JP3779815B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP3779815B2
JP3779815B2 JP10870398A JP10870398A JP3779815B2 JP 3779815 B2 JP3779815 B2 JP 3779815B2 JP 10870398 A JP10870398 A JP 10870398A JP 10870398 A JP10870398 A JP 10870398A JP 3779815 B2 JP3779815 B2 JP 3779815B2
Authority
JP
Japan
Prior art keywords
coke
furnace
blast furnace
ore
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10870398A
Other languages
Japanese (ja)
Other versions
JPH11286706A (en
Inventor
邦義 阿南
匡広 永田
就昭 緒方
正義 高尾
利弘 長根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10870398A priority Critical patent/JP3779815B2/en
Publication of JPH11286706A publication Critical patent/JPH11286706A/en
Application granted granted Critical
Publication of JP3779815B2 publication Critical patent/JP3779815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉の操業方法に関するものである。
【0002】
【従来の技術】
高炉操業において、高炉炉内半径方向の鉱石/コークス重量比(以下O/Cと示す)及び鉱石層の炉内垂直方向の昇温、還元進行を適正に維持し、融着帯形状、融着帯炉内垂直方向位置、つまり、融着帯の形状、高さ位置を適正に制御する事が高炉安定操業を図る上で重要である。
高炉炉下部の送風羽口より微粉炭を多量に吹き込む事は高炉炉内のO/C上昇を伴うことから炉内の通気性、通液性を阻害する原因となる。また、上記O/Cの上昇は、鉱石量に対する還元COガス量割合が低下すると共に鉱石降下速度上昇により装入物の炉内滞留時間短縮をまねき鉱石の昇温、還元進行を遅らせ安定した高炉操業を行う上で問題となる。
このため、高炉炉内半径方向のO/C分布調整手段として、ベル式高炉の場合には、ムーバブルアーマーによる装入軌跡の調整、ベルレス式高炉の場合には、旋回シュートによる装入位置調整が実施されている。また、鉱石層の炉内高さ方向の昇温、還元進行を適正に維持するための鉱石層内還元効率向上手段として、特開昭61−34109号公報に示されるように高炉内に鉱石層とコークス層とを交互に装入すると共に羽口より熱風を吹き込みつつ操業をするに際し、装入コークス合計量の5〜25%に相当する量のコークスを上記鉱石層中に介装コークス層として毎チャージ装入する方法がある。
【0003】
【発明が解決しようとする課題】
しかし、特開昭61−34109号公報は、高O/Cで操業している場合には、介装コークスを毎チャージ装入するために、1チャージ当たりの介装コークスの量が少なくならざるを得なく、装入物分布の制御性が低下して、目的とする部位への装入が困難になったり、高炉炉内降下中の還元反応によりコークスが消費されてしまい、高炉炉下部での通気性に寄与しなくなる場合が発生する問題があった。
本発明は、高O/Cの場合においても炉内中間部から中心部にかけての通気性、通液性を良好に確保することにより安定した操業を行うことを課題とする。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたものであり、その手段1は、コークス1、コークス2、鉱石1、鉱石2を1チャージとして順次繰り返し炉内に装入すると共に羽口より微粉炭を吹き込みつつ、鉱石/コークス重量比が4.5以上で高炉の操業を行う方法において、前記コークス1、コークス2、鉱石1、鉱石2を所定チャージ装入後、前記コークス1、コークス2、鉱石1を装入した後、1チャージ当たりのコークス重量の10〜50%の範囲のコークス3を高炉炉内半径方向中間部若しくは該高炉炉内半径方向中間部から中心部の範囲に装入し、前記鉱石2を高炉炉壁側に装入する高炉操業方法である。
上記手段においてさらに、手段2は、高炉シャフト部の高炉炉内半径方向のガス温度を求め、該高炉炉内半径方向のガス温度と予め設定したガス温度の目標値との温度差を高炉炉内半径方向にわたって求め、該高炉炉内半径方向の温度差より前記鉱石1と鉱石2のバッチ間に装入する前記コークス3の量を求め、更にこの求めたコークス3の量と、前記求めたガス温度が前記目標値を下回っている高炉炉内半径方向の部位に予め求めた前記コークス3の単独層が形成される量とにより、装入チャージ間隔を決定する高炉操業方法である。
尚、上記高炉炉壁側(炉壁側)とは図2、図3に示すように、炉口部における炉内半径方向炉壁側から炉内半径の5〜10%の部分であり、中心部(炉内中心部)とは、炉内半径方向の炉中心から5〜10%の部分である。高炉炉内半径方向中間部(炉内中間部)とは炉壁側と炉内中心部に挟まれた残された部分である。
【0005】
本発明者等がO/Cを高くして操業した結果、O/Cが4.5以上になると炉内半径方向の中間部から中心部にかけて局所的に通気性、通液性が極端に悪くなることが判明した。更に、この通気性、通液性を改善するためには、鉱石1、2間のコークス3(以下単に3Cと称す)単独層を形成する必要がある。しかし、上記特開昭61−34109号公報に提案のように3Cの量が少ない場合には、炉内に装入した3Cは次に装入する鉱石2によって崩され、鉱石2との混合層を形成してしまうために上記のように通気性、通液性の改善に寄与する働きが小さくなるため、出来る限り3Cの量は多くすることが好ましいことが判明した。
しかし、単にこの3Cを多くするとO/Cが4.5未満になるため、O/Cが4.5以上とするために3Cを数チャージ間隔で装入しても通気性、通液性を改善出来ることが判明した。即ち、3Cの装入量が多くなることにより、3Cの装入分布の制御性を向上させ、目的とする部位への装入を容易にし、しかも、次に装入する鉱石2により崩れずに残るコークス単独層を形成することにより、高炉炉下部までコークスが到達することを可能として、炉下部の通気性、通液性を十分に改善するものである。
そして、この1回に装入する3Cの量は、高炉シャフト上部の高炉内半径方向の予め設定されたガス温度の目標値(目標温度)と実際に測定された測定温度との温度差の分布から決定される。即ち、炉内中間部から中心部にかけて、前記測定温度が前記目標値を下回っている部位に3C単独層が形成される量とする。
更に、3Cを装入するチャージ間隔は、前記求めた1回に装入する3Cの量と前記測定温度が何度上昇すれば前記目標値に到達するか、つまり、1チャージ当たりに必要なコークスの量によって決定される。即ち、3Cの炉内での単独層を形成しかつその下回っている温度を補償できる量によって決定する。
【0006】
次に、3Cの装入位置は、炉内中間部において、測定温度が目標値を下回っている位置とすれば良い。即ち、炉内温度の低下は、鉱石の昇温遅れが発生している事を示すだけでなく、炉内通気性、通液性の悪化を示し、鉱石の還元が遅れている事も示しているので、測定温度が目標値より低下している部位に3C層を形成するように装入すれば良い。
また、3Cにより次に炉壁側に装入される鉱石2の流れ込みを抑制し、炉壁側に鉱石2を多く残すことが可能となり周辺流を抑制することができる。
本発明者らの経験によれば、3Cを特定の位置に安定的に装入し、かつ鉱石の混合していない3C単独層を形成するためには、3Cの量が1チャージ当たりのコークス重量の約10%以上が必要である。3Cの量が1チャージ当たりのコークス重量の約10%未満となった場合には、3Cの通気改善効果が著しく低下する。3Cの通気改善効果低下の理由は、3Cの量が少ないため装入物分布の制御性が低下し目的とする部位への装入が困難になったり、鉱石とコークスの混合層のみとなり高炉炉内降下中の還元反応によりコークスが消費されてしまい、高炉炉下部での通気性に寄与しなくなったためだと考えられる。従って、適正な位置に3C単独層を形成するためには、1チャージ当たりのコークス重量の約10%以上のコークスが必要である。また、3Cの量が1チャージ当たりのコークス量の50%を超えた場合、3Cにより極端に鉱石2の流れ込みが阻害され、過剰に炉内中間部から中心部にかけての通気性、通液性が向上するだけで、燃料比が向上してしまうためコスト的には好ましくない。
【0007】
【発明の実施の形態】
本発明の実施の形態を図1〜図4を参照して説明する。
図1中の高炉BFの炉頂部には炉内に堆積した装入物の高炉半径方向における表面形状を測定するプロフィール測定装置10を設置し、高炉シャフト上部には炉内半径方向(8点)のガス温度を測定するシャフト上部温度測定装置20を設置している。上記両測定装置10、20共に8時間間隔で測定を実施している。
また、各測定データを計算機CPUに取り込みデータ処理を実施する。この計算機CPUで処理したプロフィール測定装置10の測定データは表示装置CRTに図2、図3に示すような装入物表面形状として表示する。また、シャフト上部温度測定装置20の測定データと予め設定されたガス温度の目標値から各測定点における温度差、及び温度差の合計を計算した後、表示装置CRTに図4に示す様に目標値(●太実線)、測定温度(○細実線)の関係及び各点の温度差、温度差の合計、更には、最大温度差を表示する。
更に、計算機CPUに予め表1に示すような最大温度差及び前記温度差の合計と1チャージ当たりの必要コークス量の関係テーブルを設定しておき、このテーブルと前記計算した最大温度差及び前記温度差の合計を基に1チャージ当たりに装入される3Cの量を求め、この求めた1チャージ当たりの3C量と前記測定温度が前記目標値を下回っている部位に3C単独層が形成される量により装入チャージ間隔を算定する。
【0008】
【表1】

Figure 0003779815
【0009】
また、3Cの装入位置は、前記測定温度が前記目標値を下回り始めている部位、即ち、図4、5とも3ポイント部位の炉壁側に装入する。
そして、この計算機CPUで決定した1回に装入される3Cの量によりコークス槽の切り出し量を制御し、装入チャージ間隔により装入モードが決定され、3Cの装入位置により、ムーバブルアーマー又は旋回シュートを制御して、3Cを炉内に装入するものである。
更に、図4を参照しながら詳細に説明する。
O/Cが4.5以上で、コークス1(以下1Cと示す)、コークス2(以下2Cと示す)、鉱石1(以下1Oと示す)、鉱石2(以下2Oと示す)の4バッチ装入しつつ、送風羽口Tより微粉炭を吹き込んで操業を継続していると、図4に示すように炉内中間部の4ポイントから6ポイントの部分のガス温度が目標値より低くなると共に炉壁側の1ポイントから3ポイントの部分の温度が高くなる。
これは、炉内中間部の4ポイントから6ポイント部分に高O/C領域が形成されて通気性、通液性が悪化し、昇温、還元に遅れが生じ、融着帯の肥大化、融着帯下面低下が発生するため、融着帯が炉芯に近づき過ぎてしまい、炉内中間部の通気が悪化し、中心部へのガス流が阻害され、炉壁側のガス流が促進されてシャフト圧力変動が頻発し、これ以上のO/C上昇は不可能となる。
このため、目標値より低くなった炉内中間部の4ポイントから6ポイント部分の通気性、通液性の改善を行えば、周辺部のガス流の適正化が図れ、昇温、還元性が改善されることから、3Cの単独層が形成できるように前記炉内中間部の4ポイントから6ポイント部分に装入することが重要である。
【0010】
また、3Cの量を入れすぎた場合は、中心部のコークス量が増大して中心流が促進されると共に2Oによる周辺流抑制効果が大きくなってしまうからである。また、3Cの量が少なすぎると3Cの分布制御性が低下するばかりでなく、2Oによる炉内中心方向への流し込みによって3Cによる炉内通気性の改善が難しくなり3Cの効果が充分に発揮されない。尚、シャフト上部温度測定装置20は、炉壁側から炉内中心部を等間隔に8ポイントに分割して実施している。その測定ポイント中、1、2ポイントが炉壁側、3から6ポイントが炉内中間部、7、8ポイントが炉内中心部のデータである。
【0011】
【実施例】
本発明の実施例を図4、図5、表2、表3を参照しつつ、炉口径5.25m、内容積5000m3 級の大型高炉を用いた場合の例で説明する。
【0012】
【表2】
Figure 0003779815
【0013】
【表3】
Figure 0003779815
【0014】
表2の比較例1に示すような4バッチ装入において、1C、2C、1O、2Oを順次炉内に装入しつつ風量7000Nm3 /min、酸素富化量10000Nm3 /hrでO/Cが4.5の操業をした場合、図4に示すような実測温度(○細実線)分布となり、表2の比較例1に示すようにシャフト圧変動が頻発し、安定した操業ができない状態となるばかりでなく、炉体熱負荷も上昇させ炉損傷を早めてしまう。
そこで、図4から判る様に最大温度差が100℃であることから、この温度差を補償出来るコークス装入量は表1から0.50t/チャージであり、また、図4から判る様に温度差合計が55℃である事から、この温度差を補償出来るコークス装入量は表1から0.25t/チャージである。この最大温度差、温度差合計から決定されるコークス装入量が異なる場合には、コークス装入量の多い方を採用する。つまり、この際には0.50t/チャージを装入量とする。
【0015】
次に、図4から判るように3.5ポイントの部位(地点)から7ポイントの地点の温度が低下している事から、この3.5ポイント〜7ポイントにわたる範囲の部位、即ち、3.5ポイント幅に3Cの単独層を形成出来るコークス装入量を求める。これは、高炉の内容積、装入装置の形状等で異なる事から予め、例えば、3ポイント〜4ポイント間、4ポイント〜5ポイント間、5ポイント〜6ポイント間等の1つのポイント幅における3Cの単独層を形成出来る量を実機試験で求めておき、これを基に前記コークス装入量を決定する。本例高炉の場合では1つのポイント幅で3Cの単独層を形成出来る量は1.7tであることから、3.0ポイント幅×1.7t≒5tとなる。
そして、3Cを装入するチャージ間隔は5t÷0.50t/チャージ=10チャージと求められる。
これを基に、表2の本発明実施例1に示すように炉壁から1500mm(シャフト上部温度測定装置20で3ポイント)の位置に3Cを5t装入する5バッチ装入(1C、2C、1O、3C、2O)を10チャージ間隔で実施しつつ操業すると図4に示すような目標値(●太実線)を達成することができる。
【0016】
これにより実施例1は、炉内通気性、通液性が確保され、風量、酸素富化量の増加やO/Cの上昇が可能となり、風量7250Nm3 /min、酸素富化量12000Nm3 /hrでO/Cが4.6の操業を安定的に実施することができる。
これにより表2の操業結果に示すように比較例1に比べ炉体熱負荷の上昇、シャフト圧変動回数を抑制し、安価な微粉炭を多量に使用しながら燃料比を上昇させることなく、出銑量を増大させることができ、かつ溶銑品質を向上できる。
次に、表3の比較例2に示すような4バッチ装入において1C、2C、1O、2Oを炉壁側に装入しつつ風量7400Nm3 /min、酸素富化量16000Nm3 /hrでO/Cが5.0の操業を実施した場合、図5に示すような実測温度(○細実線)分布となり、表3の比較例2に示すようにシャフト圧変動が頻発し、安定した操業ができない状態となるばかりでなく、炉体熱負荷も上昇させ炉損傷を早めてしまう。
そこで、前記同様にして実測温度が目標値を下回っている部分、即ち、3ポイントの部位から8ポイントの部分(炉中心部)に装入する3C量、装入チャージ間隔を求め、この求めた値に従って、表3の本発明実施例2に示すように炉壁から1400mm(シャフト上部温度測定装置20で3ポイントのやや炉壁側)の部位に3Cを8t装入する5バッチ装入(1C、2C、1O、3C、2O)を8チャージ間隔で実施しつつ操業する。
これにより、図5に示すような目標値(●太実線)を達成することが出来、炉内通気性、通液性が確保され、風量、酸素富化量の増加やO/Cの上昇が可能となり、風量7800Nm3 /min、酸素富化量18000Nm3 /hrでO/Cが5.1の操業を安定的に実施することができる。
表3の操業結果に示すように発明実施例2は比較例2に比べ炉体熱負荷の上昇、シャフト圧変動回数を抑制し、安価な微粉炭を多量に使用しながら燃料比を上昇させることなく、出銑量を増大させることができ、かつ溶銑品質を向上できる。
【0017】
【発明の効果】
請求項1及び2記載の高炉操業方法は、高炉操業において、次のような効果を発揮する。
(1)大きな設備改造を伴うことなく、高炉炉内半径方向中間部から中心部にかけてのO/Cを適正に維持することができる。
(2)多量微粉炭吹き込み操業(高O/C操業)を実施しても安定操業の継続が可能となる。
(3)シャフト圧変動が激減し、炉況が安定することから、出銑量を増大することが可能となる。また、炉体熱負荷を軽減でき、炉体の寿命延長にも効果がある。
【図面の簡単な説明】
【図1】炉内断面図と測定装置配置図である。
【図2】5バッチ装入時の炉内鉱石とコークスの堆積模式図である。
【図3】5バッチ装入時の炉内鉱石とコークスの堆積模式図である。
【図4】シャフト上部温度パターンである。
【図5】シャフト上部温度パターンである。
【符号の説明】
10 プロフィール測定装置 20 シャフト上部温度測定装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a blast furnace.
[0002]
[Prior art]
In blast furnace operation, the ore / coke weight ratio in the radial direction in the blast furnace (hereinafter referred to as O / C), the temperature rise and reduction progress in the furnace vertical direction of the ore layer are properly maintained, the shape of the fusion zone, and the fusion In order to achieve stable operation of the blast furnace, it is important to properly control the position in the vertical direction in the furnace, that is, the shape and height position of the cohesive zone.
Blowing a large amount of pulverized coal from the blower tuyeres at the lower part of the blast furnace furnace causes an increase in O / C in the blast furnace furnace, and this impedes air permeability and liquid permeability in the furnace. In addition, the increase in O / C reduces the ratio of reduced CO gas to the amount of ore and shortens the residence time of the charge in the furnace by increasing the ore descending speed, thereby delaying the temperature rise and reduction of the ore and stabilizing the blast furnace. It becomes a problem in carrying out operations.
For this reason, as the O / C distribution adjusting means in the radial direction in the blast furnace, in the case of the bell type blast furnace, the charging trajectory is adjusted by a movable armor, and in the case of the bellless type blast furnace, the charging position is adjusted by a turning chute. It has been implemented. Further, as means for improving the reduction efficiency in the ore layer in order to properly maintain the temperature rise and reduction progress in the furnace height direction of the ore layer, as shown in JP-A-61-34109, the ore layer is provided in the blast furnace. And coke layers are alternately charged, and when operation is performed while blowing hot air from the tuyere, an amount of coke corresponding to 5 to 25% of the total amount of the charged coke is included in the ore layer as an intervening coke layer. There is a method of charging every charge.
[0003]
[Problems to be solved by the invention]
However, in Japanese Patent Application Laid-Open No. 61-34109, when operating at high O / C, the amount of intervening coke per charge must be reduced in order to charge intercalated coke every charge. The control of the distribution of the charge is reduced, making it difficult to charge the target part, or the coke is consumed due to the reduction reaction during the descent in the blast furnace furnace. There is a problem that the case where it does not contribute to the air permeability of the glass may occur.
An object of the present invention is to perform stable operation by ensuring good air permeability and liquid permeability from the middle part of the furnace to the center part even in the case of high O / C.
[0004]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-mentioned problems. The means 1 includes coke 1, coke 2, ore 1, and ore 2 that are sequentially charged into the furnace as one charge and pulverized coal from the tuyere. In a method of operating a blast furnace with an ore / coke weight ratio of 4.5 or more while blowing in, the coke 1, coke 2, ore 1 and ore 2 are charged with a predetermined charge, and then the coke 1, coke 2 and ore are charged. after charged with 1, was charged with coke 3 10-50% of the coke weight per charge in the range of the center from blast furnace radially intermediate portion or said high furnace furnace radially intermediate portion, This is a blast furnace operating method in which the ore 2 is charged into the blast furnace wall side.
Further, in the above means, means 2 obtains a gas temperature in the blast furnace radial direction of the blast furnace shaft portion, and calculates a temperature difference between the gas temperature in the radial direction in the blast furnace and a target value of a preset gas temperature. Obtained over the radial direction, the amount of the coke 3 charged between the ore 1 and the batch of ore 2 is obtained from the temperature difference in the radial direction in the blast furnace, and further, the obtained amount of coke 3 and the obtained gas In this blast furnace operating method , the charging charge interval is determined based on the amount of the single layer of the coke 3 that is obtained in advance in the radial direction in the blast furnace where the temperature is lower than the target value .
The blast furnace furnace wall side (furnace wall side) is a portion of 5-10% of the furnace radius from the furnace wall side in the furnace radial direction, as shown in FIGS. The portion (center portion in the furnace) is a portion of 5 to 10% from the center of the furnace in the radial direction of the furnace. The intermediate part in the radial direction in the blast furnace (the intermediate part in the furnace) is the remaining part sandwiched between the furnace wall side and the central part in the furnace.
[0005]
As a result of the present inventors operating with higher O / C, when O / C is 4.5 or more, the air permeability and liquid permeability are extremely poor locally from the middle to the center in the radial direction of the furnace. Turned out to be. Further, in order to improve the air permeability and liquid permeability, it is necessary to form a single layer of coke 3 (hereinafter simply referred to as 3C) between the ores 1 and 2. However, when the amount of 3C is small as proposed in the above-mentioned JP-A-61-34109, 3C charged into the furnace is broken by the ore 2 to be charged next, and mixed with the ore 2 Therefore, it has been found that it is preferable to increase the amount of 3C as much as possible because the action contributing to the improvement of air permeability and liquid permeability becomes small.
However, if this 3C is simply increased, the O / C becomes less than 4.5. Therefore, even if 3C is inserted at intervals of several charges in order to keep the O / C to be 4.5 or more, the air permeability and liquid permeability are improved. It turns out that it can be improved. That is, by increasing the amount of 3C charge, the controllability of the charge distribution of 3C is improved, the charge to the target part is facilitated, and the ore 2 to be charged next does not collapse. By forming the remaining coke single layer, the coke can reach the lower part of the blast furnace furnace, and the air permeability and liquid permeability at the lower part of the furnace are sufficiently improved.
The amount of 3C charged at one time is the distribution of the temperature difference between the preset gas temperature target value (target temperature) in the blast furnace radial direction above the blast furnace shaft and the actually measured measurement temperature. Determined from. That is, the amount is such that a 3C single layer is formed in a region where the measured temperature is lower than the target value from the middle to the center of the furnace.
In addition, the charge interval for charging 3C is determined as to how much the amount of 3C charged at one time and the measured temperature rise to reach the target value, that is, the coke required per charge. Determined by the amount. That is, it is determined by an amount capable of forming a single layer in a 3C furnace and compensating for the temperature below it.
[0006]
Next, the charging position of 3C may be a position where the measured temperature is lower than the target value in the middle part of the furnace. That is, a decrease in the furnace temperature not only indicates that the ore temperature rise is delayed, but also indicates that the furnace air permeability and liquid permeability are deteriorated, and that the reduction of the ore is delayed. Therefore, it is only necessary to insert the 3C layer in a portion where the measured temperature is lower than the target value.
Further, the flow of the ore 2 charged next to the furnace wall side by 3C can be suppressed, and a large amount of the ore 2 can be left on the furnace wall side, so that the peripheral flow can be suppressed.
According to the experience of the present inventors, in order to stably charge 3C at a specific position and form a 3C single layer not mixed with ore, the amount of 3C is the coke weight per charge. About 10% or more is required. When the amount of 3C is less than about 10% of the weight of coke per charge, the effect of improving airflow of 3C is significantly reduced. The reason for the reduction of the 3C ventilation improvement effect is that the amount of 3C is small, so the controllability of the charge distribution is reduced, making it difficult to charge the target part, or only the mixed layer of ore and coke is used in the blast furnace This is thought to be because coke was consumed by the reduction reaction during the inner descent and no longer contributed to the air permeability at the bottom of the blast furnace. Therefore, in order to form the 3C single layer at an appropriate position, coke of about 10% or more of the coke weight per charge is necessary. In addition, when the amount of 3C exceeds 50% of the amount of coke per charge, the flow of ore 2 is extremely inhibited by 3C, and the air permeability and liquid permeability from the middle part of the furnace to the center part are excessive. Since the fuel ratio is improved only by improving, it is not preferable in terms of cost.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
A profile measuring device 10 is installed at the top of the blast furnace BF in FIG. 1 to measure the surface shape of the charge deposited in the furnace in the blast furnace radial direction. A shaft upper temperature measuring device 20 for measuring the gas temperature is installed. Both the measurement devices 10 and 20 perform measurement at intervals of 8 hours.
Each measurement data is taken into the computer CPU and data processing is performed. The measurement data of the profile measuring device 10 processed by the computer CPU is displayed on the display device CRT as the charge surface shape as shown in FIGS. Further, after calculating the temperature difference at each measurement point and the sum of the temperature differences from the measurement data of the shaft upper temperature measurement device 20 and the target value of the preset gas temperature, the target is displayed on the display device CRT as shown in FIG. The relationship between the value (● thick solid line), the measured temperature (○ thin solid line), the temperature difference at each point, the sum of the temperature differences, and the maximum temperature difference are displayed.
Further, a relationship table of the maximum temperature difference and the total of the temperature differences and the required coke amount per charge as shown in Table 1 is set in advance in the computer CPU, and this table and the calculated maximum temperature difference and the temperature are set. The amount of 3C charged per charge is calculated based on the sum of the differences, and a 3C single layer is formed at a site where the calculated 3C amount per charge and the measured temperature are below the target value. The charging charge interval is calculated according to the quantity.
[0008]
[Table 1]
Figure 0003779815
[0009]
In addition, the charging position of 3C is charged at the portion where the measured temperature starts to fall below the target value, that is, the furnace wall side of the three-point portion in both FIGS.
Then, the amount of cut out of the coke tank is controlled by the amount of 3C charged at a time determined by the computer CPU, the charging mode is determined by the charging charge interval, and the mobile armor or The turning chute is controlled to charge 3C into the furnace.
Furthermore, it demonstrates in detail, referring FIG.
Four batch charging of O / C 4.5 or more, coke 1 (hereinafter referred to as 1C), coke 2 (hereinafter referred to as 2C), ore 1 (hereinafter referred to as 1O), ore 2 (hereinafter referred to as 2O) However, when pulverized coal is blown in from the blower tuyere T and the operation is continued, as shown in FIG. 4, the gas temperature at the 4 to 6 point portion in the middle of the furnace becomes lower than the target value and the furnace. The temperature of the part from 1 point on the wall side to 3 points increases.
This is because a high O / C region is formed from 4 to 6 points in the middle part of the furnace, the air permeability and liquid permeability are deteriorated, the temperature rise and reduction are delayed, the cohesive zone is enlarged, Because the lower surface of the cohesive zone is lowered, the cohesive zone gets too close to the furnace core, the ventilation in the middle of the furnace deteriorates, the gas flow to the center is obstructed, and the gas flow on the furnace wall side is promoted As a result, the shaft pressure fluctuates frequently, making it impossible to increase the O / C further.
For this reason, if the air permeability and liquid permeability are improved from 4 to 6 points in the middle part of the furnace, which is lower than the target value, the gas flow in the peripheral part can be optimized, and the temperature rise and reducibility can be improved. From the point of view of improvement, it is important to insert from 4 to 6 points in the middle part of the furnace so that a 3C single layer can be formed.
[0010]
In addition, when the amount of 3C is excessively added, the amount of coke at the center portion is increased, the center flow is promoted, and the peripheral flow suppression effect by 2O is increased. In addition, if the amount of 3C is too small, not only the distribution controllability of 3C is lowered, but also the 3C pouring toward the center of the furnace makes it difficult to improve the air permeability in the furnace by 3C, and the effect of 3C is not fully exhibited. . The shaft upper temperature measuring device 20 is implemented by dividing the center of the furnace into 8 points at equal intervals from the furnace wall side. Among the measurement points, 1 and 2 points are data on the furnace wall side, 3 to 6 points are data in the middle of the furnace, and 7 and 8 points are data in the center of the furnace.
[0011]
【Example】
Embodiments of the present invention will be described with reference to FIGS. 4, 5, 2, and 3, using an example in which a large blast furnace having a furnace diameter of 5.25 m and an internal volume of 5000 m 3 is used.
[0012]
[Table 2]
Figure 0003779815
[0013]
[Table 3]
Figure 0003779815
[0014]
In 4-batch charging as shown in Comparative Example 1 of Table 2, 1C, 2C, 1O, and 2O were sequentially charged into the furnace while the air volume was 7000 Nm 3 / min and the oxygen enrichment was 10000 Nm 3 / hr. When the operation is 4.5, the measured temperature (○ thin solid line) distribution as shown in FIG. 4 is obtained, the shaft pressure fluctuates frequently as shown in Comparative Example 1 of Table 2, and the stable operation cannot be performed. In addition to this, the furnace heat load is increased and the furnace damage is accelerated.
Therefore, as can be seen from FIG. 4, the maximum temperature difference is 100 ° C., so the amount of coke charged that can compensate for this temperature difference is 0.50 t / charge from Table 1, and as can be seen from FIG. Since the total difference is 55 ° C., the amount of coke charged that can compensate for this temperature difference is 0.25 t / charge from Table 1. If the coke charging amounts determined from the maximum temperature difference and the total temperature difference are different, the one with the larger coke charging amount is adopted. That is, in this case, 0.50 t / charge is set as the charging amount.
[0015]
Next, as can be seen from FIG. 4, since the temperature at the point of 7 points is lowered from the point (point) of 3.5 points, the region in the range from 3.5 points to 7 points, that is, 3. The coke charging amount that can form a 3C single layer in a 5-point width is determined. Since this differs depending on the internal volume of the blast furnace, the shape of the charging device, etc., for example, 3C in one point width such as 3 points to 4 points, 4 points to 5 points, 5 points to 6 points, etc. The amount capable of forming a single layer is determined by an actual machine test, and the amount of coke charged is determined based on this. In the case of this example blast furnace, the amount of 3C single layer that can be formed with one point width is 1.7 t, so 3.0 point width × 1.7 t≈5 t.
The charge interval for charging 3C is calculated as 5t ÷ 0.50t / charge = 10 charges.
Based on this, as shown in Example 2 of the present invention in Table 2, 5 batch charging (1C, 2C, 3C) is charged at a position of 1500 mm from the furnace wall (3 points at the shaft upper temperature measuring device 20) for 5t. When the operation is carried out while 10O, 3C, 2O) are carried out at intervals of 10 charges, a target value (● bold solid line) as shown in FIG. 4 can be achieved.
[0016]
Thus, in Example 1, the air permeability and liquid permeability in the furnace are ensured, and the air volume, the oxygen enrichment amount and the O / C can be increased, and the air volume is 7250 Nm 3 / min, the oxygen enrichment amount is 12000 Nm 3 / It is possible to stably carry out an operation with an O / C of 4.6 at hr.
As a result, as shown in the operation results in Table 2, compared with Comparative Example 1, the increase in the furnace heat load and the number of shaft pressure fluctuations are suppressed, and a large amount of inexpensive pulverized coal is used without increasing the fuel ratio. The amount of hot metal can be increased and the quality of hot metal can be improved.
Next, in the 4-batch charging as shown in Comparative Example 2 in Table 3, the air volume was 7400 Nm 3 / min and the oxygen enrichment amount was 16000 Nm 3 / hr while charging 1 C, 2 C, 1 O, 2 O to the furnace wall side. When the operation of / C is 5.0, the measured temperature (○ thin solid line) distribution as shown in FIG. 5 is obtained, the shaft pressure fluctuates frequently as shown in Comparative Example 2 of Table 3, and stable operation is achieved. Not only will this be impossible, but the furnace heat load will also increase, leading to faster furnace damage.
Therefore, in the same manner as described above, the amount of 3C charged from the portion where the measured temperature is lower than the target value, that is, the portion of 3 points to the portion of 8 points (furnace center), and the charging interval are obtained. According to the value, as shown in Example 2 of the present invention in Table 3, 5 batch charging (1C) of charging 8 tons of 3C into a portion 1400 mm from the furnace wall (3 points slightly on the furnace wall side of the shaft upper temperature measuring device 20) 2C, 1O, 3C, 2O) at 8 charge intervals.
As a result, the target value (● thick solid line) as shown in FIG. 5 can be achieved, and the air permeability and liquid permeability in the furnace are ensured, and the increase in the air volume and oxygen enrichment and the increase in O / C are achieved. It becomes possible, and an operation with an O / C of 5.1 at an air volume of 7800 Nm 3 / min and an oxygen enrichment of 18000 Nm 3 / hr can be stably performed.
As shown in the operation results in Table 3, Invention Example 2 suppresses the increase in the furnace heat load and the number of shaft pressure fluctuations compared to Comparative Example 2, and increases the fuel ratio while using a large amount of inexpensive pulverized coal. Therefore, the amount of hot metal can be increased and the quality of the hot metal can be improved.
[0017]
【The invention's effect】
The blast furnace operation method according to claims 1 and 2 exhibits the following effects in blast furnace operation.
(1) The O / C from the middle part in the radial direction in the blast furnace furnace to the center part can be properly maintained without any major equipment modification.
(2) Even if a large amount of pulverized coal injection operation (high O / C operation) is performed, stable operation can be continued.
(3) Shaft pressure fluctuations are drastically reduced and the furnace conditions are stabilized, so that the amount of tapping can be increased. In addition, the heat load of the furnace body can be reduced, and the life of the furnace body can be extended.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view inside a furnace and a layout diagram of measuring devices.
FIG. 2 is a schematic diagram of deposition of ore and coke in the furnace at the time of charging 5 batches.
FIG. 3 is a schematic diagram of the deposition of in-furnace ore and coke at the time of charging 5 batches.
FIG. 4 is a shaft upper part temperature pattern.
FIG. 5 is a shaft upper part temperature pattern.
[Explanation of symbols]
10 Profile measuring device 20 Shaft upper temperature measuring device

Claims (2)

コークス1、コークス2、鉱石1、鉱石2を1チャージとして順次繰り返し炉内に装入すると共に羽口より微粉炭を吹き込みつつ、鉱石/コークス重量比が4.5以上で高炉の操業を行う方法において、前記コークス1、コークス2、鉱石1、鉱石2を所定チャージ装入後、前記コークス1、コークス2、鉱石1を装入した後、1チャージ当たりのコークス重量の10〜50%の範囲のコークス3を高炉炉内半径方向中間部若しくは該高炉炉内半径方向中間部から中心部の範囲に装入し、前記鉱石2を高炉炉壁側に装入することを特徴とする高炉操業方法。A method of operating a blast furnace with an ore / coke weight ratio of 4.5 or more while repeatedly charging the coke 1, coke 2, ore 1 and ore 2 into the furnace in sequence as one charge and blowing pulverized coal from the tuyere In the above, after charging the coke 1, coke 2, ore 1, ore 2 and charging the coke 1, coke 2, ore 1 in a range of 10 to 50% of the coke weight per charge . A blast furnace operating method, wherein the coke 3 is charged in an intermediate portion in the radial direction in the blast furnace or in a range from the intermediate portion in the radial direction in the blast furnace to the central portion , and the ore 2 is charged in the blast furnace wall side. 高炉シャフト部の高炉炉内半径方向のガス温度を求め、該高炉炉内半径方向のガス温度と予め設定したガス温度の目標値との温度差を高炉炉内半径方向にわたって求め、該高炉炉内半径方向の温度差より前記鉱石1と鉱石2のバッチ間に装入する前記コークス3の量を求め、更にこの求めたコークス3の量と、前記求めたガス温度が前記目標値を下回っている高炉炉内半径方向の部位に予め求めた前記コークス3の単独層が形成される量とにより、装入チャージ間隔を決定することを特徴とする請求項1記載の高炉操業方法。The gas temperature in the blast furnace radial direction of the blast furnace shaft portion is obtained, the temperature difference between the gas temperature in the blast furnace radial direction and the target value of the preset gas temperature is obtained over the radial direction in the blast furnace, The amount of the coke 3 charged between the batches of the ore 1 and the ore 2 is obtained from the temperature difference in the radial direction, and the obtained amount of coke 3 and the obtained gas temperature are below the target value. The blast furnace operating method according to claim 1 , wherein the charging charge interval is determined based on the amount of the single layer of the coke 3 that is obtained in advance in a radial direction in the blast furnace .
JP10870398A 1998-04-02 1998-04-02 Blast furnace operation method Expired - Lifetime JP3779815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10870398A JP3779815B2 (en) 1998-04-02 1998-04-02 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10870398A JP3779815B2 (en) 1998-04-02 1998-04-02 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH11286706A JPH11286706A (en) 1999-10-19
JP3779815B2 true JP3779815B2 (en) 2006-05-31

Family

ID=14491489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10870398A Expired - Lifetime JP3779815B2 (en) 1998-04-02 1998-04-02 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3779815B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022157040A (en) * 2021-03-31 2022-10-14 株式会社神戸製鋼所 Pig iron production method
CN116875749A (en) * 2023-08-10 2023-10-13 广东中南钢铁股份有限公司 Blast furnace sliding material heat supplementing method, device, equipment and storage medium

Also Published As

Publication number Publication date
JPH11286706A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
EP2857529A1 (en) Method for charging raw material into bell-less blast furnace
JP2004107794A (en) Method for charging raw material into bell-less blast furnace
EP2851437B1 (en) Method for loading raw material into blast furnace
JPS63153385A (en) Method and system of operating vertical type furnace
JP3779815B2 (en) Blast furnace operation method
JP3975692B2 (en) Distribution chute structure of bellless type furnace top charging equipment for blast furnace.
JP2945820B2 (en) Blast furnace charge distribution control method
JP3608485B2 (en) Raw material charging method in bell-less blast furnace
JP3700457B2 (en) Blast furnace operation method
JP2000256712A (en) Method for controlling distribution of charged material in furnace opening part of blast furnace
JPH07305103A (en) Method for charging raw material into blast furnace
EP4317462A1 (en) Pig iron production method
JP7180045B2 (en) Method for using raw material containing metallic iron containing Zn
JP3700458B2 (en) Low Si hot metal manufacturing method
JP3835041B2 (en) Blast furnace raw material charging method
JP2021121689A (en) Method for estimating amount of ore layer collapse in bell-armor type blast furnace
JP2022047208A (en) Method for charging raw material to blast furnace
JP2000199005A (en) Method for controlling center gas flow in blast furnace
JP2004204274A (en) Method for charging raw material into blast furnace
JPS6314808A (en) Raw material charging method for bell-less type blast furnace
JP2002097505A (en) Blast furnace operating method
JP2002020810A (en) Blast furnace operating method
JP4244340B2 (en) Coke charging method to blast furnace
JP4941122B2 (en) Blast furnace operation method
JPH0841511A (en) Control of blast furnace and device therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

EXPY Cancellation because of completion of term