22236196A JPH1060507A (en) 1996-08-23 1996-08-23 Operation of blast furnace

Publications (1)

Publication Number Publication Date
JPH1060507A true JPH1060507A (en) 1998-03-03

Family

ID=16781145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22236196A Pending JPH1060507A (en) 1996-08-23 1996-08-23 Operation of blast furnace

Country Status (1)

Country Link
JP (1) JPH1060507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021221A (en) * 2009-07-15 2011-02-03 Sumitomo Metal Ind Ltd Method for operating blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021221A (en) * 2009-07-15 2011-02-03 Sumitomo Metal Ind Ltd Method for operating blast furnace

Similar Documents

Publication Publication Date Title
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
JP5034189B2 (en) Raw material charging method to blast furnace
JPS63153385A (en) Method and system of operating vertical type furnace
JPH1060507A (en) Operation of blast furnace
JP2002003910A (en) Method for operating blast furnace
JP3787240B2 (en) How to charge the blast furnace center
JP4759985B2 (en) Blast furnace operation method
KR100376480B1 (en) Burden distribution control method in blast furnace by using coke
JP2000178615A (en) Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace
JP5029085B2 (en) How to protect refractories at the bottom of the blast furnace
JPH06271908A (en) Method for charging raw material in multi-batches into bell-less blast furnace
JP3787238B2 (en) Charging method into the center of the blast furnace
JP2000199005A (en) Method for controlling center gas flow in blast furnace
JPH09125112A (en) Method for mixing and charging ore and coke into ball-less blast furnace
JP3787231B2 (en) How to charge the blast furnace center
JP3779815B2 (en) Blast furnace operation method
JP2921392B2 (en) Blast furnace operation method
JPH07305103A (en) Method for charging raw material into blast furnace
JP2000204407A (en) Charging of charging material into center part of blast furnace
KR100418978B1 (en) Layer injection method for preventing complex layer to radial direction in blast furnace
JP2000282110A (en) Operation of blast furnace
JPH11217605A (en) Method for charging charging material into blast furnace
JP2921374B2 (en) Blast furnace operation method
JPH06264119A (en) Method for charging raw material into bell-less blast furnace
JP2000273508A (en) Method for strengthening center gas flow in blast furnace