JPH01287212A - Method for charging raw material in blast furnace - Google Patents

Method for charging raw material in blast furnace

Info

Publication number
JPH01287212A
JPH01287212A JP11511188A JP11511188A JPH01287212A JP H01287212 A JPH01287212 A JP H01287212A JP 11511188 A JP11511188 A JP 11511188A JP 11511188 A JP11511188 A JP 11511188A JP H01287212 A JPH01287212 A JP H01287212A
Authority
JP
Japan
Prior art keywords
coke
ore
furnace
mixed
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11511188A
Other languages
Japanese (ja)
Inventor
Yoshio Kajiwara
梶原 義雄
Tsutomu Tanaka
努 田中
Takanobu Inada
隆信 稲田
Chisato Yamagake
山懸 千里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11511188A priority Critical patent/JPH01287212A/en
Publication of JPH01287212A publication Critical patent/JPH01287212A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve gas permeability through the laminarily charged ores and cokes in a blast furnace and to control gas distribution to radius direction at high accuracy by charging ore and coke in the furnace while limiting quantity and grain size of a part of the coke in the core. CONSTITUTION:The ore and the coke are laminarily charged in the blast furnace and a part of coke mixed with the ore is charged in the furnace. In the above raw material charging method in the blast furnace, the coke quantity mixed with the ore is made to >=50kg/ton of pig iron. Further, the grain size of the coke mixed with the ore is made to <=20mm in the case of 50kg/ton of pig iron to the coke for mixing in order to improve the reduction reaction. On the other hand, in the case of excessing 50kg/ton of pig iron to the coke for mixing, it is made to >=30mm grain size. By this method, the reaction of this coarse grain coke is restrained and the grain size thereof is secured at >=about 20mm even at the time of reaching to drip zone at lower part of the furnace, to restrain softening fused sticking of the core. Further, the gas permeability in the blast furnace is improved and O/C distribution to the radius direction and gas flow distribution to the radius direction can be controlling at high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は高炉の原料装入方法に係り、より詳細には、
鉱石とコークスを層状装入し、かつ鉱石中にコークスの
一部を混合して炉内に装入する方法において、鉱石中に
混合するコークスの量おにび粒径を制御して、高炉炉内
の通気性およびガス流分布を改善する原料装入方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for charging raw materials into a blast furnace, and more specifically,
In a method in which ore and coke are charged in layers and a part of the coke is mixed in the ore and charged into the furnace, the amount of coke mixed in the ore and the particle size are controlled to control the blast furnace. The present invention relates to a raw material charging method that improves air permeability and gas flow distribution within a container.

[従来の技術] 従来、鉱石とコークスを高炉炉内に層状装入する方法に
おいて、鉱石中に小塊コークスを混合し、炉内に装入す
る方法が実施されている。これは次の2つの主要な目的
を有している。
[Prior Art] Conventionally, in a method of charging ore and coke into a blast furnace in layers, a method has been implemented in which small coke is mixed in ore and the mixture is charged into the furnace. This has two main purposes:

[I]  高炉炉内の通気性の改善 鉱石層中にコークスを混在せしめるとシャフト部の通気
性は、鉱石層中にコークスを混合しない場合と比し顕著
な差はみられないが、炉下部、ことに融着帯での通気性
が著しく改善される。その理由は主に次の3点である。
[I] Improving air permeability in the blast furnace When coke is mixed in the ore layer, there is no noticeable difference in the air permeability of the shaft compared to when coke is not mixed in the ore layer, but in the lower part of the furnace. In particular, the air permeability in the cohesive zone is significantly improved. The reasons for this are mainly the following three points.

■ 鉱石層中に混在しているコークスが鉱石の還元で発
生したCO2ガスと優先的に(1)式で示すツルージョ
ンロス反応を生じ、層状装入されたコークス粒径の低下
が抑制されることである。
■ The coke mixed in the ore layer preferentially causes the trusion loss reaction shown in equation (1) with the CO2 gas generated by the reduction of the ore, suppressing the decrease in the particle size of the coke charged in layers. That's true.

C十CO2→2C○      (1)■ 未還元Fe
Oが鉱石層中で溶融して、FeO系スラグを形成しても
、鉱石層中に混在しでいるコークスが、FeO系スラグ
と(2)式で示す溶融還元反応を生じ、FeO系スラグ
のホールドアツプ量が減少して、通気性が改善される。
C0CO2→2C○ (1)■ Unreduced Fe
Even if O melts in the ore layer and forms FeO-based slag, the coke mixed in the ore layer causes a melting reduction reaction with the FeO-based slag as shown in equation (2), and the FeO-based slag The amount of hold-up is reduced and breathability is improved.

C+FeO−>Fe十CO(2) ■ 鉱石層中にコークスが混在しているためkg鉱石の
軟化融着をコークスが抑制し、融着層の通気性が改善す
ることである。
C+FeO->Fe0CO(2) (2) Since coke is mixed in the ore layer, the coke suppresses the softening and fusion of kg ore, and the permeability of the fusion layer is improved.

[II]  層状装入するコークスを鉱石中に混合する
小塊コークスで置換することによるコストの低減 前記の鉱石へのコークスの混合による効果は■■の理由
に対しては小塊はど大きく、また■の理由に対しても小
塊でも有効であるため、鉱石中へ混合されるコークスの
粒径は従来5・〜20mmであった。従来はこの5〜2
0mmの小塊コークスを約20kg/ptまで高炉で使
用することによって、通気性の改善および溶銑コストの
低減が図られていた。
[II] Cost reduction by replacing coke charged in layers with small coke mixed into ore The effect of mixing coke into ore as described above is that the small lumps are large and Moreover, since small lumps are also effective for the reason (2), the particle size of the coke mixed into the ore has conventionally been 5.about.20 mm. Conventionally, these 5 to 2
By using 0 mm small coke up to about 20 kg/pt in blast furnaces, it was attempted to improve air permeability and reduce hot metal costs.

(発明が解決しようとする課題] しかし、従来の鉱石へのコークス混合装入方法には次に
記載する2つの問題点があった。
(Problems to be Solved by the Invention) However, the conventional method of mixing and charging coke into ore has the following two problems.

第1の問題点は鉱石へのコークス混合量が最大的50に
9/l)tに制約されていたことである。これは鉱石に
混合するコークスとして5〜20mmの小塊コークスを
使用していたためである。
The first problem is that the amount of coke mixed into the ore is limited to a maximum of 50 to 9/l)t. This is because small coke of 5 to 20 mm was used as coke to be mixed with the ore.

すなわち、鉱石中に混合されるコークスは炉下部滴下帯
に到達するまでに前記(IX2)式の反応で消費されて
しまう必要があったのである。もし未消費の小塊コーク
スが滴下帯に流入すれば、滴下帯コークス平均径は低下
し、滴下帯の通気性の悪化をもたらす。
That is, the coke mixed into the ore had to be consumed in the reaction of formula (IX2) before reaching the dropping zone at the bottom of the furnace. If unconsumed small coke flows into the drip zone, the average diameter of the drip zone coke decreases, resulting in deterioration of the permeability of the drip zone.

1次元の高炉数式モデルによる検討では、溶銑への浸炭
も含めて鉱石へ混合可能なコークス量は最大50kg/
ptと試算され、実操業では、最大約20ki/pt程
度の使用にとどまっていた。このため、鉱石中へのコー
クス混合による通気性改善効果を十分発揮させることが
できなかった。
A study using a one-dimensional blast furnace mathematical model shows that the maximum amount of coke that can be mixed into ore, including carburizing into hot metal, is 50 kg/
pt, and in actual operation, the maximum usage was only about 20 ki/pt. For this reason, the effect of improving air permeability by mixing coke into the ore could not be sufficiently exhibited.

第2の問題点は、ムーバブルアーマを半径方向の鉱石と
コークスの重量比(以下0/Cと略記する)分布の主要
な制御手段としていたことに係わる問題である。
The second problem is related to the fact that the movable armor is used as the main control means for the distribution of the weight ratio of ore to coke (hereinafter abbreviated as 0/C) in the radial direction.

通常のムーバブルアーマノツチの変更幅では半径方向0
/C分布の変化が大きく、炉内の半径方向のガス流分布
を高精度に制御できておらず、せっかく鉱石中にコーク
スを混合しても、半径方向のガス流分布が不適切なため
kg通気性力用−分改善されていない場合があった。
The change width of the normal movable armour-notch is 0 in the radial direction.
/C distribution changes greatly, the radial gas flow distribution inside the furnace cannot be controlled with high precision, and even if coke is mixed into the ore, the radial gas flow distribution is inappropriate, resulting in kg There were cases where breathability was not improved.

このようkg従来の鉱石へのコークス混合装入法におい
tは、混合コークス量が制約されていたこと、および半
径方向0/C分布および半径方向ガス流分布を高精度に
制御できないという問題があった。
In this conventional mixed coke charging method for ore, there are problems in that the amount of mixed coke is limited and that the radial O/C distribution and radial gas flow distribution cannot be controlled with high precision. Ta.

この発明は従来の技術のこのような問題点に鑑みなされ
たものであり、その目的とするところは鉱石中に混合す
るコークス量を大幅に増加し、高炉炉内の通気性を大幅
に改善するとともkg半径方向0/C分布および半径方
向ガス流分布を高精度に制御し得る高炉原料の装入方法
を提案しようとするものである。
This invention was made in view of the problems of the conventional technology, and its purpose is to significantly increase the amount of coke mixed in ore and to significantly improve the ventilation inside the blast furnace. The purpose of this paper is to propose a method for charging blast furnace raw materials that can control the radial O/C distribution and the radial gas flow distribution with high precision.

(課題を解決するための手段] この発明は従来の前記問題点を解決する手段として、鉱
石と混合するコークス量を銑鉄1トン当り50に9以上
とし、かつ鉱石と混合するコークスの粒径を、溶銑1ト
ン当り50kCJの混合用コークスについては20mm
以下とし、銑鉄1トン当り50kgを超える量の混合用
コークスについては30mm以上とすることを要旨とす
るものである。
(Means for Solving the Problems) The present invention, as a means to solve the above-mentioned conventional problems, increases the amount of coke mixed with ore to 50 to 9 or more per ton of pig iron, and increases the particle size of coke mixed with ore. , 20mm for mixing coke of 50kCJ per ton of hot metal
The gist is as follows, and for mixing coke exceeding 50 kg per ton of pig iron, the length shall be 30 mm or more.

[作  用] 鉱石と混合するコークス量を銑鉄1トン当り50均以上
としたのは、鉱石中に混合するコークスの量を大幅に増
加することによって、炉内の通気性を改善するためであ
る。
[Function] The reason why the amount of coke mixed with the ore is set to 50 yen or more per ton of pig iron is to improve the ventilation inside the furnace by significantly increasing the amount of coke mixed in the ore. .

この混合用コークスのうち50kq/l)tは粒径20
mm以下の小塊コークスとしたのは、前記(IX2)式
の反応を優先的に生ぜしめるためである。
Of this coke for mixing, 50kq/l)t has a particle size of 20
The reason why the small coke size is less than mm is to preferentially cause the reaction of formula (IX2).

また、50kq/l)tを超える混合用コークスの粒径
を30mm以上の塊コークスを使用することとしたのは
、前記(1)(2)式の反応を前記小塊コークスに比し
抑制するとともkg鉱石の軟化融着抑制効果を高−〇 
− めるためておる。
In addition, the reason for using lump coke with a particle size of 30 mm or more for mixing coke exceeding 50 kq/l)t is that the reaction of equations (1) and (2) above is suppressed compared to the small lump coke. Highly effective in suppressing softening and adhesion of kg ore
- Save money.

なお、!i 0 kg / p tを超える混合用コー
クスの粒径の下限を30nnnとしたのは、炉下部滴下
帯到達時のコークス粒径20mmを確保り−るためで市
る。゛つまり、炉下部滴下帯のコークス粒径が20mm
以上あれば高炉の安定操業を維持できるからである。
In addition,! The reason why the lower limit of the particle size of the coke for mixing exceeding i0 kg/pt is set to 30 nnn is to ensure a coke particle size of 20 mm when it reaches the dropping zone in the lower part of the furnace.゛In other words, the coke particle size in the dropping zone at the bottom of the furnace is 20 mm.
This is because stable operation of the blast furnace can be maintained if the above conditions are met.

また、50 lag /p tを超える混合用コークス
の量を調整して半径方向0/C分イロを制御する方法を
採用したのは、以下に示す理由による。
Further, the reason why the method of controlling the radial 0/C eros by adjusting the amount of mixing coke exceeding 50 lag/pt was adopted is as follows.

炉外におりる1/10の模型実験を実施したところ、第
1図に炉内半径方向位置におりる混合コークス累積率を
示すようkg鉱石中に混合したコークスのうち、細粒部
は炉壁側kg粗粒部は中心側に偏析する傾向を示した。
When we conducted a model experiment of 1/10 of the amount of coke that falls outside the furnace, we found that the fine particles of the coke mixed in kg ore are shown in Figure 1, showing the cumulative rate of mixed coke that falls in the radial position inside the furnace. The coarse grains on the wall side showed a tendency to segregate toward the center.

すなわち、+30mmのコークス量を調整すれば、鉱石
の堆積プロフィルはほとんど一定のままで用二1心部の
コークス量のみを制御できるので、ムーバブルアーマよ
りもはるかに高精度のO/C分布制御を実施することか
でき、その結果半径方向のガス流分布を高精度に制御す
ることができるからである。
In other words, by adjusting the amount of coke +30mm, the ore deposition profile remains almost constant and only the amount of coke in the core can be controlled, making it possible to control the O/C distribution with much higher precision than with movable armor. This is because the gas flow distribution in the radial direction can be controlled with high precision as a result.

第2図はこの発明方法を実施するための装置構成例を示
す模式図である。
FIG. 2 is a schematic diagram showing an example of the configuration of an apparatus for carrying out the method of this invention.

すなわち、高炉原料貯槽において、鉱石は鉱石槽(3)
から切り出されるとともkg鉱石に混合するコークスを
小塊コークス槽(4)から50kq/pt 、および+
30 nunの塊コークス槽(5)から50kq/pt
を超えた量の混合用コークスを同時に切り出し、装入ベ
ルトコンベア(6)上にのせ、高炉の炉頂に搬送する。
In other words, in the blast furnace raw material storage tank, the ore is stored in the ore tank (3).
50 kq/pt of coke is mixed with kg of ore from the small coke tank (4), and +
50 kq/pt from 30 nun lump coke tank (5)
The amount of mixing coke exceeding 100 m is cut out at the same time, placed on the charging belt conveyor (6), and conveyed to the top of the blast furnace.

次kg層状装入するコークス(粒径+20mm)を塊コ
ークス槽(7)にいったん貯蔵し、粒径+30mmのコ
ークスをダンパー切替により混合用コークス槽(5)ま
たは層状装入用コークス槽(7)に貯蔵し切出す。
The next kg of coke (particle size + 20 mm) to be charged in layers is temporarily stored in the lump coke tank (7), and the coke with particle size + 30 mm is transferred to the mixing coke tank (5) or the coke tank for layer charging (7) by switching the damper. Store and cut out.

なお、コークスバランス上、5〜20mmの混合用コー
クスが50kq/l)tに満たない場合は、他炉から搬
送したり、大塊コークスを破砕して5〜20mmに調整
する。
In addition, if the amount of mixing coke of 5 to 20 mm is less than 50 kq/l)t due to coke balance, the coke size is adjusted to 5 to 20 mm by transporting it from another furnace or crushing large coke.

各原料槽から切り出された高炉原料(2)は高炉(1)
の炉頂に搬送されて固定ホッパー(8)にいったん貯蔵
されてた後、旋回シュー1〜(9)によって小ベル(1
0)上に円周方向に均一に装入され、小ベル(10)を
開くことにより大ベル(11)上に装入される。
The blast furnace raw material (2) cut out from each raw material tank is transferred to the blast furnace (1).
After being transported to the top of the furnace and temporarily stored in the fixed hopper (8), the small bell (1
0) evenly in the circumferential direction, and by opening the small bell (10), the large bell (11) is charged.

炉内の原料堆積レベル(12)が所定のレベルに到達し
たら、ムーバブルアーマ(13)を所定のノツチに設定
し、大ベル(11)を開いて原料を炉内に装入する。
When the raw material accumulation level (12) in the furnace reaches a predetermined level, the movable armor (13) is set to a predetermined notch, the large bell (11) is opened, and the raw material is charged into the furnace.

[実 施 例] コークス比的500にワ/I)tのオールコークス操業
を実施する高炉(内容積2700m3)にこの発明を適
用した結果を、従来法と比較して第1表に示す。
[Example] Table 1 shows the results of applying the present invention to a blast furnace (internal volume: 2700 m3) that performs all-coke operation with a coke ratio of 500 W/I)t in comparison with the conventional method.

本実施例では、コークスは通常使用のコークスをこの発
明で使用する20mmおよび30mmに篩分りして使用
した。
In this example, commonly used coke was sieved into the sizes of 20 mm and 30 mm used in the present invention.

なお、従来法王では、5〜20mmの小塊コークス20
kg/ptを鉱石に混合して使用し、同■では、ムーバ
ブルアーマノツチをC401→C400に変更して炉壁
0/Cを増力口させ、炉壁カス流の抑制をはかった。こ
こで添字はムーバブルアーマノツチを示し、数字が小さ
いほどアーマプレーj〜を炉壁側に設定し、原料の落下
位置を炉壁側に移動させた。そして、混合コークス量を
20ks/l)を一定とし、従来法にありるムーバブル
アーマ変更(こよる半径方向ガス流分布制御の感度を調
査した。
In addition, conventionally, in Pope, small coke of 5 to 20 mm 20
kg/pt was used by mixing it with the ore, and in the same case (2), the movable armour-knot was changed from C401 to C400, and the furnace wall 0/C was used as a power intensifying port to suppress the flow of waste on the furnace wall. Here, the subscript indicates a movable armour-notch, and the smaller the number, the closer the armor plate was set to the furnace wall, and the falling position of the raw material was moved toward the furnace wall. Then, the mixed coke amount was kept constant (20 ks/l), and the sensitivity of the radial gas flow distribution control by changing the movable armor in the conventional method was investigated.

その際、ガス流分布の指標としてシャフトガスサンプラ
ーの中心ガス温度と炉壁カス温度を測定したところ、中
心部で+80’C1炉壁で一20°Cとガス温度は大ぎ
く変化し、ムーバブルアーマで炉壁ガス流を抑制するこ
とはできるも、高精度制御は困難であった。
At that time, when we measured the center gas temperature of the shaft gas sampler and the furnace wall waste temperature as indicators of gas flow distribution, we found that the gas temperature changed significantly from +80°C at the center to -20°C at the furnace wall. Although it is possible to suppress the gas flow on the furnace wall, high-precision control has been difficult.

従来法■ではムーバブルアーマノツチを従来法王と同一
にし、混合コークス量を60kl/ptに増加した。し
かし炉下部圧力損失が急増し、スリップ頻度も2倍以上
に増加し、コークス比は520に1/ptと悪化した。
In the conventional method (2), the movable armour-notch was the same as the conventional method, and the amount of mixed coke was increased to 60 kl/pt. However, the pressure loss in the lower part of the furnace increased rapidly, the slip frequency more than doubled, and the coke ratio deteriorated to 520/1/pt.

これは5〜20mmの混合用小塊コークスの一部が、滴
下帯に流入し、炉下部のコークス平均径が低下したため
であることが、高炉休風時の羽目からのコークスサンプ
リング結果から判明した。
It was found from the results of coke sampling from the bottom of the blast furnace when the blast furnace was shut down that this was because some of the small coke for mixing with a size of 5 to 20 mm flowed into the dripping zone and the average coke diameter in the lower part of the furnace decreased. .

一方、本発明IVでは混合コークス量を100kg/p
tとし、5〜20mmを50kg/pt 、  +30
mmを50kg/pt使用した。ムーバブルアーマノツ
チは−・定で操業した。
On the other hand, in the present invention IV, the mixed coke amount is 100 kg/p.
t, 5-20mm is 50kg/pt, +30
mm was used at 50 kg/pt. The movable armour-notch was operated at -.

その結果、従来法王とコークス比、送風諸元はほとんど
同じであり、炉下部圧力損失の低下は少ないが、炉下部
圧力損失は0.75→0.65 k、3,7と大幅に低
下した。またスリップ頻度も従来法王の半分以下となっ
た。シャフトガスサンプラーの温度分布から、中心ガス
流がほんのわずか上昇し、従来法■のムーバブルアーマ
アクションに比べ、ガス流分布の高精度制御が可能でお
ることが判明した。
As a result, the coke ratio and air blowing specifications were almost the same as the conventional Pope, and the decrease in pressure loss at the bottom of the furnace was small, but the pressure loss at the bottom of the furnace decreased significantly from 0.75 to 0.65 k, 3.7 . The frequency of slips was also less than half that of previous popes. From the temperature distribution of the shaft gas sampler, it was found that the central gas flow rose only slightly, making it possible to control the gas flow distribution with high precision compared to the conventional method ①, which uses movable armour.

本発明■では混合コークス量を120ki/ptとし、
このうち粒径5〜20 +nmを50に+1/pt 1
+30mmを70に+1/pt使用した。ムーバブルア
ーマノツチは一定で操業した。
In the present invention (■), the amount of mixed coke is 120 ki/pt,
Among these, particle size 5 to 20 + nm to 50 + 1/pt 1
+30mm was used for 70 +1/pt. The movable armouring was operated at a constant rate.

その結果、本発明IVと比べ、混合コークス岨の増加に
よって、炉下部圧力損失はざらに低下し、スリップ頻度
も大幅に低下し、シャフトガスサンプラーの温度分布か
ら、中心ガス流がさらにほんの僅か増加したことが判明
した。
As a result, compared to Invention IV, due to the increase in the mixed coke depth, the pressure drop in the lower part of the furnace is drastically reduced, the slip frequency is also significantly reduced, and from the temperature distribution of the shaft gas sampler, the central gas flow is further increased only slightly. It turned out that it did.

第  1  表 [発明の効果] 以上のごとく、この発明によれば、鉱石に混合するコー
クスの粒度を制御して混合コークス量を大幅に増加する
ことによって、高炉の通気性を改善することができる。
Table 1 [Effects of the Invention] As described above, according to the present invention, the permeability of a blast furnace can be improved by controlling the particle size of coke mixed with ore and significantly increasing the amount of mixed coke. .

また、上記混合コークスのうち、塊コークスの量を制御
することによって半径方向0/C分布を高精度に制御す
ることも可能である。したがって、上記の通気性ととも
kg半径方向ガス流分布を大幅に改善することができる
という大なる効果を奏するものである。
Further, by controlling the amount of lump coke in the mixed coke, it is also possible to control the radial O/C distribution with high precision. Therefore, in addition to the above-mentioned air permeability, the gas flow distribution in the kg radial direction can be greatly improved, which is a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は縮尺模型による炉内半径方向位置における混合
コークス累積率を示す図である。 第2図はこの発明方法を実施するための装置構成例を模
式図である。 1・・・高炉       2・・・原料3・・・鉱石
槽 4・・・粒径5〜20mmの混合用コークス槽5・・・
粒径30mm以上の混合用コークス槽T 炉半径方向位
置 壁 ノしA
FIG. 1 is a diagram showing the mixed coke accumulation rate at a radial position in the furnace using a scale model. FIG. 2 is a schematic diagram illustrating an example of the configuration of an apparatus for carrying out the method of this invention. 1... Blast furnace 2... Raw material 3... Ore tank 4... Coke tank for mixing with particle size 5 to 20 mm 5...
Coke tank T for mixing with particle size of 30 mm or more Furnace radial position Wall notch A

Claims (1)

【特許請求の範囲】[Claims] 鉱石とコークスを高炉炉内に層状装入し、かつ鉱石中に
コークスの一部を混合して炉内に装入する方法において
、前記鉱石と混合するコークス量を銑鉄1トン当り50
kg以上とし、かつ鉱石と混合するコークスの粒径を溶
銑1トン当り50kgの混合用コークスについては20
mm以下とし、銑鉄1トン当り50kgを超える量の混
合用コークスについては30mm以上とすることを特徴
とする高炉の原料装入方法。
In a method in which ore and coke are charged in layers into a blast furnace, and a part of the coke is mixed with the ore and charged into the furnace, the amount of coke mixed with the ore is 50% per ton of pig iron.
20 kg or more for mixing coke with a particle size of 50 kg per 1 ton of hot metal and mixed with ore.
A method for charging raw materials into a blast furnace, characterized in that the diameter is 30 mm or more for mixing coke exceeding 50 kg per ton of pig iron.
JP11511188A 1988-05-11 1988-05-11 Method for charging raw material in blast furnace Pending JPH01287212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11511188A JPH01287212A (en) 1988-05-11 1988-05-11 Method for charging raw material in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11511188A JPH01287212A (en) 1988-05-11 1988-05-11 Method for charging raw material in blast furnace

Publications (1)

Publication Number Publication Date
JPH01287212A true JPH01287212A (en) 1989-11-17

Family

ID=14654513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11511188A Pending JPH01287212A (en) 1988-05-11 1988-05-11 Method for charging raw material in blast furnace

Country Status (1)

Country Link
JP (1) JPH01287212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762455B1 (en) * 2001-05-17 2007-10-02 주식회사 포스코 Method for charging large ore into blast furnace to control co gas coefficient?co of utilization
JP2014009397A (en) * 2012-07-02 2014-01-20 Nippon Steel & Sumitomo Metal Method for operating blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762455B1 (en) * 2001-05-17 2007-10-02 주식회사 포스코 Method for charging large ore into blast furnace to control co gas coefficient?co of utilization
JP2014009397A (en) * 2012-07-02 2014-01-20 Nippon Steel & Sumitomo Metal Method for operating blast furnace

Similar Documents

Publication Publication Date Title
EP1808498A1 (en) Process for producing molten iron and apparatus therefor
KR101564295B1 (en) Method for loading raw material into blast furnace
EP2851435B1 (en) Method for charging starting material into blast furnace
JP6167829B2 (en) Blast furnace operation method
CN104302788B (en) To the method for blast furnace charging feedstock
JP4114626B2 (en) Blast furnace operation method
JPH01287212A (en) Method for charging raw material in blast furnace
WO1994005817A1 (en) Method for producing sintered ore
KR100930726B1 (en) Blast Furnace Nut Coke Weighing Equipment
JP6819011B2 (en) How to charge raw materials for blast furnace
JP2010150646A (en) Method for charging raw material into blast furnace
JP7073962B2 (en) How to charge the bellless blast furnace
WO2019187997A1 (en) Method for loading raw materials into blast furnace
JP5842738B2 (en) Blast furnace operation method
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
CN101297047B (en) Method and device for charging feedstock
JP2018178165A (en) Blast furnace operation method
JP2797917B2 (en) Blast furnace operation method
JP6769507B2 (en) How to charge raw materials for blast furnace
JP4045897B2 (en) Raw material charging method for bell-less blast furnace
JP6558519B1 (en) Raw material charging method for blast furnace
JP2005264292A (en) Method for charging raw material into blast furnace provided with bell-less raw material charging apparatus
JP2955461B2 (en) How to charge coke to blast furnace
JP2600803B2 (en) Blast furnace raw material charging method
KR101510546B1 (en) Method for charging materials into blast furnace