JPH0680165B2 - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JPH0680165B2
JPH0680165B2 JP4620789A JP4620789A JPH0680165B2 JP H0680165 B2 JPH0680165 B2 JP H0680165B2 JP 4620789 A JP4620789 A JP 4620789A JP 4620789 A JP4620789 A JP 4620789A JP H0680165 B2 JPH0680165 B2 JP H0680165B2
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
terrace
gas flow
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4620789A
Other languages
Japanese (ja)
Other versions
JPH02225607A (en
Inventor
一成 山口
公一 山田
繁 天野
一元 柿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4620789A priority Critical patent/JPH0680165B2/en
Publication of JPH02225607A publication Critical patent/JPH02225607A/en
Publication of JPH0680165B2 publication Critical patent/JPH0680165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、内容積4000m3を超える高炉の操業方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a method for operating a blast furnace having an internal volume of more than 4000 m 3 .

(従来の技術) 一般に高炉操業において、その装入物分布調整は、炉内
のガス流分布を制御する手段として操業アクションの重
要な位置を占めている。
(Prior Art) Generally, in the operation of a blast furnace, the adjustment of the distribution of the charged material occupies an important position in the operation action as a means for controlling the gas flow distribution in the furnace.

近年、特にベルレス装入装置および連続駆動型ムーバブ
ルアーマー等の導入により、装入物分布に対する自由度
が向上し、炉内半径方向任意の装入位置にコークスおよ
び鉱石が装入できるようになり、従来とは異なる装入物
堆積形状を作り出すことが可能となった。
In recent years, especially with the introduction of a bellless charging device and a continuous drive type movable armor, the degree of freedom with respect to the distribution of the charging is improved, and coke and ore can be charged at any charging position in the furnace radial direction. It became possible to create a different charge deposit shape than before.

また、μ波プロフィールメータ、層厚計等の使用によ
り、装入物堆積形状の情報が細部まで手軽に入手できる
ようになり、炉内ガス流の変化に対応した堆積形状が把
握できるようになってきている。
In addition, by using a μ-wave profile meter, layer thickness gauge, etc., it becomes possible to easily obtain detailed information on the deposition shape of the charge, and to understand the deposition shape corresponding to changes in the gas flow in the furnace. Is coming.

これらの技術的背景により、高炉操業においては、操業
状態と装入物堆積形状とを比較することにより、安定し
た高炉操業を維持することが可能となった。
From these technical backgrounds, in the blast furnace operation, it became possible to maintain a stable blast furnace operation by comparing the operation state and the charge deposition shape.

このような考えに基づく例としては、特開昭59-50102号
公報に、炉内における装入物の炉半径方向における堆積
層を、炉内壁から山部までの距離をL、炉中心部側の装
入物層堆積斜面の堆積角をθ1、炉壁側の装入物層堆積
面の堆積角をθ2とするとき、L:0.5〜1.5mかつコークス
層のθ1:25°〜35°でθ2:±10°以内、鉱石層のθ1:2
0°〜30°でθ2:±10°以内となるように管理すること
により目標ガス流分布となる炉内堆積形状を維持するこ
とができるという開示がある。
As an example based on such an idea, Japanese Patent Application Laid-Open No. 59-50102 discloses a deposit layer in the furnace in the radial direction of the furnace, in which the distance from the inner wall of the furnace to the mountain portion is L, and the furnace center side. Where the deposition angle of the charging layer deposition slope is θ 1 and the deposition angle of the charging layer deposition surface on the furnace wall side is θ 2 , L: 0.5 to 1.5 m and coke layer θ 1 : 25 ° to Θ 2 at 35 °: Within ± 10 °, θ 1 : 2 of ore layer
There is a disclosure that it is possible to maintain the in-reactor deposition shape having the target gas flow distribution by controlling so that θ 2 is within ± 10 ° at 0 ° to 30 °.

一方、装入原料を粒度別に分割し、細粒原料を炉周辺部
に装入することは周知の操業方法であり、例えば、特開
昭55-62106号、特開昭57-134503号の各公報には、装入
原料を粒度別に分割し、細粒原料を炉周辺部に装入する
ことによりガス利用率の向上あるいは低〔Si〕銑を製造
する方法が提案されている。
On the other hand, it is a well-known operating method to divide the charging raw material by the particle size and charging the fine particle raw material to the peripheral portion of the furnace, for example, JP-A-55-62106 and JP-A-57-134503. The publication proposes a method of improving the gas utilization rate or producing low [Si] pig iron by dividing the charged raw material into particles according to the particle size and charging the fine particle raw material into the periphery of the furnace.

(発明が解決しようとする課題) 前述した特開昭59-50102号公報には、炉内装入原料の堆
積形状を所定範囲内に管理すること、特に炉内壁から山
部までの距離Lを0.5〜1.5mの範囲内に管理することに
よって安定した高炉操業を維持できるとしているが、本
発明者らはコークスの堆積形状に着目して実験を行った
結果、特開昭59-50102号公報に開示された上記範囲内に
は高炉の安定操業が可能となる領域は存在しないことを
知見した。
(Problems to be Solved by the Invention) In the above-mentioned Japanese Patent Laid-Open No. 59-50102, it is necessary to control the deposition shape of the raw material for the furnace interior within a predetermined range, and particularly to set the distance L from the inner wall of the furnace to the crest portion to 0.5. Although it is said that stable blast furnace operation can be maintained by controlling within a range of ~ 1.5 m, the present inventors conducted experiments focusing on the coke deposition shape, and disclosed in JP-A-59-50102. It was found that there is no region within the disclosed range where stable operation of the blast furnace is possible.

即ち、第7図に示すようにLが0.5〜1.5mの範囲では、
コークスの傾斜角θ1が35°以上となってしまいコーク
ス堆積状態が不安定となり、指尺変動が発生することを
突止めた。
That is, as shown in FIG. 7, when L is in the range of 0.5 to 1.5 m,
We found that the inclination angle θ 1 of the coke became 35 ° or more and the coke accumulation state became unstable, and the finger scale fluctuation occurred.

一方、細粒原料を高炉周辺部に装入する高炉操業におい
ては、細粒原料の堆積状態が安定せず、細粒原料が炉中
心部へ流れ込んだ場合には、中心ガス流を極端に悪化さ
せて通気阻害を発生したり、細粒原料を1箇所に堆積し
た場合は未還元、未溶融鉱石の炉下部への降下を生じ、
操業変動を引き起こす可能性がある。従って細粒原料は
炉周辺部に広く薄く装入することは望ましいが、従来法
では、このような装入物形状を形成するのに必要な堆積
形状を提示した知見はない。
On the other hand, in the blast furnace operation in which the fine-grain raw material is charged into the periphery of the blast furnace, the state of deposition of the fine-grain raw material is not stable, and when the fine-grain raw material flows into the center of the furnace, the central gas flow is extremely deteriorated. To cause aeration blockage, or when fine-grained raw material is deposited in one place, unreduced or unmelted ore drops to the lower part of the furnace,
May cause operational fluctuations. Therefore, it is desirable that the fine-grain raw material is widely and thinly charged into the peripheral portion of the furnace, but the conventional method has no knowledge that the deposition shape required to form such a charge shape is presented.

(課題を解決するための手段) 本発明は、炉容の大きさによって装入物堆積形状とガス
流分布の関係が異なるものと考え、高炉炉内におけるガ
ス流分布を定量的に評価し、それと対応する装入物堆積
形状との関係を明確にすることにより高炉の安定操業、
言い換えれば目標とするガス流分布を達成できる堆積形
状を与えること、および細粒原料を炉周辺部に安定的に
堆積しうる装入物の堆積形状を与え、安定した高炉操業
を可能ならしめることを目的とするものであって、 (1)内容積4000m3を超える高炉炉内のガス流れを管理
しながら高炉操業を行う方法において、高炉炉内におけ
るコークスの堆積状況を、炉中心から炉壁へ向かって体
積物表面の傾斜角が15度未満となる付近より炉壁までを
テラスとし、テラスより炉中心側の斜面の延長線とテラ
スの堆積面積の延長線との交点を肩部とし、炉壁から肩
部までの距離をRとするとき、Rを1.5mを超えるように
管理することを特徴とする高炉操業法、 (2)内容積4000m3を超える高炉炉内のガス流れを管理
しながら高炉操業を行う方法において、高炉炉内におけ
るコークス及び鉱石の堆積状況を、炉中心から炉壁へ向
かって体積物表面の傾斜角が15度未満となる付近より炉
壁までをテラスとし、テラスより炉中心側の斜面の延長
線とテラスの堆積面積の延長線との交点を肩部とし、炉
壁から肩部間での距離をRとするとき、Rを1.5mを超え
るように管理すると共に、鉱石を粒度別に分割して細粒
鉱石を炉周辺部に装入することを特徴とする高炉操業
法、 を要旨とするものである。
(Means for Solving the Problem) The present invention considers that the relationship between the charge deposition shape and the gas flow distribution differs depending on the size of the furnace volume, and quantitatively evaluates the gas flow distribution in the blast furnace, Stable operation of the blast furnace by clarifying the relationship between it and the corresponding charge deposition shape,
In other words, to give a deposition shape that can achieve the target gas flow distribution, and to give a deposition shape of the charge that can stably deposit the fine-grained raw material in the periphery of the furnace to enable stable blast furnace operation. (1) In a method of operating a blast furnace while controlling the gas flow in the blast furnace with an internal volume of more than 4000 m 3 , the state of coke deposition in the blast furnace is measured from the center of the furnace wall to the furnace wall. Toward the furnace wall from the vicinity where the inclination angle of the volume surface becomes less than 15 degrees toward the terrace, with the shoulder of the intersection of the extension line of the slope on the furnace center side of the terrace and the extension line of the deposition area of the terrace, When the distance from the furnace wall to the shoulder is R, the blast furnace operation method is characterized by managing R so that it exceeds 1.5 m. (2) Managing the gas flow in the blast furnace with an internal volume of more than 4000 m 3. However, in the method of operating the blast furnace, Regarding the state of coke and ore deposits in the furnace, the slope extends from the center of the furnace toward the furnace wall to the furnace wall, where the slope of the volume surface is less than 15 degrees from the furnace center to the furnace wall. Let the shoulder be the intersection of the line and the extension of the accumulated area of the terrace, and let the distance from the furnace wall to the shoulder be R, manage R so that it exceeds 1.5 m, and divide the ore by grain size. The blast furnace operating method is characterized by charging fine grained ore into the periphery of the furnace.

以下図面に基づいて本発明を詳細に説明する。The present invention will be described in detail below with reference to the drawings.

一般に、高炉操業は、炉内のガス流分布に支配され、そ
の最適ポイントで操業を維持することが長期安定操業に
つながる。
Generally, blast furnace operation is governed by gas flow distribution in the furnace, and maintaining operation at the optimum point leads to long-term stable operation.

炉内半径方向のガス流れを知るための手段として、シャ
フトゾンデ等による半径方向ガス成分を測定する装置が
あり、その測定データーより炉内半径方向の還元率分布
が計算でき、炉内各ポイントのガス流速分布が算出でき
る。
As a means to know the gas flow in the furnace radial direction, there is a device that measures the radial gas component by a shaft sonde, etc., and the reduction rate distribution in the furnace radial direction can be calculated from the measurement data, and each point in the furnace can be calculated. The gas flow velocity distribution can be calculated.

炉内半径方向に3分割した同心円で区画される各部位を
流れるガス流を、それぞれ中心ガス流分布、中間ガス流
分布および周辺ガス流分布とし、内容積の異なる高炉の
データーを第1図のように三角図に整理した結果、高炉
操業の安定しているガス流分布は、中心ガス流分布が25
〜35%、中間ガス流分布が30±2%、周辺ガス流分布が
35〜45%の範囲にあることがわかった。
The gas flows flowing through each part divided by concentric circles divided in three in the radial direction of the furnace are the central gas flow distribution, the intermediate gas flow distribution, and the peripheral gas flow distribution, and the data of the blast furnace with different internal volumes are shown in FIG. As a result of arranging in a triangular diagram like this, the stable gas flow distribution in blast furnace operation is
~ 35%, intermediate gas flow distribution is 30 ± 2%, peripheral gas flow distribution is
It was found to be in the range of 35-45%.

この中で特に中間ガス流分布の安定範囲が狭く、これを
達成することが操業安定化の絶対条件となる。すなわ
ち、中間ガス流の不足は、高炉中間部の通気抵抗が大き
く、原料の還元および昇温が悪いことを示し、この部分
が軟化融着帯まで降下した場合、溶融滴下遅れによる融
着帯の肥大化が生じ、通気の悪化および装入物降下の乱
れを発生する。逆に中間ガス流の過多は、必然的に中心
部および周辺部のガス流れ不足となり、炉芯温度の低下
あるいは炉下部不活性状態などのトラブルの原因とな
る。
Among these, the stable range of the intermediate gas flow distribution is particularly narrow, and achieving this is an absolute condition for stabilizing the operation. That is, the shortage of the intermediate gas flow indicates that the ventilation resistance in the middle part of the blast furnace is large and the reduction and temperature rise of the raw material are poor. It causes bloat, deteriorates ventilation, and disturbs dropping of charge. On the contrary, an excessive amount of the intermediate gas flow inevitably causes a shortage of the gas flow in the central portion and the peripheral portion, which causes a trouble such as a decrease in the core temperature or an inactive state in the lower part of the furnace.

次に、装入物堆積形状をガス流分布と比較するため、第
2図に示すように、炉中心から炉壁へ向かって堆積物表
面の傾斜角が15°未満となる付近より炉壁までを“テラ
ス”と呼び、その長さを定義した。すなわち、テラスよ
り炉中心側の斜面の延長線をa、テラスの堆積表面の延
長線をbとしたとき、そのaとbが交わる交点と炉壁と
の距離をテラス長さRとした。また、a線と水平線との
角度を傾斜角θと定義した。
Next, in order to compare the charge deposition shape with the gas flow distribution, as shown in Fig. 2, from the center of the furnace to the furnace wall, the slope of the surface of the deposit is less than 15 ° to the furnace wall. Is called "terrace" and its length is defined. That is, when the extension line of the slope on the furnace center side of the terrace is a and the extension line of the deposition surface of the terrace is b, the distance between the intersection of a and b and the furnace wall was defined as the terrace length R. Further, the angle between the line a and the horizontal line is defined as the inclination angle θ.

内容積4000m3を超える高炉炉内の中間ガス流分布とコー
クステラス長さとの関係を第3図に示す。同図に示すよ
うにテラス長さが長くなるほど中間ガス流分布の増加が
認められるが、これはテラス長さが長くなるほどコーク
スの傾斜角が減少しコークスの堆積形状が安定するた
め、原料装入によるコークスの崩し量が減少し、その結
果、中間部のOre/Cokeが減少するためである。
Figure 3 shows the relationship between the coke terrace length and the intermediate gas flow distribution in the blast furnace with an internal volume of more than 4000 m 3 . As shown in the figure, as the terrace length increases, the distribution of the intermediate gas flow increases.However, as the terrace length increases, the coke inclination angle decreases and the coke deposit shape stabilizes. This is because the amount of coke breakage due to is reduced, and as a result, Ore / Coke in the middle portion is reduced.

第3図より中間流30%を確保するためには、コークステ
ラス長さが1.5mを超えるようなコークスの堆積形状が必
要であることが判明した。
From Fig. 3, it was found that a coke deposit shape with a coke terrace length of more than 1.5 m is necessary to secure 30% of the intermediate flow.

また、細粒原料を高炉周辺部に装入する方法において、
細粒原料は、第4図に示すように、その使用量を変化さ
せることによって、周辺部のコークスおよび原料の層厚
を変えることなく周辺のガス流分布を調整でき、前述し
た目標ガス流分布維持に有効な手段であることがわかっ
た。
In addition, in the method of charging fine grain raw material into the peripheral portion of the blast furnace,
As shown in FIG. 4, by changing the amount of the fine-grained raw material used, the peripheral gas flow distribution can be adjusted without changing the peripheral coke and the raw material layer thickness. It turned out to be an effective means of maintenance.

また、表1に示すような粗粒と細粒との平均粒度差ΔDp
が4〜15mmあるような細粒原料を使用した場合、第5図
に示すように、細粒原料を含んだ1回あたりの装入物量
が、原料全体の1回あたりの総装入量の16%以下となる
とき、安定操業領域となる。
In addition, the average particle size difference ΔDp between the coarse particles and the fine particles as shown in Table 1.
When a fine-grain raw material having a diameter of 4 to 15 mm is used, as shown in FIG. 5, the amount of the charge per one time including the fine-grain raw material is When it is less than 16%, it becomes a stable operation area.

また、以上のような方法にて細粒原料を使用する場合、
細粒原料を周辺部に安定的に堆積させるためには、1.5m
を超える鉱石(粗粒原料)のテラス長さが必要であるこ
とも判明した。
Also, when using a fine grain raw material by the above method,
1.5m for stable deposition of fine-grained material on the periphery
It was also found that a terrace length of ore (coarse-grained raw material) exceeding 10 is necessary.

(実施例) 内容積4063m3の大型高炉における本発明の実施例を第6
図に示す。
(Example) Example 6 of the present invention in a large blast furnace having an internal volume of 4063 m 3
Shown in the figure.

同図に示すように、コークスおよび鉱石(粗粒原料)の
テラス長さを変化させると指尺乱れ回数が変化するが、
コークステラスはその長さが1.5mを超える時点より指尺
乱れ回数が顕著に減少し、安定操業の継続が可能となっ
た。コークスおよび鉱石(粗粒原料)のテラス長さを更
に延長させたところ、テラス長さがコークスでは2.5m、
鉱石(粗粒原料)では2.8mに達するまで安定操業が継続
できた。
As shown in the figure, changing the terrace length of coke and ore (coarse grain raw material) changes the number of finger scale disturbances.
The coke terrace had a marked decrease in the number of finger scale disturbances when the length exceeded 1.5 m, enabling stable operation to continue. When the terrace length of coke and ore (raw material) is further extended, the terrace length is 2.5 m for coke,
Ore (coarse-grained raw material) could continue stable operation until it reached 2.8 m.

なお、鉱石テラスが1.5mを超えるB期より総原料装入量
の16%に相当する細粒原料を炉周辺部へ装入したが、鉱
石(粗粒原料)テラス上に安定的に堆積していることを
確認した。
In addition, from the B period when the ore terrace exceeds 1.5 m, 16% of the total amount of raw material charged was charged into the peripheral area of the furnace, but it was stably deposited on the ore (coarse-grained material) terrace. I confirmed that.

(発明の効果) 本発明により、コークステラスが1.5mを超えるような装
入物堆積形状を作り込むことにより、安定操業継続が可
能となった。
(Effect of the Invention) According to the present invention, stable operation can be continued by creating a charge deposit shape in which the coke terrace exceeds 1.5 m.

さらに、鉱石(粗粒原料)テラスの延長により、細粒原
料が安定的に炉周辺部に堆積し、安定操業継続が可能と
なった。
Furthermore, by extending the ore (coarse-grained raw material) terrace, fine-grained raw material was stably deposited around the furnace, enabling stable operation to continue.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る炉内ガス流分布三角図、第2図は
本発明に係る炉内堆積形状定義図、第3図は炉内堆積形
状と炉内ガス流分布の関係を示す図、第4図は細粒原料
使用量と周辺ガス流分布との関係を示す図、第5図は細
粒原料使用割合と燃料比との関係を示す図、第6図は本
発明の実施例を示す操業推移図、第7図は炉内壁から山
部までの距離Lとコークスの傾斜角との関係を示す図で
ある。
FIG. 1 is a triangular diagram of gas flow distribution in a furnace according to the present invention, FIG. 2 is a definition diagram of in-reactor deposition shape according to the present invention, and FIG. 3 is a diagram showing a relationship between in-reactor deposition shape and in-reactor gas flow distribution. FIG. 4 is a diagram showing the relationship between the amount of fine grain raw material used and the distribution of the surrounding gas flow, FIG. 5 is a diagram showing the relation between the percentage of fine grain raw material used and the fuel ratio, and FIG. 6 is an embodiment of the present invention. FIG. 7 is a diagram showing the relationship between the distance L from the furnace inner wall to the mountain portion and the coke inclination angle.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】内容積4000m3を超える高炉炉内のガス流れ
を管理しながら高炉操業を行う方法において、高炉炉内
におけるコークスの堆積状況を、炉中心から炉壁へ向か
って体積物表面の傾斜角が15度未満となる付近より炉壁
までをテラスとし、テラスより炉中心側の斜面の延長線
とテラスの堆積面積の延長線との交点を肩部とし、炉壁
から肩部までの距離をRとするとき、Rを1.5mを超える
ように管理することを特徴とする高炉操業法。
Claim: What is claimed is: 1. In a method of operating a blast furnace while controlling a gas flow in the blast furnace having an internal volume of more than 4000 m 3 , the state of coke deposition in the blast furnace is measured from the center of the furnace toward the wall of the furnace. The terrace from the vicinity of the inclination angle of less than 15 degrees to the furnace wall is the shoulder, and the intersection of the extension line of the slope on the furnace center side of the terrace and the extension line of the deposition area of the terrace is the shoulder, and from the furnace wall to the shoulder A blast furnace operating method characterized in that when the distance is R, R is controlled to exceed 1.5 m.
【請求項2】内容積4000m3を超える高炉炉内のガス流れ
を管理しながら高炉操業を行う方法において、高炉炉内
におけるコークス及び鉱石の堆積状況を、炉中心から炉
壁へ向かって体積物表面の傾斜角が15度未満となる付近
より炉壁までをテラスとし、テラスより炉中心側の斜面
の延長線とテラスの堆積面積の延長線との交点を肩部と
し、炉壁から肩部間での距離をRとするとき、Rを1.5m
を超えるように管理すると共に、鉱石を粒度別に分割し
て細粒鉱石を炉周辺部に装入することを特徴とする高炉
操業法。
2. A method of operating a blast furnace while controlling a gas flow in the blast furnace having an internal volume of more than 4000 m 3 , wherein the state of deposition of coke and ore in the blast furnace is measured from the center of the furnace toward the wall of the furnace. The terrace extends from the area where the surface inclination angle is less than 15 degrees to the furnace wall, and the intersection between the extension line of the slope on the furnace center side of the terrace and the extension line of the terrace accumulation area is the shoulder, and the furnace wall to the shoulder When the distance between them is R, R is 1.5m
The blast furnace operation method is characterized in that the ore is managed to exceed the above, and the ore is divided according to the grain size and the fine ore is charged into the peripheral area of the furnace.
JP4620789A 1989-02-27 1989-02-27 Blast furnace operation method Expired - Lifetime JPH0680165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4620789A JPH0680165B2 (en) 1989-02-27 1989-02-27 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4620789A JPH0680165B2 (en) 1989-02-27 1989-02-27 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH02225607A JPH02225607A (en) 1990-09-07
JPH0680165B2 true JPH0680165B2 (en) 1994-10-12

Family

ID=12740639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4620789A Expired - Lifetime JPH0680165B2 (en) 1989-02-27 1989-02-27 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JPH0680165B2 (en)

Also Published As

Publication number Publication date
JPH02225607A (en) 1990-09-07

Similar Documents

Publication Publication Date Title
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
JP2008184626A (en) Method for operating blast furnace
JPH0680165B2 (en) Blast furnace operation method
JP2730751B2 (en) Blast furnace operation method
EP3896177B1 (en) Method for charging raw material into bell-less blast furnace, and blast furnace operation method
JPH075941B2 (en) Blast furnace charging method
JP2996803B2 (en) Blast furnace operation method by bellless blast furnace
JP2020012127A (en) Blast furnace operation method
JP2847995B2 (en) Raw material charging method for bellless blast furnace
JP2006131979A (en) Method for charging coke into bell-less blast furnace
JP5493885B2 (en) Rotating chute for bellless type furnace top charging equipment for blast furnace
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JP2002363623A (en) Structure of distributing chute in bell-less type furnace top-charging apparatus for blast furnace
JP4211617B2 (en) Berles blast furnace ore charging method
JPH1088208A (en) Method for charging charged material into bell-less type blast furnace
JP2023057594A (en) Blast furnace operation method, charging method control device, and charging method control program
JPH0811805B2 (en) Belleless blast furnace raw material charging method
JPH11172307A (en) Charging method of charged material into blast furnace when being difficult to form horizontal type terrace
JP3835041B2 (en) Blast furnace raw material charging method
JP3632290B2 (en) Blast furnace operation method
JP2005060797A (en) Method for charging material to blast furnace
JPH10245610A (en) Furnace top charging device
JP2021175822A (en) Method for charging center coke
JP3702008B2 (en) Blast furnace operation method
JPS63145704A (en) Charging method for raw material in blast furnace