JPH09125112A - Method for mixing and charging ore and coke into ball-less blast furnace - Google Patents

Method for mixing and charging ore and coke into ball-less blast furnace

Info

Publication number
JPH09125112A
JPH09125112A JP28207695A JP28207695A JPH09125112A JP H09125112 A JPH09125112 A JP H09125112A JP 28207695 A JP28207695 A JP 28207695A JP 28207695 A JP28207695 A JP 28207695A JP H09125112 A JPH09125112 A JP H09125112A
Authority
JP
Japan
Prior art keywords
furnace
coke
ore
layer
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28207695A
Other languages
Japanese (ja)
Other versions
JP3588877B2 (en
Inventor
Kanji Takeda
幹治 武田
Yasuhei Nouchi
泰平 野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28207695A priority Critical patent/JP3588877B2/en
Publication of JPH09125112A publication Critical patent/JPH09125112A/en
Application granted granted Critical
Publication of JP3588877B2 publication Critical patent/JP3588877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To accelerate the melting of ore by improving the air permeability of ore layers alternately formed with coke layers in a blast furnace. SOLUTION: The ore (O) and the coke (C) are discharged from a furnace top hopper in the state of mixing part thereof onto the coke layer of >=5 to <=25 deg. in the angle θ of surface inclination lowering from the peripheral part of the furnace toward the central part of the furnace formed in the furnace prior to charging of the ore in the stage of charging the ore into the blast furnace. While the coke is allowed to segregate again on the ore flowing on the base of a swiveling chute 14, the core is charged by tilting the chute 14 from the central part toward the peripheral part of the furnace, by which the resegregated coke layer C1 formed in a lit form longitudinally on the ore layer O charged into the furnace is distributed in the radial direction of the furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉のベルレス装入装
置に配置した炉頂ホッパから旋回シュートを介して炉内
に鉱石とコークスとを交互に層状に装入する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging ore and coke into a furnace alternately in layers from a furnace top hopper arranged in a bellless charging device of a blast furnace through a turning chute.

【0002】[0002]

【従来の技術】高炉の原料装入装置を大別するとベル式
装入装置と炉頂ホッパ、旋回シュートを有するベルレス
式装入装置になるが、近年では装入方法の自由度が大き
いベルレス装入装置が主流になりつつある。ベルレス式
装入装置では、炉頂ホッパに装入された原料を旋回シュ
ートを用いて高炉の半径方向の任意の位置に装入するこ
とができる。通常の装入においては、鉄原料である鉱石
と燃料、還元剤であるコークスとを交互に炉内に装入
し、炉内に鉱石層、コークス層を交互に形成する。
2. Description of the Prior Art A raw material charging device for a blast furnace is roughly classified into a bell-type charging device, a furnace top hopper, and a bellless-type charging device having a swirling chute. Input devices are becoming mainstream. In the bellless charging device, the raw material charged in the furnace top hopper can be charged into any position in the radial direction of the blast furnace by using a swirling chute. In ordinary charging, ore as an iron raw material, fuel, and coke as a reducing agent are alternately charged into the furnace to form ore layers and coke layers alternately in the furnace.

【0003】一般に図8に示す固体流れの模式断面図の
ように高炉1内に装入された鉱石とコークスは、鉱石層
Oとコークス層Cとの層構造を保持した状態で鉱石の還
元粉化を生じながら流れ線Aのようにシャフト内を降下
する。すなわち高炉1内の炉周辺部領域3に装入された
コークスは羽口4から吹き込まれた熱風により形成され
たレースウェイ6に向かって降下する。なお、炉頂より
装入する高価なコークスを節減するために羽口4から熱
風と共に微粉炭等の補助燃料を吹き込むことが盛んに行
われている。
Generally, the ore and coke charged in the blast furnace 1 as shown in the schematic cross-sectional view of the solid flow shown in FIG. 8 is a reduced powder of the ore with the layer structure of the ore layer O and the coke layer C being maintained. As shown in the flow line A, the inside of the shaft is lowered while being changed. That is, the coke charged in the furnace peripheral region 3 in the blast furnace 1 descends toward the raceway 6 formed by the hot air blown from the tuyere 4. Incidentally, in order to save expensive coke charged from the furnace top, it is actively practiced to blow auxiliary fuel such as pulverized coal from the tuyere 4 together with hot air.

【0004】そしてコークス等の装入物は羽口4前のレ
ースウェイ6上部へのすりばち状の流れ込みと炉芯での
荷下り停滞に代表される複雑な挙動で降下する。このよ
うにして降下する装入物と上昇するガスとの各熱流速と
のバランスによって融着帯5を形成し、滴下帯7を経由
して炉床9に溶銑10とスラグ11がプールされる。炉床9
にたまった溶銑10はスラグ11と共に出銑口8から炉外に
排出される。
Charges such as coke drop in a complicated manner represented by a squirrel-like flow into the upper part of the raceway 6 in front of the tuyere 4 and stagnation of the load down at the furnace core. In this way, the fusion zone 5 is formed by the balance of the respective heat velocities of the falling charge and the rising gas, and the hot metal 10 and the slag 11 are pooled in the hearth 9 via the dropping zone 7. . Hearth 9
The accumulated hot metal 10 is discharged to the outside of the furnace from the tap hole 8 together with the slag 11.

【0005】ところで、前述のようにして鉱石とコーク
スとを交互に炉内に装入する際に、鉱石層の中にもコー
クスを混入して鉄鉱石の還元、溶融を促進するいわゆる
混合装入技術(特開昭62−127413号公報)が知られてい
る。鉄鉱石は高炉内で昇温、還元、軟化、溶融し、最終
的に溶銑となって炉外に排出されるが、鉱石の軟化、収
縮により層内を流れるガス量が低下すると還元が停滞
し、同時に溶融、滴下が遅れるという問題が顕在化す
る。コークスを鉱石に混合する混合装入技術では、鉱石
層内に分散して存在するコークスが鉱石の軟化、収縮を
防止し、層内の通気性を改善している。前記の混合装入
技術(特開昭62−127413号公報)では、炉内に形成され
る鉱石類層中に反応性指数:30%以上の高反応性コーク
スを全装入コークス量に対して30%を超えない範囲で存
在させることを特徴としている。また、高反応性コーク
スは、鉱石層中に水平に層状に形成、あるいは鉱石層内
に分散して存在している。
By the way, when the ore and the coke are charged alternately into the furnace as described above, the so-called mixed charging for mixing the coke in the ore layer to promote the reduction and melting of the iron ore. A technique (Japanese Patent Laid-Open No. 62-127413) is known. Iron ore is heated, reduced, softened, and melted in the blast furnace, and finally becomes hot metal and is discharged to the outside of the furnace.However, when the amount of gas flowing in the bed decreases due to softening and contraction of the ore, the reduction stops. At the same time, a problem that melting and dropping are delayed becomes apparent. In the mixed charging technique of mixing coke with ore, coke existing in the ore layer in a dispersed state prevents softening and shrinkage of the ore and improves the air permeability in the layer. In the above-mentioned mixed charging technique (Japanese Patent Laid-Open No. 62-127413), a highly reactive coke having a reactivity index of 30% or more is contained in the ore layer formed in the furnace with respect to the total amount of coke charged. It is characterized by being present in the range not exceeding 30%. Further, the highly reactive coke is formed horizontally in a layer in the ore layer or dispersed in the ore layer.

【0006】また、ベルレス式高炉に鉄源の鉱石とコー
クスの混合原料を装入し、炉内に均一に分散させる方法
としては、特開昭62−260010号公報が開示されている。
混合原料中の還元剤の重量比率を一定、あるいは経時的
に制御し、かつ、旋回シュートの傾動角度を制御して前
記混合原料を炉中心部から炉壁方向に装入するととも
に、炉内装入後の原料の堆積角度が20度を超えないよう
に旋回シュートの傾動角度、各傾動角度における旋回
数、下部ゲート弁開度のうち少なくとも1つを制御する
ことを特徴とするベルレス式高炉の混合装入法である。
このような制御を行うことによりコークスを鉱石層に均
一に分散させることが可能であると報告されている。
Further, Japanese Patent Laid-Open No. 62-260010 discloses a method of charging a mixed raw material of iron ore and coke into a bellless type blast furnace and dispersing them uniformly in the furnace.
The weight ratio of the reducing agent in the mixed raw material is constant or controlled over time, and the tilting angle of the swirling chute is controlled to charge the mixed raw material from the central part of the furnace toward the furnace wall and to the interior of the furnace. Mixing of the bellless blast furnace characterized by controlling at least one of the tilt angle of the swirling chute, the number of turns at each tilt angle, and the lower gate valve opening degree so that the subsequent deposition angle of the raw material does not exceed 20 degrees. It is a charging method.
It is reported that the coke can be uniformly dispersed in the ore layer by performing such control.

【0007】[0007]

【発明が解決しようとする課題】上記従来の混合装入技
術は、微粉炭、重油等の補助燃料の吹き込み量が低く、
炉頂から装入される鉱石(O)とコークス(C)の重量
比(以後O/C)が比較的低い操業条件で効果を発揮し
てきた。一方、最近の微粉炭多量吹き込み(150kg/t 以
上)でコークス比を350kg/t 以下(O/C 4.7以上)で
は混合装入を行っても充分な通気改善が得られないこと
が操業経験上明らかになってきた。
SUMMARY OF THE INVENTION The above conventional mixing and charging technique has a low injection amount of auxiliary fuel such as pulverized coal and heavy oil,
The weight ratio of ore (O) and coke (C) charged from the top of the furnace (hereinafter O / C) has been effective under operating conditions with a relatively low level. On the other hand, from the experience of operation, it is not possible to obtain sufficient ventilation improvement even with mixed charging when the coke ratio is 350 kg / t or less (O / C 4.7 or more) due to the recent large amount of pulverized coal injection (150 kg / t or more). It has become clear.

【0008】鉱石中に混合されたコークスは、鉱石の収
縮、変形に対する抵抗になるとともに、鉱石の還元によ
り生じたCO2 を(1) 式の反応でCOに変えることにより鉱
石の還元反応を促進している。 C+CO2 →2CO …………(1) 鉱石層に混合するコークスとして高反応性コークスを用
いる理由は、(1) 式の反応を促進できることによる。
The coke mixed in the ore becomes a resistance against shrinkage and deformation of the ore, and promotes the reduction reaction of the ore by converting the CO 2 generated by the reduction of the ore into CO by the reaction of the formula (1). doing. C + CO 2 → 2CO (1) The reason why highly reactive coke is used as the coke mixed in the ore layer is that the reaction of the formula (1) can be promoted.

【0009】微粉炭多量吹き込みでは、レースウエイ内
で未燃焼となった微粉炭に由来するチャー粒子が、炉内
をガスとともに上昇し、融着帯近傍で鉱石層、あるいは
鉱石が軟化溶融した融着帯にトラップされる。未燃焼チ
ャーは混合コークスと同様に(1) 式の反応により鉱石の
還元に寄与すると同時にそれ自身が消費される。未燃焼
のチャー反応性はコークスの反応性よりはるかに高いた
め、混合コークスが未反応となりその通気改善効果が充
分現れない。また、微粉炭多量吹き込みでは装入原料の
O/Cが増大し、相対的に鉱石層厚が増加している。そ
の結果、鉱石層の通気が悪化し、特に鉱石の溶け落ち時
の通気の悪化が問題になることが明らかになった。
When a large amount of pulverized coal is blown, char particles derived from pulverized coal which has not been burnt in the raceway rise in the furnace together with the gas, and the ore layer or the ore is softened and melted near the cohesive zone. Trapped in the landing zone. Unburned char contributes to ore reduction by the reaction of Eq. (1), and is consumed at the same time as mixed coke. Since the unburned char reactivity is much higher than the reactivity of coke, the mixed coke becomes unreacted and the effect of improving ventilation is not sufficiently exhibited. In addition, when a large amount of pulverized coal is injected, the O / C of the charging raw material is increased, and the ore layer thickness is relatively increased. As a result, it was clarified that the ventilation of the ore layer was deteriorated, and the ventilation was deteriorated especially when the ore melted down.

【0010】溶け落ち時には、鉱石層はほぼ完全に融着
し、層内を流れるガス量は極端に少なくなる。鉱石を溶
解するための熱量はその周辺のコークス層を流れるガス
からの伝導伝熱により供給される。したがって、従来の
混合装入による軟化融着帯の通気を多少改善したとて
も、その溶融を改善することは困難である。以上、従来
の混合装入法では上記に示した理由で充分な効果を発揮
することが困難である。また、混合装入を実現するため
の装入法、特開昭60−260010号公報も層内での均一なコ
ークスの分散を目的とする以上、その効果を充分に発揮
することは困難である。
At the time of burning, the ore layer is almost completely fused and the amount of gas flowing in the layer is extremely small. The amount of heat for melting the ore is supplied by conduction heat transfer from the gas flowing in the coke layer around it. Therefore, it is difficult to improve the melting of the softened cohesive zone by the conventional mixed charging, although the ventilation of the softened cohesive zone is somewhat improved. As described above, it is difficult for the conventional mixed charging method to exert a sufficient effect for the reasons described above. Further, the charging method for realizing the mixed charging, JP-A-60-260010, also aims at the uniform dispersion of coke in the layer, so that it is difficult to sufficiently exert the effect. .

【0011】[0011]

【課題を解決するための手段】鉱石の軟化、融着後の溶
け落ちを支配するガス流れの変化、伝熱現象を詳細に検
討したところ以下の点が明らかになった。 (1)融着帯内を流れるガスは極く微量であり、そのガ
ス流れが伝熱溶解に及ぼす影響は小さい。
[Means for Solving the Problems] When the ore softening, changes in the gas flow that governs burn-through after fusing, and heat transfer phenomena were examined in detail, the following points were revealed. (1) The amount of gas flowing in the cohesive zone is extremely small, and the influence of the gas flow on heat transfer dissolution is small.

【0012】(2)高O/C時の鉱石層の溶解の遅れ
は、厚い融着帯内での遅い伝導伝熱に起因している。し
たがって、鉱石層厚を薄くすることで溶解速度の向上を
達成できる。 (3)融着帯内に縦方向に通気の良いコークススリット
を縦方向に形成することにより融着帯内の伝熱を促進す
ることができる。
(2) The delay in dissolution of the ore layer at high O / C is due to slow conduction heat transfer in the thick cohesive zone. Therefore, the dissolution rate can be improved by reducing the ore layer thickness. (3) Heat transfer in the cohesive zone can be promoted by forming a coke slit having good ventilation in the longitudinal direction in the cohesive zone.

【0013】本発明は、とくに上記(3)に着目して高
O/C時の鉱石層の溶解速度を向上させるものである。
具体的には、鉱石層内に通気の良いコークス層を縦方向
に筋状に形成することにより通気抵抗の小さいコークス
スリットを設け、そこを流れるガスにより溶解を促進す
る装入法とそれを実現するための具体的な装入手段に提
供するものである。
The present invention aims to improve the dissolution rate of the ore layer at high O / C, particularly paying attention to the above (3).
Specifically, a coke layer with good ventilation is formed in the ore layer in the longitudinal direction in the shape of stripes to provide a coke slit with low ventilation resistance, and a gas flowing therethrough promotes melting and a charging method is realized. It is provided to the concrete charging means for doing.

【0014】すなわち、請求項1記載の本発明は、高炉
のベルレス装入装置に配置した炉頂ホッパから旋回シュ
ートを介して炉内に鉱石とコークスとを交互に層状に装
入する方法において、炉内に鉱石を装入する段階で、当
該鉱石装入前に炉内に形成した炉周辺部から炉中心部に
向け低くなる表面傾斜角度θが5度以上、25度以下のコ
ークス層上に、炉頂ホッパから鉱石(O)とコークス
(C)の一部とを混合させた状態で排出し、旋回シュー
トを流れる鉱石上にコークスを再偏析させつつ該シュー
トを炉中心部から周辺部に向けて傾動して装入すること
により、炉内に装入された鉱石層に、縦方向にスリット
状に形成される再偏析コークス層の炉半径方向の幅厚さ
DWf を装入レベルの炉口半径RO により無次元化した
無次元再偏析層幅厚さDWf /RO を0.01以上0.04以下
として、炉半径方向に分布させることを特徴とするベル
レス高炉における鉱石、コークス混合装入方法である。
That is, the present invention according to claim 1 is a method for charging ore and coke in layers alternately from a furnace top hopper arranged in a bellless charging device of a blast furnace through a turning chute, At the stage of charging the ore into the furnace, the surface inclination angle θ that decreases from the peripheral area of the furnace formed in the furnace toward the center of the furnace before charging the ore is on the coke layer of 5 degrees or more and 25 degrees or less. , The ore (O) and a part of the coke (C) are discharged from the furnace hopper in a mixed state, and the choke is re-segregated on the ore flowing through the swirling chute from the central part of the furnace to the peripheral part. by charging tilts toward, the ore layer were charged into the furnace, the furnace radial width thickness DW f longitudinal re segregation coke layer formed in a slit shape of the charging level dimensionless re segregation layer width thickness dimensionless by a furnace port radius R O The W f / R O as 0.01 to 0.04, the ore in the bell-less blast furnace, characterized in that to distribute the furnace radial direction, a coke mixed charging method.

【0015】請求項2記載の本発明は、高炉のベルレス
装入装置に配置した炉頂ホッパにから旋回シュートを介
して炉内に鉱石とコークスとを交互に層状に装入する方
法において、炉内に鉱石を装入する段階で、当該鉱石装
入前に炉内に形成した炉周辺部から炉中心部に向け低く
なる表面傾斜角度θが5度未満のコークス層上に、炉頂
ホッパから鉱石(O)とコークス(C)の一部とを混合
させた状態で排出し、旋回シュートを流れる鉱石上にコ
ークスを再偏析させつつ該シュートを炉中心部から周辺
部に向けて傾動して原料落下間隔DRf を装入位置の炉
口半径RO により無次元化した無次元原料位置間隔DR
f /RO が下記条件式を満足するように装入し、炉内装
入された鉱石層に、縦方向にスリット状に形成される再
偏析コークス層の炉半径方向の幅厚さDWf を装入レベ
ルの炉口半径RO により無次元化した無次元再偏析層幅
厚さDWf /RO を0.005 以上0.01未満として炉半径方
向に分布させることを特徴とするベルレス高炉における
鉱石、コークス混合装入方法である。
According to a second aspect of the present invention, in the method for charging ore and coke into the furnace alternately in layers from a furnace top hopper arranged in a bellless charging device of a blast furnace through a turning chute, the furnace is used. At the stage of charging the ore into the furnace, from the furnace top hopper, onto the coke layer with a surface inclination angle θ of less than 5 degrees that decreases from the furnace peripheral part formed in the furnace toward the furnace center before charging the ore The ore (O) and a part of the coke (C) are discharged in a mixed state, the coke is re-segregated on the ore flowing through the swirling chute, and the chute is tilted from the central part of the furnace toward the peripheral part. A dimensionless raw material position distance DR in which the raw material falling distance DR f is made dimensionless by the furnace opening radius R O at the charging position.
f / R O was charged so as to satisfy the following conditional expression, and the width or thickness DW f in the furnace radial direction of the re-segregated coke layer formed in a slit shape in the longitudinal direction was added to the ore layer contained in the furnace interior. Ore and coke in a bellless blast furnace characterized by dimensionless re-segregation layer width thickness DW f / R O dimensionlessized by the charging level furnace radius R O of 0.005 or more and less than 0.01 It is a mixed charging method.

【0016】記 無次元原料落下位置間隔DRf >0.04−0.008 ×(鉱石
装入前に形成したコークス層の表面傾斜角度) 請求項3記載の本発明は、炉内に装入した鉱石層に、縦
方向にスリット状に形成される再偏析コークス層を炉半
径方向に3箇所以上に分布させることを特徴とする請求
項1または請求項2のベルレス高炉における鉱石、コー
クス混合装入方法である。
Dimensionless raw material falling position interval DR f > 0.04-0.008 × (surface inclination angle of coke layer formed before ore charging) The present invention according to claim 3 is for an ore layer charged in a furnace. The method of mixing ores and coke in a bellless blast furnace according to claim 1 or 2, wherein the re-segregated coke layers formed in a slit shape in the longitudinal direction are distributed in three or more locations in the furnace radial direction. .

【0017】[0017]

【作用】図5にベルレス高炉1での鉱石とコークスとの
混合原料の装入方法を示す。地上に設置された(図示し
ない)鉱石槽、コークス槽から装入ベルトコンベヤを用
いて2基のうちの一方の炉頂ポッパ12に原料として鉱石
(O)とコークス(C)とを装入し、炉頂ホッパ12から
鉱石(O)、コークス(C)を同時に排出することによ
り混合装入を行う。混合装入を行う手段としては、図示
したように鉱石、コークスを同一のホッパ12に積み付け
排出し、上下2層または多層に積み付ける方法、あるい
は図6に示したように鉱石(O)とコークス(C)を炉
頂の別々のホッパ12に貯蔵し、同時に排出することによ
って混合装入する方法などが考えられるが、特に限定す
る必要はなく、炉頂ホッパ12に原料を装入する以前に予
め鉱石とコークスを混合しておいてもよい。炉頂ホッパ
12から排出された鉱石(O)、コークス(C)は集合シ
ュート13を経由して所定の角度を保ちながら回転する旋
回シュート14にて炉頂部15に積み付けられる。装入物は
炉内で旋回毎に積み付けられ、最終的に鉱石層O、コー
クス層Cを形成する。なお、図5、図6におけるC
1 は、鉱石層O内に形成されるスリット状の再偏析コー
クス層を示している。
FIG. 5 shows the charging method of the mixed raw material of ore and coke in the bellless blast furnace 1. Ore (O) and coke (C) are charged as raw materials into one of the two furnace top poppers 12 using a charging belt conveyor from an ore tank (not shown) and a coke tank installed on the ground. , Ore (O) and coke (C) are simultaneously discharged from the furnace top hopper 12 for mixed charging. As a means for carrying out the mixed charging, as shown in the figure, ore and coke are loaded into the same hopper 12 and discharged, and then loaded into upper and lower two layers or multiple layers, or as shown in FIG. A method in which the coke (C) is stored in separate hoppers 12 at the top of the furnace and mixed and charged by discharging the coke at the same time is conceivable, but there is no particular limitation, and before charging the raw materials to the top hopper 12. The ore and coke may be mixed in advance. Furnace top hopper
The ore (O) and the coke (C) discharged from 12 are stacked on the furnace top 15 by a swirling chute 14 that rotates while maintaining a predetermined angle via a collecting chute 13. The charges are stacked in the furnace for each turning, and finally an ore layer O and a coke layer C are formed. It should be noted that C in FIGS.
Reference numeral 1 denotes a slit-shaped re-segregation coke layer formed in the ore layer O.

【0018】混合装入時における旋回シュート14から排
出される原料の挙動を図1〜図4に示した。旋回シュー
ト14上で小粒径で重い鉱石層O2 はシュート底面をゆっ
くりと流れ、大粒径で軽いコークス層C1 は中、大粒径
の鉱石層O1 の上面部を速いスピードで流れる。その結
果、コークスがより遠くへ落下する再偏析コークス層C
1 が現れる。この状態で旋回シュートの傾動角度の変更
方向、変更の大きさ、下面の形状を種々変更してコーク
スの堆積挙動を調べた結果が図1〜図4である。図4に
示すように、旋回シュート14の傾動角度を通常行われて
いる矢印で示す傾動方向、すなわち炉周辺部から炉中心
部へ変更した場合には炉壁に再偏析したコークスC1
装入されたのち中心部へ押し流されて再度炉中心部へ堆
積するため、鉱石層内にスリット状の縦方向に偏析した
コークススリットを形成できず、炉中心部に再偏析コー
クス層C1 を形成する。一方、炉中心部から炉周辺部に
向けて逆方向に旋回シュートの傾動角を変更し、下層の
コークス層Cの表面傾斜角、旋回シュートの傾動角の変
化幅を適正に設定すると図1のように鉱石層Oにスリッ
ト状(筋状)に本発明の再偏析コークス層C1 が入った
鉱石層Oを形成することができる。
The behavior of the raw materials discharged from the swirling chute 14 during the mixed charging is shown in FIGS. On the swirling chute 14, the heavy ore layer O 2 having a small particle size slowly flows at the bottom of the chute, and the coke layer C 1 having a large particle size and lightly flows on the upper surface of the ore layer O 1 having a medium particle size at a high speed. . As a result, the resegregated coke layer C where the coke falls further
1 appears. FIGS. 1 to 4 show the results of examining the coke deposition behavior by changing the tilt angle change direction of the turning chute, the size of the change, and the shape of the lower surface in this state. As shown in FIG. 4, when the tilting angle of the swirling chute 14 is changed from the tilting direction generally indicated by the arrow, that is, when the peripheral portion of the furnace is changed to the central portion of the furnace, the resegregated coke C 1 is attached to the furnace wall. Since it is pushed into the center of the ore and deposited again in the center of the furnace, it is not possible to form slit-like longitudinally segregated coke slits in the ore layer, and a re-segregated coke layer C 1 is formed in the center of the furnace. To do. On the other hand, when the tilt angle of the swirling chute is changed in the opposite direction from the central part of the furnace toward the peripheral part of the furnace and the surface tilt angle of the lower coke layer C and the change width of the tilt angle of the swirling chute are properly set, the results shown in FIG. Thus, the ore layer O containing the re-segregated coke layer C 1 of the present invention in a slit shape (streak shape) can be formed in the ore layer O.

【0019】図2のように下層のコークス層Cの表面傾
斜が緩く、かつ旋回シュート14を炉周辺部から炉中心部
へ変更すると前回旋回時の装入位置と今回の装入位置が
接近している場合には、前回旋回時の再偏析コークス層
0 が装入物の落下流により炉壁方向に押し流され、図
1のように適正な再偏析コークス層C1 を形成すること
が困難になる。このため、各旋回毎の再偏析コークス層
が押し流されて集まり、炉壁部にコークス単一層を形成
する。一方、図3に示すように下層のコークス層Cの表
面傾斜がきつい場合には、各旋回で装入された原料は装
入位置に留まらず、中心部に流れ込んで再偏析コークス
層C1 を形成するため、適正な再偏析コークス層が得ら
れない。
As shown in FIG. 2, when the surface slope of the lower coke layer C is gentle and the swirling chute 14 is changed from the peripheral portion of the furnace to the central portion of the furnace, the charging position at the time of the previous turning and the charging position at this time approach each other. In this case, the resegregation coke layer C 0 at the time of the previous turn is swept toward the furnace wall by the falling flow of the charge, and it is difficult to form an appropriate resegregation coke layer C 1 as shown in FIG. become. Therefore, the re-segregated coke layer for each turning is swept away and gathered to form a single coke layer on the furnace wall. On the other hand, as shown in FIG. 3, when the surface slope of the lower coke layer C is tight, the raw material charged in each swirl does not remain in the charging position but flows into the central portion to form the resegregated coke layer C 1 . Since it is formed, an appropriate resegregation coke layer cannot be obtained.

【0020】本発明では、図1に示すように、旋回シュ
ート14を炉中心部から炉周辺部に向けて傾動角を変更す
ると共に、下層のコークス層Cの表面傾斜角θを適正に
することによって鉱石層Oにスリット状の再偏析コーク
ス層C1 を炉半径方向に環状に分布させることができ
る。図1では、鉱石を装入する前のコークス層Cの表面
傾斜角θ、炉中心から原料落下位置までの距離Rf にお
いて、旋回シュート14から旋回ごとにコークス層C上に
形成される炉半径方向の鉱石とコークスとを含む原料落
下位置間隔DRf および縦方向にスリット状の再偏析コ
ークス層C1 の幅厚さをDWf としている。このような
原料落下位置間隔DRf を落下位置での炉口半径RO
無次元化した無次元原料落下位置間隔DRf /RO およ
び再偏析コークス層C1 の幅厚さDW f を同じく炉口半
径RO で無次元化した無次元再偏析コークス層幅厚さD
f /RO と定義する。
In the present invention, as shown in FIG.
Change the tilt angle from the center of the furnace to the periphery of the furnace.
And the surface inclination angle θ of the lower coke layer C is properly adjusted.
Slit-like re-segregation coke in ore layer O
Layer C1Can be distributed annularly in the radial direction of the furnace
You. In FIG. 1, the surface of the coke layer C before charging the ore
Inclination angle θ, distance R from the furnace center to the material drop positionfIn
Then, from the turning chute 14 on the coke layer C every turning
Raw material drop containing ore and coke in the radial direction of the furnace
Lower position interval DRfAnd a vertical slit-like re-segregation
Arks layer C1Width and thickness of DWfAnd like this
Material drop position interval DRfRadius R at the drop positionOso
Dimensionless dimensionless material drop position interval DRf/ ROAnd
And resegregation coke layer C1Width thickness DW fAlso the furnace mouth half
Diameter RODimensionless re-segregation coke layer width thickness D
Wf/ ROIs defined.

【0021】図1に示すような通気を向上させるのに最
適なスリット状の再偏析コークス層C1 を鉱石層Oに形
成させる条件を調査した。すなわち鉱石装入前の下層の
コークス層Cが炉周辺部から炉中心部に向け低くなる表
面傾斜角θを、無次元原料落下位置間隔DRf /R
O と、鉱石層Oに形成される無次元再偏析コークス層幅
厚さDWf /RO とにより評価した。その結果を図7に
示す。図7における○印は鉱石層Oに縦方向にスリット
状の十分な無次元再偏析コークス層幅厚さDWf /RO
=0.01〜0.04が形成される場合、△は許容できるDWf
/RO =0.005 〜0.01未満が形成される場合、また●印
は再偏析コークス層の形成が不十分なDWf<0.005 の
場合を示している。
The conditions for forming the slit-like re-segregated coke layer C 1 optimum for improving the ventilation as shown in FIG. 1 in the ore layer O were investigated. That is, the surface inclination angle θ at which the lower coke layer C before the ore charging decreases from the furnace peripheral portion toward the furnace central portion is defined as the dimensionless raw material falling position interval DR f / R.
O and the dimensionless re-segregation coke layer width thickness DW f / R O formed in the ore layer O were evaluated. FIG. 7 shows the result. In FIG. 7, a circle indicates a sufficient dimensionless re-segregation coke layer width thickness DW f / R O in the ore layer O which has a slit shape in the longitudinal direction.
= 0.01-0.04 is formed, Δ is an acceptable DW f
/ R O = 0.005 to less than 0.01 is formed, and ● indicates that DW f <0.005 where the resegregation coke layer is not sufficiently formed.

【0022】図7に示すように鉱石装入前のコークス層
Cの表面傾斜角θが5度以上、25度以下で十分または許
容し得る無次元再偏析コークス層幅厚さが得られること
がわかる。また、鉱石装入前のコークス層Cの表面傾斜
角θが5度未満では無次元原料落下位置間隔DRf /R
O =0.04と傾斜角θ=5度を結んだ直線より上の領域、
つまり無次元原料落下位置間隔DRf >0.04−0.008 ×
(鉱石装入前に形成したコークス層の表面傾斜角度)で
少なくとも許容できるDWf /RO =0.005 〜0.01未満
が得られることを示している。
As shown in FIG. 7, if the surface inclination angle θ of the coke layer C before ore charging is 5 ° or more and 25 ° or less, a sufficient or acceptable dimensionless resegregation coke layer width / thickness can be obtained. Recognize. Further, when the surface inclination angle θ of the coke layer C before ore charging is less than 5 degrees, the dimensionless raw material falling position interval DR f / R
Area above the straight line connecting O = 0.04 and inclination angle θ = 5 degrees,
That is, the dimensionless material drop position interval DR f > 0.04−0.008 ×
It shows that at least an acceptable DW f / R o = 0.005 to less than 0.01 can be obtained (the surface inclination angle of the coke layer formed before ore charging).

【0023】一方、無次元原料落下位置間隔DRf /R
O =0.04と鉱石装入前のコークス層Cの表面傾斜角θ=
5度を結んだ線より下方の領域では、炉周辺部へのコー
クス流れ込みにより、いずれも無次元再偏析コークス層
幅厚さDWf /RO <0.005となり鉱石層O内に適正な
再偏析コークス層C1 をほとんど形成せず、通気の向上
に寄与しない。
On the other hand, the dimensionless material falling position interval DR f / R
O = 0.04 and surface inclination angle θ of coke layer C before ore charging =
In the region below the line connecting the 5 degrees, coke flows into the peripheral area of the furnace, and the dimensionless re-segregation coke layer width thickness DW f / R O <0.005 is obtained, and the proper re-segregation coke is generated in the ore layer O. It hardly forms the layer C 1 and does not contribute to the improvement of ventilation.

【0024】このような鉱石層Oに形成される再偏析コ
ークス層C1 は、必ずしも旋回シュート14の各旋回ごと
に形成する必要はなく、鉱石層Oの溶融が不十分になる
と考えられる部位を中心とする特定領域の半径方向に3
箇所以上、望ましくは6箇所以上に分布するように形成
するのが好適である。通常時に旋回シュート14からコー
クス層C上に装入される鉱石層Oの平均層厚H(図1参
照)は炉口半径RO で無次元化した無次元鉱石層厚H/
O =0.1 であるので、原料落下位置炉口半径RO =54
0cm の場合には、平均鉱石層厚H=RO ×0.1 =54cmと
なる。
The re-segregation coke layer C 1 formed in the ore layer O does not necessarily have to be formed for each turn of the turning chute 14, and the portion where the ore layer O is considered to be insufficiently melted is not necessarily formed. 3 in the radial direction of the specific area around the center
It is preferable to form so as to be distributed in more than one place, preferably in more than six places. The average layer ore layer O charged to the normal from the turning chute 14 on the coke layer C thickness H (see FIG. 1) is a furnace port radius R O in dimensionless dimensionless ore layer thickness H /
Since R O = 0.1, the raw material drop position furnace port radius R O = 54
In the case of 0 cm, the average ore layer thickness H = R O × 0.1 = 54 cm.

【0025】鉱石層Oの溶融が不十分となる半径方向部
位、無次元距離0.3 の領域の鉱石溶融性改善するには、
無次元鉱石層厚H=54cmよりも小さい位置間隔DRf
H(=54cm)でコークス再偏析層C1 を形成する必要が
ある。すなわち、無次元距離0.3 に相当する半径方向の
領域=540cm ×0.3 =162cm に旋回シュート14から(16
2 /54=3)3回の旋回により少なくとも3箇所の再偏
析コークス層C1 を形成することが必要になる。さら
に、伝熱溶融速度を改善するには、6箇所以上の再偏析
コークス層C1 を形成するのが望ましい。
In order to improve the ore meltability in the radial portion where the ore layer O is insufficiently melted, that is, in the region where the dimensionless distance is 0.3,
Positional distance DR f <less than dimensionless ore layer thickness H = 54 cm
It is necessary to form the coke resegregation layer C 1 with H (= 54 cm). That is, a radial area corresponding to a dimensionless distance of 0.3 = 540 cm × 0.3 = 162 cm from the turning chute 14 (16
2/54 = 3) It is necessary to form the re-segregated coke layer C 1 at least at three places by turning three times. Furthermore, in order to improve the heat transfer melting rate, it is desirable to form the resegregated coke layers C 1 at 6 or more places.

【0026】なお、再偏析コークス層C1 を鉱石層Oの
半径方向における特定領域に形成するには、たとえば、
図6に示すように2基の炉頂ホッパ12にそれぞれ収容し
た鉱石(O)とコークス(C)とを排出するタイミング
を制御することにより可能となる。すなわち、まず炉頂
ホッパ12から鉱石(O)を排出し、旋回シュート14が特
定領域に達する時点で別の炉頂ホッパ12からコークス
(C)を排出すればよい。
To form the re-segregated coke layer C 1 in a specific region of the ore layer O in the radial direction, for example,
As shown in FIG. 6, it becomes possible by controlling the timing of discharging the ore (O) and the coke (C) stored in the two furnace top hoppers 12, respectively. That is, first, the ore (O) may be discharged from the furnace top hopper 12, and the coke (C) may be discharged from another furnace top hopper 12 when the turning chute 14 reaches a specific area.

【0027】[0027]

【実施例】本発明の混合装入法を内容積4500m3 ,炉口
径: 5.3mの大型ベルレス高炉で実施した結果を表1に
示した。炉頂に2個の並列バンカーを有する高炉であ
り、シュート長 4.0mの旋回シュートを用いて、1バッ
チの鉱石、コークスを13旋回にて炉内に装入している。
旋回シュートの傾動角度の設定は、52.5度を1ポイン
ト、13度を14ポイントとし、その間を等間隔で分割した
ポイントを用いて行った。燃料比は480kg/t から510kg/
t の間にあり、微粉炭多量吹き込みを実施している。混
合装入コークスとして粒径15−50mmの通常コークスとほ
ぼ同じ粒径のコークスを約80kg/t装入した。鉱石を炉頂
ホッパーに装入し、その後同一のホッパーに混合用コー
クスを装入し、同時に排出した。
[Examples] Table 1 shows the results of carrying out the mixed charging method of the present invention in a large bellless blast furnace having an inner volume of 4500 m 3 and a furnace diameter of 5.3 m. It is a blast furnace with two parallel bunkers on the top of the furnace. A swirling chute with a chute length of 4.0 m is used to load one batch of ore and coke into the furnace in 13 swirls.
The tilt angle of the turning chute was set at 52.5 degrees as 1 point and 13 degrees as 14 points, and the points were divided at equal intervals. Fuel ratio is 480kg / t to 510kg /
It is between t and a large amount of pulverized coal is injected. As the mixed charging coke, about 80 kg / t of coke having a particle size of 15-50 mm and the same size as the normal coke was charged. The ore was charged into the top hopper, and then the same hopper was charged with the mixing coke and simultaneously discharged.

【0028】[0028]

【表1】 [Table 1]

【0029】比較例1では炉壁部に傾斜角が0のコーク
ス表面(コークステラス)を形成し、そのうえに混合コ
ークス層を形成させた。コークステラスの長さが1.5 m
と短いため、混合装入時の無次元原料落下位置間隔は0.
03と短い。その結果、炉壁近傍に混合コークスが集中し
て堆積し、鉱石層に縦方向に筋状のコークス層を形成す
ることが困難になっている。その結果、高炉下部の圧力
損失が0.029kg/m3と大きく、かつ通気抵抗の変動σΔP
/vが0.030 と操業の変動が大きいことが分かる。溶銑
温度を1500℃以上に維持することが困難になり同時に、
溶銑中の[Si]の変動も著しく大きい。
In Comparative Example 1, a coke surface (coke terrace) having an inclination angle of 0 was formed on the furnace wall, and a mixed coke layer was formed thereon. The length of the coke terrace is 1.5 m
Because it is short, the dimensionless material drop position interval during mixed charging is 0.
03 and short. As a result, mixed coke is concentrated and deposited near the furnace wall, making it difficult to form a longitudinal coke layer in the ore layer. As a result, the pressure loss in the lower part of the blast furnace was as large as 0.029 kg / m 3 and the fluctuation of the ventilation resistance was σΔP.
As / v is 0.030, it can be seen that the fluctuation of the operation is large. At the same time it becomes difficult to maintain the hot metal temperature above 1500 ° C,
The fluctuation of [Si] in the hot metal is also extremely large.

【0030】比較例2では炉壁部のコークステラスの長
さを0.5 mと短くし、混合原料をコークスの斜面(角度
26度)上に装入した。混合装入時の無次元原料落下位置
間隔は0.05と大きいものの、装入された混合原料は炉壁
近傍の装入位置に留まらず、炉中心部に流れ込む。同時
に、混合原料中のコークスが炉内で再偏析を起こし、炉
中心部に混合コークスが集中して堆積した。その結果、
高炉下部の圧力損失が0.030kg/m3と大きく、かつ通気抵
抗の変動σΔP/vが0.028 と安定な操業ができていな
いことがわかる。また、溶銑温度を1500℃以上に維持す
ることが困難になると同時に、炉頂のガスの利用率が低
下し、燃料比を520kg/t にまで上昇することを余儀なく
されている。
In Comparative Example 2, the length of the coke terrace on the furnace wall was shortened to 0.5 m, and the mixed raw material was mixed on the slope of the coke (angle).
(26 degrees) charged up. Although the distance between the non-dimensional raw material dropping positions during the mixed charging is as large as 0.05, the charged mixed raw material does not stay at the charging position near the furnace wall but flows into the central part of the furnace. At the same time, the coke in the mixed raw material was re-segregated in the furnace, and the mixed coke was concentrated and deposited in the center of the furnace. as a result,
It can be seen that the pressure loss in the lower part of the blast furnace is as large as 0.030 kg / m 3 and the fluctuation σΔP / v of the ventilation resistance is 0.028, indicating that stable operation is not possible. At the same time, it becomes difficult to maintain the hot metal temperature above 1500 ° C, and at the same time, the utilization rate of the gas at the top of the furnace decreases, and the fuel ratio is forced to rise to 520 kg / t.

【0031】実施例1では、炉壁部に傾斜角が5度のコ
ークス表面(コークステラス)を形成し、そのうえに混
合コークス層を形成させた。コークステラスの長さを2.
5 mと長くしたため、混合装入時の無次元原料落下位置
間隔は0.04と大きくとることが可能になった。その結
果、炉壁近傍に装入した混合原料は図1に示すように、
鉱石層内の縦方向にスリット状の再偏析コークス層C1
を形成している。その結果、軟化、融着帯の溶解が促進
され、結果、高炉下部の圧力損失が0.020kg/m3に低下
し、かつ通気抵抗の変動σΔP/vが0.018 まで低下、
安定操業が実現できた。溶銑温度を1503℃と高めに維持
することが可能になり、微粉炭吹き込み量を200kg/t ま
で増加、同時に燃料比を490kg/t に低下できた。
In Example 1, a coke surface (coke terrace) having an inclination angle of 5 degrees was formed on the furnace wall, and a mixed coke layer was formed on the coke surface. Length of coke terrace 2.
Since the length was increased to 5 m, the distance between the non-dimensional material dropping positions during mixed charging could be set to a large 0.04. As a result, the mixed raw material charged in the vicinity of the furnace wall was, as shown in FIG.
Longitudinal slit-like re-segregation coke layer C 1 in the ore layer
Is formed. As a result, the softening and melting of the cohesive zone are promoted, resulting in a decrease in the pressure loss in the lower part of the blast furnace to 0.020 kg / m 3 and a change in ventilation resistance σΔP / v to 0.018.
Stable operation was realized. It became possible to maintain the hot metal temperature as high as 1503 ° C, and the pulverized coal injection rate could be increased to 200 kg / t, and at the same time the fuel ratio could be reduced to 490 kg / t.

【0032】実施例2では、炉壁部のコークステラスの
長さを0.5 mと短くし、混合原料をコークスの斜面(角
度15度)上に装入した。混合装入時の無次元原料落下位
置間隔は0.05と大きくし、同時に、下面の傾斜角を20度
になるようにコークスの装入パターンを調整した。コー
クスの傾斜角が適正範囲のため、装入された混合原料は
装入位置に留まり、図1に示すような安定な堆積層を形
成した。その結果、高炉下部の圧力損失は0.018kg/m3
で低下し、かつ通気抵抗の変動σΔP/vが0.015 と安
定操業が可能になった。同時に、溶銑温度を1505℃と高
めに維持することが可能になり、微粉炭吹き込み量を20
5kg/t まで増加、同時に燃料比を480kg/t に低下でき
た。
In Example 2, the length of the coke terrace on the furnace wall was shortened to 0.5 m, and the mixed raw material was charged on the slope of the coke (angle 15 °). The distance between the dimensionless raw material dropping positions during the mixed charging was increased to 0.05, and at the same time, the charging pattern of the coke was adjusted so that the inclination angle of the lower surface was 20 degrees. Since the coke inclination angle was in the appropriate range, the charged mixed raw material remained at the charging position, and a stable deposited layer as shown in FIG. 1 was formed. As a result, the pressure loss in the lower part of the blast furnace decreased to 0.018 kg / m 3 and the fluctuation of the ventilation resistance σΔP / v was 0.015, enabling stable operation. At the same time, it became possible to maintain the hot metal temperature as high as 1505 ° C, and the amount of pulverized coal injected was 20%.
It was able to increase up to 5kg / t and at the same time reduce the fuel ratio to 480kg / t.

【0033】本実施例では、鉱石を炉頂ホッパーに装入
し、その後同一のホッパーに混合コークスを装入し、同
時に排出したが、混合コークスを異なるホッパーに装入
し鉱石と同時に排出することも可能である。また、混合
コークスとして通常コークスに近い通気性の良いコーク
スを用いたが、従来から行われているように高反応性の
小粒径のコークスを用いることも可能である。
In this embodiment, the ore was charged into the furnace top hopper, and then the mixed coke was charged into the same hopper and discharged simultaneously. However, the mixed coke is charged into different hoppers and discharged simultaneously with the ore. Is also possible. Further, as the mixed coke, a coke having an air permeability close to that of a normal coke is used, but it is also possible to use a coke having a small particle size with high reactivity as is conventionally done.

【0034】[0034]

【発明の効果】以上説明したように本発明ではコークス
の生産能力の低下時、コークス不足時の低コークス比操
業時、微粉炭多量吹き込み操業時において、高炉内に装
入した鉱石の溶解速度を再偏析コークス層の通気改善効
果を利用して上昇することにより、コークス比の一層の
低下、操業の安定を達成することができる。
As described above, according to the present invention, the dissolution rate of the ore charged in the blast furnace is reduced when the production capacity of coke is reduced, when the coke ratio is low, when the coke ratio is low, and when pulverized coal is blown in large amounts. By increasing the re-segregation coke layer by utilizing the ventilation improving effect, it is possible to further reduce the coke ratio and stabilize the operation.

【0035】製鉄所内のコークス生産量が不足する場合
には、一般には市場からコークスを購入し補うことが一
般的であるが、市場コークスの値段は自家生産コークス
の約50%増しであり、コークス使用量を減少できる本発
明の経済的効果は大きい。また、通気性の改善により、
実施例でも示したように出銑量が増加、製鉄所全体の生
産量を増加できる。
When the amount of coke produced in a steel mill is insufficient, it is generally common to purchase coke from the market to supplement it, but the price of market coke is about 50% higher than that of self-produced coke. The economic effect of the present invention, which can reduce the amount used, is great. Also, by improving the breathability,
As shown in the examples, the amount of tapped metal can be increased and the production amount of the entire steel mill can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明例の原料装入により鉱石層に適正な再偏
析コークス層が形成される場合を断面で示す説明図であ
る。
FIG. 1 is an explanatory view showing in cross section a case where an appropriate resegregation coke layer is formed in an ore layer by charging a raw material according to the present invention.

【図2】比較例1の原料装入により適正な再偏析コーク
ス層が形成されない場合を断面で示す説明図である。
FIG. 2 is an explanatory view showing in cross section a case where an appropriate resegregation coke layer is not formed by charging a raw material in Comparative Example 1.

【図3】比較例2の原料装入により適正な再偏析コーク
ス層が形成されない場合を断面で示す説明図である。
FIG. 3 is an explanatory view showing in cross section a case where an appropriate resegregation coke layer is not formed by charging a raw material in Comparative Example 2.

【図4】従来例の原料装入により適正な再偏析コークス
層が形成されない場合を断面で示す説明図である。
FIG. 4 is an explanatory view showing in cross section a case where an appropriate resegregation coke layer is not formed by charging a raw material in a conventional example.

【図5】本発明に係る同一の炉頂ホッパから鉱石、コー
クスを同時に排出し、旋回シュートを介して装入する場
合を断面で示す説明図である。
FIG. 5 is an explanatory view showing a cross section of a case where ore and coke are simultaneously discharged from the same furnace top hopper according to the present invention and charged through a swirling chute.

【図6】本発明に係る別々の炉頂ホッパから鉱石、コー
クスを同時に排出し、旋回シュートを介して装入する場
合を断面で示す説明図である。
FIG. 6 is an explanatory view showing a cross section of a case where ores and coke are simultaneously discharged from different furnace top hoppers according to the present invention and charged through a swirling chute.

【図7】鉱石装入前の下層のコークス層が炉周辺部から
炉中心部に向け低くなる表面傾斜角θと無次元原料落下
位置間隔DRf /RO との関係を、鉱石層に形成される
無次元再偏析コークス層幅厚さDWf /RO より評価し
たグラフである。
FIG. 7 shows the relationship between the surface inclination angle θ at which the lower coke layer before the ore charging decreases from the furnace peripheral portion toward the furnace central portion and the dimensionless raw material falling position interval DR f / R O formed in the ore layer. 2 is a graph evaluated from the dimensionless re-segregation coke layer width thickness DW f / R o .

【図8】従来の高炉内原料の効果状況を断面で模式的に
示す説明図である。
FIG. 8 is an explanatory view schematically showing in cross section the effect status of the conventional raw material in the blast furnace.

【符号の説明】[Explanation of symbols]

1 高炉(ベルレス高炉) 2 炉中心部領域 3 炉周辺部領域 4 羽口 5 融着帯 6 レースウェイ 7 滴下帯 8 出銑口 9 炉床 10 溶銑 11 スラグ 12 炉頂ホッパ 13 集合シュート 14 旋回シュート 15 炉頂部 A 流れ線 C コークス層 O 鉱石層 1 Blast Furnace (Bellless Blast Furnace) 2 Furnace Center Area 3 Furnace Peripheral Area 4 Tuyere 5 Fusing Zone 6 Raceway 7 Dripping Zone 8 Tap Hole 9 Hearth Floor 10 Molten Iron 11 Slag 12 Top Chopper 13 Collecting Chute 14 Swing Chute 15 Top of the furnace A Flow line C Coke layer O Ore layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高炉のベルレス装入装置に配置した炉頂
ホッパから旋回シュートを介して炉内に鉱石とコークス
とを交互に層状に装入する方法において、炉内に鉱石を
装入する段階で、当該鉱石装入前に炉内に形成した炉周
辺部から炉中心部に向け低くなる表面傾斜角度θが5度
以上、25度以下のコークス層上に、炉頂ホッパから鉱石
(O)とコークス(C)の一部とを混合させた状態で排
出し、旋回シュートを流れる鉱石上にコークスを再偏析
させつつ該シュートを炉中心部から周辺部に向けて傾動
して装入することにより、炉内に装入された鉱石層に、
縦方向にスリット状に形成される再偏析コークス層の炉
半径方向の幅厚さDWfを装入レベルの炉口半径RO
より無次元化した無次元再偏析層幅厚さDWf /RO
0.01以上0.04以下として、炉半径方向に分布させること
を特徴とするベルレス高炉における鉱石、コークス混合
装入方法。
1. A method of charging ore and coke into a furnace alternately in layers from a furnace top hopper arranged in a bellless charging device of a blast furnace through a swirling chute, wherein the ore is charged into the furnace. Then, the ore (O) from the furnace top hopper is placed on the coke layer having a surface inclination angle θ of 5 degrees or more and 25 degrees or less that decreases from the furnace peripheral part formed in the furnace toward the furnace center part before the ore charging. And a part of the coke (C) are discharged in a mixed state, and the chute is charged while being re-segregated on the ore flowing in the swirling chute while tilting from the central part of the furnace toward the peripheral part. To the ore layer charged in the furnace,
Longitudinally dimensionless repolarization dimensionless by a furnace port radius R O of the charging level width thickness DW f of the furnace radial re segregation coke layer formed in a slit shape segregation layer width thickness DW f / R O
A method for mixing ores and coke in a bellless blast furnace, which is characterized by being distributed in the radial direction of the furnace as 0.01 to 0.04.
【請求項2】 高炉のベルレス装入装置に配置した炉頂
ホッパから旋回シュートを介して炉内に鉱石とコークス
とを交互に層状に装入する方法において、炉内に鉱石を
装入する段階で、当該鉱石装入前に炉内に形成した炉周
辺部から炉中心部に向け低くなる表面傾斜角度θが5度
未満のコークス層上に、炉頂ホッパから鉱石(O)とコ
ークス(C)の一部とを混合させた状態で排出し、旋回
シュートを流れる鉱石上にコークスを再偏析させつつ該
シュートを炉中心部から周辺部に向けて傾動して原料落
下間隔DRf を装入位置の炉口半径RO により無次元化
した無次元原料位置間隔DRf /RO が下記条件式を満
足するように装入し、炉内装入された鉱石層に、縦方向
にスリット状に形成される再偏析コークス層の炉半径方
向の幅厚さDWf を装入レベルの炉口半径RO により無
次元化した無次元再偏析層幅厚さDWf /RO を0.005
以上0.01未満として炉半径方向に分布させることを特徴
とするベルレス高炉における鉱石、コークス混合装入方
法。 記 無次元原料落下位置間隔DRf >0.04−0.008 ×(鉱石
装入前に形成したコークス層の表面傾斜角度)
2. A method of charging ore and coke into a furnace alternately in layers from a furnace top hopper arranged in a bellless charging device of a blast furnace through a swirling chute, wherein the ore is charged into the furnace. In addition, the ore (O) and the coke (C) are fed from the furnace top hopper onto the coke layer having a surface inclination angle θ of less than 5 degrees which decreases from the furnace peripheral portion toward the furnace central portion formed in the furnace before charging the ore. ) Is discharged in a mixed state, and coke is re-segregated on the ore flowing through the swirling chute, and the chute is tilted from the central part of the furnace toward the peripheral part to charge the raw material drop interval DR f . The dimensionless raw material position distance DR f / R O, which is made dimensionless by the furnace radius R O of the position, is charged so as to satisfy the following conditional expression, and a longitudinal slit is formed in the ore layer contained in the furnace. the furnace radial width thickness DW f re segregation coke layer formed instrumentation Dimensionless Re segregation layer width dimensionless by the level of the furnace opening radius R O thickness DW f / R O 0.005
A method for mixing ores and coke in a bellless blast furnace, characterized in that the content is distributed in the radial direction of the furnace with a value of less than 0.01. Note Dimensionless raw material drop position interval DR f > 0.04−0.008 × (surface inclination angle of coke layer formed before ore charging)
【請求項3】 炉内に装入した鉱石層に、縦方向にスリ
ット状に形成される再偏析コークス層を炉半径方向に3
箇所以上に分布させることを特徴とするベルレス高炉に
おける鉱石、コークス混合装入方法。
3. A resegregation coke layer formed in a slit shape in the longitudinal direction is formed in the ore layer charged in the furnace in a radial direction of 3 in the furnace.
A method for charging ore and coke in a bellless blast furnace, which is characterized in that it is distributed in more than one place.
JP28207695A 1995-10-30 1995-10-30 Ore and coke charging method in bellless blast furnace Expired - Fee Related JP3588877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28207695A JP3588877B2 (en) 1995-10-30 1995-10-30 Ore and coke charging method in bellless blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28207695A JP3588877B2 (en) 1995-10-30 1995-10-30 Ore and coke charging method in bellless blast furnace

Publications (2)

Publication Number Publication Date
JPH09125112A true JPH09125112A (en) 1997-05-13
JP3588877B2 JP3588877B2 (en) 2004-11-17

Family

ID=17647821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28207695A Expired - Fee Related JP3588877B2 (en) 1995-10-30 1995-10-30 Ore and coke charging method in bellless blast furnace

Country Status (1)

Country Link
JP (1) JP3588877B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030052726A (en) * 2001-12-21 2003-06-27 주식회사 포스코 Method for charging of mixture of nut coke and ore
JP2009062576A (en) * 2007-09-06 2009-03-26 Jfe Steel Kk Method and apparatus for charging raw material into blast furnace
JP2011137217A (en) * 2009-12-02 2011-07-14 Jfe Steel Corp Method for operating blast furnace
JP2013095970A (en) * 2011-11-01 2013-05-20 Jfe Steel Corp Method for operating blast furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030052726A (en) * 2001-12-21 2003-06-27 주식회사 포스코 Method for charging of mixture of nut coke and ore
JP2009062576A (en) * 2007-09-06 2009-03-26 Jfe Steel Kk Method and apparatus for charging raw material into blast furnace
JP2011137217A (en) * 2009-12-02 2011-07-14 Jfe Steel Corp Method for operating blast furnace
JP2013095970A (en) * 2011-11-01 2013-05-20 Jfe Steel Corp Method for operating blast furnace

Also Published As

Publication number Publication date
JP3588877B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
US7938883B2 (en) Method and apparatus for making metallic iron
EP1253207A1 (en) Method and facilities for metal smelting
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
BG60921B2 (en) Method and device for continuous steel casting
US20030061909A1 (en) Method and apparatus for making metallic iron
CN104302787B (en) Method to blast furnace charging feedstock
WO2013172045A1 (en) Method for charging starting material into blast furnace
JPH09125112A (en) Method for mixing and charging ore and coke into ball-less blast furnace
JP2002003910A (en) Method for operating blast furnace
JP3700457B2 (en) Blast furnace operation method
JP3700458B2 (en) Low Si hot metal manufacturing method
US20240167109A1 (en) Method for producing pig iron
JPH07305103A (en) Method for charging raw material into blast furnace
JP6950718B2 (en) How to charge raw materials for Bellless blast furnace
KR20030052726A (en) Method for charging of mixture of nut coke and ore
JPH06271908A (en) Method for charging raw material in multi-batches into bell-less blast furnace
JP3531464B2 (en) Method for producing sintered ore with low SiO2 content
RU2137844C1 (en) Method for production of cast iron and steel utilizing blast-furnace and steel-smelting equipment on metallurgical enterprise
KR20010011966A (en) Burden distribution control method in blast furnace by using coke
JPS5941402A (en) Operation of blast furnace
JPH11217605A (en) Method for charging charging material into blast furnace
JP2808343B2 (en) Blast furnace charging method
JP2864574B2 (en) Apparatus and method for producing hot metal
JP2000282108A (en) Operation of blast furnace
JPH11229008A (en) Method for charging raw material for blast furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040428

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040727

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040809

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees