JPS62177109A - Method for charging starting material into bell-less blast furnace - Google Patents

Method for charging starting material into bell-less blast furnace

Info

Publication number
JPS62177109A
JPS62177109A JP1902486A JP1902486A JPS62177109A JP S62177109 A JPS62177109 A JP S62177109A JP 1902486 A JP1902486 A JP 1902486A JP 1902486 A JP1902486 A JP 1902486A JP S62177109 A JPS62177109 A JP S62177109A
Authority
JP
Japan
Prior art keywords
distribution
furnace
charging
angle
chute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1902486A
Other languages
Japanese (ja)
Inventor
Yoshimasa Kajiwara
梶原 義雅
Chisato Yamagata
山縣 千里
Takanobu Inada
隆信 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1902486A priority Critical patent/JPS62177109A/en
Publication of JPS62177109A publication Critical patent/JPS62177109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

PURPOSE:To freely control the distribution of O/C in a blast furnace in the radial direction by charging starting materials into the furnace from the central part toward the wall and regulating the accumulation angle of the surface of the charged starting materials to a specified value or below. CONSTITUTION:Starting materials 3 conveyed to the top of a blast furnace 1 through a belt conveyor 2 are stored once in a top bunker 6 through upper gate valves 4 and upper seal valves 5 and re charged into the furnace 10 through a distribution chute 10. At this time, the tilt angle of the chute 10 is controlled and at least one among the tilt angle of the chute 10, the number of revolutions of the chute 10 at each tilt angle and the degree of opening of lower gate valves 8 is also controlled so that the accumulation angle of the surface of the charged starting materials does not exceed 20 deg..

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はベルレス式高炉の原料装入方法に関するもので
あり、より詳細には、炉内における装入原料の堆積角、
半径方向の鉱石とコークスの重量比(以下ro/CJと
略記する)分布、半径方向の粒径分布等のいわゆる装入
物分布の制御性を向上することを目的とした、分配シュ
ート傾動角度の設定方法および装入後の原料の表面の堆
積角の制御に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for charging raw materials into a bellless blast furnace, and more specifically, the present invention relates to a method for charging raw materials into a bellless blast furnace, and more specifically, a method for charging raw materials in a bellless blast furnace,
The tilting angle of the distribution chute is designed to improve the controllability of the so-called charge distribution, such as the radial ore to coke weight ratio (hereinafter abbreviated as RO/CJ) distribution and the radial particle size distribution. The present invention relates to a setting method and control of the deposition angle on the surface of raw materials after charging.

(従来の技術) 高炉操業においては、高炉炉頂部における装入物の0/
C1粒径等の半径方向の分布を適正に制御して、炉内に
おける半径方向のガス流分布、熱流比分布を所定の範囲
に維持し、鉱石の還元・溶解を安定に行なう必要がある
(Prior art) In blast furnace operation, the charge at the top of the blast furnace is
It is necessary to appropriately control the radial distribution of C1 grain size, etc., maintain the radial gas flow distribution and heat flow ratio distribution within the furnace within a predetermined range, and stably reduce and melt the ore.

従来のベルレス式高炉の原料装入方法を第6図を用いて
説明する。第6図はベルレス式高炉の炉頂部の原料装入
装置の概略図を示すものであり、高炉1の炉頂部へベル
トコンベア2によって搬送された原料3は、上部ゲート
弁4、上部シール弁5を介して一旦炉頂バンカー6内に
貯蔵され、高炉内の装入物が荷下がりして補給すべき所
定のストックレベル7に到達すると、装入物流量調整用
の下部ゲート弁8および下部シール弁9を開操作し、炉
頂バンカー6内の原料を分配シュート10を介して炉内
に装入するのである。
A conventional method for charging raw materials into a bellless blast furnace will be explained using FIG. 6. FIG. 6 shows a schematic diagram of a raw material charging device at the top of the furnace of a bellless type blast furnace. Once the charge in the blast furnace is unloaded and reaches a predetermined stock level 7 to be replenished, the lower gate valve 8 for adjusting the charge flow rate and the lower seal The valve 9 is opened and the raw material in the furnace top bunker 6 is charged into the furnace through the distribution chute 10.

(発明が解決しようとする問題点) しかしながら従来の原料装入方法では半径方向のO/C
分布および半径方向の粒径分布の制御性が不充分であっ
た。
(Problem to be solved by the invention) However, in the conventional raw material charging method, the O/C in the radial direction
Control of the distribution and radial particle size distribution was insufficient.

先ず、半径方向のO/C分布の制御性に関する欠点には
、■鉱石装入時に形成される混合層形成量の変動、■原
料の堆積角の変動、■炉内装入時間の変動、等によって
半径方向のO/C分布が変動し易いことがあげられる。
First of all, there are drawbacks to the controllability of O/C distribution in the radial direction, such as: ■ Fluctuations in the amount of mixed layer formed during ore charging, ■ Fluctuations in the stacking angle of raw materials, and ■ Fluctuations in the time required for charging into the furnace. One example of this is that the O/C distribution in the radial direction is likely to fluctuate.

以下、その各々について詳述する。Each of them will be explained in detail below.

■鉱石装入時に形成される混合層形成量の変動について 従来の原料装入方法においては、分配シュートの傾動角
度(第6図中のθ:分配シュートと高炉の炉軸とのなす
角度)を所定の角度から順次減少させて、原料を炉内の
炉壁部から順次中心部へ装入していた。従って、はとん
どの場合、装入後の原料の表面形状は第6図に示すよう
なM型かあるいはM型の形状を成しており、いずれも斜
面を形成していた。このためコークス層の上に鉱石を装
入した場合、鉱石落下位置近傍のコークス層の表層部の
一部が鉱石の衝撃エネルギーによって削りとられて炉中
心方向に移動し、炉中心部に広範囲にわたる鉱石とコー
クスの混合層を形成して堆積するのである。
■ Regarding fluctuations in the amount of mixed layer formed during ore charging In the conventional material charging method, the tilting angle of the distribution chute (θ in Figure 6: the angle between the distribution chute and the axis of the blast furnace) The raw materials were charged from the wall of the furnace to the center of the furnace by gradually reducing the amount from a predetermined angle. Therefore, in most cases, the surface shape of the raw material after charging was M-shaped as shown in FIG. 6, or an M-shaped shape, both of which formed slopes. Therefore, when ore is charged on top of the coke layer, part of the surface layer of the coke layer near the ore falling position is scraped off by the impact energy of the ore and moves toward the center of the furnace, causing a wide area in the center of the furnace. A mixed layer of ore and coke is formed and deposited.

ベルレス装入法における混合層形成に関して本発明者の
うちの2名らは実物大模型を用いた研究を報告している
(「鉄と鋼」第71巻、1985年、175頁)。この
混合層測定例を第7図に示す。図中、破線は鉱石装入前
のコークス層の表面形状であり、実線は鉱石装入後のコ
ークス層表面形状を示す。中心部近傍には、炉壁部の鉱
石落下位置近傍に存在していたコークスが移動されて、
コークス単味層と鉱石とコークスの混合層が広範囲に形
成されている。このように、コークス層が斜面を形成し
ていると、鉱石装入時にコークス層の表面形状が変化し
、半径方向のO/C分布は、鉱石装入前後の原料の表面
形状から計算される0/C分布とは大きく異なる。更に
混合層形成量は分配シュート傾動角度のスケジュールや
装入量などの制御可能な因子以外にも、原料の粒度構成
変動や炉内ガス流分布変動によるコークス層表面形状変
動などの外乱因子の影響を受ける。従って、従来の斜面
を形成させるベルレス装入法では半径方向の0/C分布
の制御性は不充分だったのである。
Regarding the formation of a mixed layer in the bellless charging method, two of the present inventors have reported a study using a full-scale model ("Tetsu to Hagane" Vol. 71, 1985, p. 175). An example of this mixed layer measurement is shown in FIG. In the figure, the broken line shows the surface shape of the coke layer before ore charging, and the solid line shows the coke layer surface shape after ore charging. The coke that was present near the ore fall position on the furnace wall has been moved to the vicinity of the center.
A monolayer of coke and a mixed layer of ore and coke are formed over a wide area. In this way, if the coke layer forms a slope, the surface shape of the coke layer changes during ore charging, and the radial O/C distribution is calculated from the surface shape of the raw material before and after ore charging. This is significantly different from the 0/C distribution. Furthermore, the amount of mixed layer formed is influenced by not only controllable factors such as the distribution chute tilt angle schedule and charging amount, but also disturbance factors such as changes in the particle size composition of the raw material and changes in the surface shape of the coke layer due to changes in the gas flow distribution in the furnace. receive. Therefore, the controllability of the 0/C distribution in the radial direction was insufficient in the conventional bellless charging method of forming an inclined surface.

■原料の堆積角の変動について 斜面の形成による半径方向0/C分布に及ぼす第2の問
題点は、装入原料の堆積角の変動によって半径方向のO
/C分布が変動し易いことである。
■Regarding fluctuations in the stacking angle of raw materials The second problem with the radial O/C distribution due to the formation of slopes is that the fluctuations in the stacking angle of the charged raw materials cause the radial O
/C distribution is likely to fluctuate.

即ち、炉内のガス流分布の変動によって原料の表層の形
状が変化するため、同一の分配シュート傾動角度スケジ
ュール、同一の装入量即ち同一装入条件で炉内に原料を
装入しても、半径方向の070分布は変動するのである
In other words, the shape of the surface layer of the raw material changes due to variations in the gas flow distribution in the furnace, so even if the raw material is charged into the furnace with the same distribution chute tilting angle schedule, the same charging amount, or the same charging conditions, , the 070 distribution in the radial direction varies.

■炉内装入時間の変動について 第3の問題点は、斜面の形成の有無にかかわらず、分配
シュート傾動角度を大から小へ順次減少させる従来の装
入法において生じる。即ち、従来の装入法においては、
単位時間当りの原料層厚増加量の小さい部分、即ち炉壁
部から単位時間当りの原料層厚増加量の大きい部分、即
ち中心部へ向けて原料が装入されている。このため原料
の粒度構成変動や原料の含有水分量の変動等によって、
下部ゲート弁における流出特性が変化し、炉内への全装
入時間が変動する場合、装入末期の原料の炉内装入位置
である中心部における原料の層厚変動が極めて顕著にな
るのである。
■Regarding variation in furnace charging time The third problem arises in the conventional charging method in which the distribution chute tilt angle is gradually decreased from large to small, regardless of whether or not a slope is formed. That is, in the conventional charging method,
The raw material is charged from the part where the raw material layer thickness increases per unit time is small, ie, the furnace wall, to the part where the raw material layer thickness increases per unit time, ie, the center part. For this reason, due to changes in the particle size composition of the raw materials and fluctuations in the moisture content of the raw materials,
If the outflow characteristics at the lower gate valve change and the total charging time into the furnace changes, the variation in the layer thickness of the material at the center, where the material enters the furnace at the end of charging, becomes extremely noticeable. .

次に半径方向Φ粒径分布の制御性に関する欠点を2点述
べる。
Next, two drawbacks regarding the controllability of the radial Φ particle size distribution will be described.

先ず第1の欠点は、従来装入法においては、分配シュー
トの傾動角度を大から小へ順次減少させて斜面を形成せ
しめている為、炉内に装入された原料はこの斜面で再分
級されながら堆積する結果、斜面の上流側即ち炉壁部に
細粒が、斜面の下流側即ち中心部に粗粒が偏析して堆積
することに基づくものである。即ち、従来装入法におい
ては斜面での再分級によって最終的な半径方向の粒径分
布が決定される。このため半径方向のガス流分布変動や
半径方向の荷下がり速度分布変動によって斜面の形状が
変動すると、半径方向の粒径分布も大きく変動するので
ある。更に装入原料の粒度構成が変動した場合、斜面で
の再分級によってその変動が増長されるという欠点も併
せもっている。
The first drawback is that in the conventional charging method, the tilting angle of the distribution chute is gradually reduced from large to small to form a slope, so the raw material charged into the furnace is reclassified on this slope. As a result, fine particles are segregated and deposited on the upstream side of the slope, that is, on the furnace wall, and coarse particles are segregated and deposited on the downstream side of the slope, that is, in the center. That is, in the conventional charging method, the final radial particle size distribution is determined by reclassification on the slope. Therefore, when the shape of the slope changes due to changes in the radial gas flow distribution or changes in the radial unloading speed distribution, the radial particle size distribution also changes significantly. Furthermore, if the particle size structure of the charged raw material fluctuates, it also has the disadvantage that the fluctuation is exacerbated by reclassification on the slope.

また近年、半径方向の粒径分布の制御性の向上のため、
平均粒度の異なる同一原料を炉内の異なった半径方向の
位置に装入する方法、いわゆる「粒度別装入法」が開発
されている。従来の斜面を形成させる装入法においては
、粒度別装入法においてもその効果が充分発揮できなか
った。即ち、例えば鉱石を2分割装入し、細粒を炉壁部
に堆積せしめんとして、細粒鉱石を1回目に装入した場
合、2回目の粗粒鉱石装入時に細粒鉱石の一部が粗粒鉱
石の落下衝撃エネルギーによって中心部方向に移動させ
られ、炉壁部に留まる比率が小さいからである。仮に、
細粒の炉壁部への留まり比率を増加させるために細粒鉱
石を2回目に装入したとしても、粗粒鉱石を中心部寄り
に装入してM型表面形状を形成せしめ、炉壁と粗粒鉱石
表層との凹み部に細粒鉱石を装入する必要があり、半径
方向の粒径分布とO/C分布を同時に精度よく制御・す
ることは困難であった。
In addition, in recent years, in order to improve the controllability of particle size distribution in the radial direction,
A method has been developed in which the same raw material with different average grain sizes is charged at different radial positions in the furnace, the so-called "grain size charging method". In the conventional charging method of forming a slope, even in the charging method according to particle size, the effect could not be sufficiently exhibited. That is, for example, if the ore is charged in two parts and the fine grains are deposited on the furnace wall, and the fine grain ore is charged the first time, part of the fine grain ore is charged during the second coarse grain ore charge. This is because the particles are moved toward the center by the impact energy of the falling coarse ore, and the proportion of the particles remaining on the furnace wall is small. what if,
Even if fine-grained ore is charged a second time to increase the ratio of fine-grained particles remaining on the furnace wall, coarse-grained ore is charged closer to the center to form an M-shaped surface shape, It is necessary to charge the fine ore into the recess between the surface layer of the coarse ore and the grain size distribution in the radial direction and the O/C distribution at the same time.

このように分配シュートの傾動角度を大から小へ順次減
少させる従来のベルレス式高炉の原料装入方法にあって
は半径方向のO/C分布および粒径分布の制御性が不充
分であった。
In this way, the conventional material charging method for bellless blast furnaces in which the tilting angle of the distribution chute is gradually decreased from large to small has insufficient controllability of the radial O/C distribution and particle size distribution. .

本発明は、上記した問題点を解消し、炉内における半径
方向のO/C分布、粒径分布等のいわゆる装入物分布の
制御性の向上を図れるベルレス式高炉の原料装入方法を
提供せんとするものである。
The present invention solves the above-mentioned problems and provides a material charging method for a bellless blast furnace that can improve the controllability of so-called charge distribution such as radial O/C distribution and particle size distribution in the furnace. This is what I am trying to do.

(問題点を解決するための手段) 本発明は、ベルレス式高炉に原料を装入するに際し、炉
中心部から炉側壁方向に向って原料を装入すべく分配シ
ュートの傾動角度を制御すると共に、装入後の前記原料
表面の堆積角が20度を超えないように前記分配シュー
トの傾動角度、各傾動角度における旋回数、下部ゲート
弁開度のうちの少なくとも一つを制御することを要旨と
するベルレス式高炉の原料装入方法である。
(Means for Solving the Problems) When charging raw materials into a bell-less blast furnace, the present invention controls the tilting angle of a distribution chute so that the raw materials are charged from the center of the furnace toward the side wall of the furnace. , the gist is to control at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve so that the deposition angle on the surface of the raw material after charging does not exceed 20 degrees. This is a material charging method for a bellless blast furnace.

すなわち、本発明の特徴は、■原料を炉中心部から炉壁
部にむかって装入すること、■装入後の原料の表面の堆
積角を20度以下とすることであり、しかる後に半径方
向の0/C分布および半径方向の粒径分布を自在に制御
しようとするものである。
That is, the features of the present invention are: (1) charging the raw material from the center of the furnace toward the furnace wall; (2) setting the deposition angle on the surface of the raw material after charging to be 20 degrees or less; The aim is to freely control the 0/C distribution in the direction and the particle size distribution in the radial direction.

先ず、第1の条件を達成するために、分配シュートの傾
動角度を小から大に順次増加するスケジュールを設定す
る。第1図中に示す矢印が分配シュート傾動角度の動き
を示している。なお、第1図中第6図と同一番号は同一
部分あるいは相当部分を示し、説明を省略する。
First, in order to achieve the first condition, a schedule is set in which the tilting angle of the distribution chute is gradually increased from small to large. The arrows shown in FIG. 1 indicate the movement of the distribution chute tilt angle. Note that the same numbers in FIG. 1 as in FIG. 6 indicate the same or corresponding parts, and their explanation will be omitted.

次に、第2の条件を達成するために、分配シュートの傾
動角度、各傾動角度における旋回数、下部ゲート弁開度
のうちの少なくとも一つを任意設定可能とするのである
Next, in order to achieve the second condition, at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve can be arbitrarily set.

このような設備改善を行なうことにより、半径方向の0
/C分布を自在に制御でき、また半径方向の粒径分布の
制御性も向上する。
By making such equipment improvements, the radial zero
/C distribution can be freely controlled, and controllability of radial particle size distribution is also improved.

なお、半径方向の粒径分布を更に自在に制御するために
、必要に応じて炉頂バンカー6の数を増加してこれら炉
頂バンカー6毎の平均粒径を変更して貯蔵することや、
炉頂バンカー6内への装入時の粒径偏析制御を目的とし
て炉頂バンカー6内に旋回シュート11や反撥板12等
の分布制御機構を設置したり、また、炉頂バンカー6か
らの排出時における粒径の経時変化制御を目的として炉
頂バンカー6内に例えば円錐体13や直方体14等の各
種インサートを設置することも任意である。
In addition, in order to more freely control the particle size distribution in the radial direction, the number of furnace top bunkers 6 may be increased as necessary, and the average particle size of each of these furnace top bunkers 6 may be changed for storage.
In order to control grain size segregation during charging into the top bunker 6, distribution control mechanisms such as a rotating chute 11 and a repulsion plate 12 are installed in the top bunker 6, and a It is also optional to install various inserts such as a cone 13 or a rectangular parallelepiped 14 in the furnace top bunker 6 for the purpose of controlling changes in particle size over time.

このようにすれば半径方向のO/C分布制御とは独立に
、半径方向の粒径分布を制御することが可能となる。第
1図には、従来のベルレス装入法では実現できなかった
炉壁部への粗′粒原料装入、中心部への細粒原料装入の
例を示している。
In this way, it becomes possible to control the radial particle size distribution independently of the radial O/C distribution control. FIG. 1 shows an example of charging coarse material to the furnace wall and charging fine material to the center, which could not be achieved with the conventional bellless charging method.

次に装入後の原料の表面の堆積角を20度以下とした理
由について述べる。本発明者等は炉外において実物大模
型を製作し、コークス層の堆積角を種々変更して、鉱石
装入を行ない、混合層形成量および半径方向の粒径分布
を測定した。その結果の一例を第2図、第3図に示す。
Next, the reason why the deposition angle on the surface of the raw material after charging is set to 20 degrees or less will be described. The present inventors manufactured a full-scale model outside the furnace, changed the deposition angle of the coke layer variously, charged ore, and measured the amount of mixed layer formed and the particle size distribution in the radial direction. Examples of the results are shown in FIGS. 2 and 3.

第2図はコークス層の堆積角と中心部のコークス層の層
厚増加(コークス単味層の層厚増加+172×混合層層
厚増加)の関係を示す図であり、同図より明らかな如く
コークス堆積角は20度を境にして、それを超えた場合
には鉱石装入による中心部のコークス層厚増加が顕著で
あるが、それ以下では実用上無視しうろことが判明した
。即ち半径方向のO/C分布制御性の向上のためには装
入後の原料の堆積角を20度以下とすることが必要なの
である。
Figure 2 is a diagram showing the relationship between the deposition angle of the coke layer and the increase in the thickness of the coke layer in the center (increase in the thickness of the single coke layer + 172 x increase in the thickness of the mixed layer). It has been found that the coke deposition angle is approximately 20 degrees, and when this angle is exceeded, the thickness of the coke layer in the center increases significantly due to ore charging, but below this angle, it is practically negligible. That is, in order to improve the controllability of O/C distribution in the radial direction, it is necessary to set the stacking angle of the raw material after charging to 20 degrees or less.

第3図はコークス層の堆積角と中心部の鉱石(試験は全
量焼結鉱で実施した)の粒径の関係を示す図である。コ
ークス堆積角は20度を境にして、それを超えた場合に
は斜面での再分級によって中心部の鉱石粒径の増加が顕
著であるが、それ以下では、鉱石粒径の増加は実用上無
視しうるほど小さいことが明らかである。その理由は、
斜面の堆積角が充分小さく、装入時に当該旋回に対応す
る装入物の山が形成されても、原料が斜面を移動しない
ためと考えられる。即ち半径方向の粒径分布制御性の向
上のためには装入後の原料の堆積角を20度以下とする
ことが必要なのである。
FIG. 3 is a diagram showing the relationship between the deposition angle of the coke layer and the grain size of the ore in the center (the test was carried out using all sintered ore). The coke deposition angle has a boundary of 20 degrees, and when this is exceeded, the ore grain size in the center increases significantly due to reclassification on the slope, but below this, the ore grain size does not increase in practical terms. It is clear that it is so small that it can be ignored. The reason is,
This is thought to be because the stacking angle of the slope is sufficiently small, and even if a pile of charge material corresponding to the swirl is formed during charging, the raw material does not move along the slope. That is, in order to improve the controllability of the particle size distribution in the radial direction, it is necessary to set the stacking angle of the raw material after charging to 20 degrees or less.

以上述べたように半径方向のO/C分布および半径方向
の粒径分布の制御の大幅な向上のためには、装入後の原
料の表面の堆積角を20度以下とする必要がある。
As described above, in order to significantly improve the control of the radial O/C distribution and the radial particle size distribution, the deposition angle on the surface of the raw material after charging needs to be 20 degrees or less.

なお、原料の堆積角を実測し、当該堆積角が20度以下
となっているか否かは、高炉の炉頂部に通常設置されて
いるプロフィル計で確認することができる。プロフィル
計の型式はワイヤーの先端にとりつけた重錐を堆積原料
の表面に降下させて計測する接触式でも、また、マイク
ロ波やレーザーを炉壁部または炉内原料層上の空間に設
置された発振器から発振し、原料堆積面で反射された反
射波を受信して計測する非接触式でもよい。
Incidentally, the deposition angle of the raw material is actually measured, and whether or not the deposition angle is 20 degrees or less can be confirmed using a profile meter normally installed at the top of the blast furnace. Profile meters can be of the contact type, in which a heavy cone attached to the tip of a wire is lowered onto the surface of the deposited raw material, or the profile meter can be a contact type, in which a heavy cone attached to the tip of a wire is lowered to the surface of the deposited material. A non-contact method may also be used in which the wave oscillated from an oscillator is received and measured by the reflected wave reflected from the surface on which the raw material is deposited.

しかして、装入後の原料の堆積角が20度を超えそうな
場合には、分配シュートの傾動角度、各傾動角度におけ
る旋回数、下部ゲート弁開度のうちの少なくとも一つを
制御し、前記プロフィル計による計測を実施してその効
果を確認しながら堆積角を20度以下に維持すべく制御
するのである。
If the stacking angle of the raw material after charging is likely to exceed 20 degrees, control at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve, The deposition angle is controlled to be maintained at 20 degrees or less while measuring the profile using the profile meter and confirming its effectiveness.

また、本発明方法では分配シュートの傾動角度を順次大
きくしてゆくのであるが、これはいかに当業者といえど
も容易に発明できるものではない。
Further, in the method of the present invention, the tilting angle of the distribution chute is gradually increased, but this cannot be easily invented even by a person skilled in the art.

すなわち、分配シュートの傾動角度を順次小さくしてゆ
〈従来法であっては、分配シュート荷重および分配シュ
ート上の原料荷重によって生じるモーメントの方向と、
分配シュートの傾動方向が同一であるため、傾動モータ
にかかる軸トルクが小さく、従って、モータの定格トル
ク許容範囲内である。これに対し、分配シュートの傾動
角度を順次大きくしてゆく本廃明方法では、分配シュー
ト荷重および分配シュート上の原料の荷重によって生じ
るモーメントの方向と分配シュートの傾動方向が逆であ
る。従って傾動モータにかかる軸トルクが大きく、モー
タの定格トルクをを超えることが予想されたため、分配
シュートの傾動角度を順次大きくしてゆく本発明の如き
発明がなされていなかったのである。
That is, by gradually decreasing the tilting angle of the distribution chute (in the conventional method, the direction of the moment caused by the distribution chute load and the material load on the distribution chute,
Since the distribution chutes are tilted in the same direction, the shaft torque applied to the tilting motor is small and therefore within the allowable rated torque range of the motor. On the other hand, in the present method of increasing the tilting angle of the distribution chute, the direction of the moment generated by the distribution chute load and the load of the raw material on the distribution chute is opposite to the direction of the tilting of the distribution chute. Therefore, since the shaft torque applied to the tilting motor is large and expected to exceed the rated torque of the motor, an invention such as the present invention in which the tilting angle of the distribution chute is gradually increased has not been made.

しかし、本発明をするにあたり、分配シュートの傾動角
度を順次太き(してゆく場合のモータ軸の必要トルクを
実測したところ第4図に示すように従来のモータ容量を
20%程度増加すれば常用する分配シュート傾動角度範
囲において、分配シュートの傾動角度を順次大きくして
ゆけることが判明した。
However, when implementing the present invention, we actually measured the required torque of the motor shaft when the tilting angle of the distribution chute was gradually increased. It has been found that the tilting angle of the distribution chute can be gradually increased within the commonly used distribution chute tilting angle range.

従って小額の投資で分配シュートの傾動角度を順次大き
くしてゆく本発明が実施できるのである。
Therefore, the present invention in which the tilting angle of the distribution chute is gradually increased can be implemented with a small investment.

(作   用) 本発明は、ベルレス式高炉に原料を装入するに際し、炉
中心部から炉側壁方向に向って原料を装入すべく分配シ
ュートの傾動角度を制御すると共に、装入後の前記原料
表面の堆積角が20度を超えないように前記分配シュー
トの傾動角度、各傾動角度における旋回数、下部ゲート
弁開度のうちの少なくとも一つを制御するものである為
、高炉の半径方向のO/C分布や粒径分布を独立にかつ
精度よく制御できる。
(Function) When charging raw materials into a bellless blast furnace, the present invention controls the tilting angle of the distribution chute so that the raw materials are charged from the center of the furnace toward the furnace side wall, and The method controls at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve so that the deposition angle on the surface of the raw material does not exceed 20 degrees. The O/C distribution and particle size distribution can be controlled independently and accurately.

(実 施 例) 本発明の効果を確認するため、炉外において実物大模型
を製作し、装入物分布試験を実施した。
(Example) In order to confirm the effects of the present invention, a full-scale model was manufactured outside the furnace and a charge distribution test was conducted.

試験に使用した装入原料は実際の高炉で使用している原
料を使用した。また試験における原料の装大条件は、荷
下がりがないことおよび送風がないことを除けば実際の
高炉と同一の条件であり、半径方向の070分布および
粒径分布は、装入後の原料をエポキシ系樹脂で固化して
装置外にとりだし、計測した。
The charging material used in the test was the material used in an actual blast furnace. In addition, the charging conditions for the raw material in the test were the same as those in an actual blast furnace, except that there was no unloading and no air blowing, and the 070 distribution and particle size distribution in the radial direction were It was solidified with epoxy resin, taken out of the device, and measured.

本発明を適用すれば、半径方向0/C分布と半径方向の
粒径分布を独立に、自在に制御できる。
By applying the present invention, the radial O/C distribution and the radial particle size distribution can be independently and freely controlled.

例えば従来装入法をC(11223344556677
)、O(11223344556677)と表記する。
For example, the conventional charging method was changed to C (11223344556677
), O(11223344556677).

()内は分配シュートの傾動角度の大きさと順序を示し
ており数字の小さい方が、分配シュートの傾動角度が大
きく設定しである。
The numbers in parentheses indicate the magnitude and order of the tilting angle of the distribution chute, and the smaller the number, the larger the tilting angle of the distribution chute is set.

旋回数は14旋回である。この装入条件における炉内半
径方向の070分布、粒径分布を第5図中の(A)で示
す。そして炉壁ガス流をすこし強化する場合、従来発明
では半径方向の粒径分布を制御する手段がなく、鉱石の
分配シュートの傾動角度を小さくしてO(223344
55667788)とせざるをえない。このため第5図
中(B)で示すように、炉壁部の070分布のみを低下
させることはできず、中間部のO/Cの増加をもたらし
ている。更に半径方向の粒径分布も鉱石の装入スケジュ
ールの変更によって炉中間部に粒径が最小となる点が生
じている。
The number of turns was 14. The 070 distribution and particle size distribution in the radial direction within the furnace under these charging conditions are shown in (A) in FIG. When the furnace wall gas flow is slightly strengthened, the conventional invention does not have a means to control the particle size distribution in the radial direction, and the tilting angle of the ore distribution chute is reduced to 0 (223344
55667788). For this reason, as shown in FIG. 5 (B), it is not possible to reduce only the 070 distribution in the furnace wall portion, resulting in an increase in O/C in the middle portion. Furthermore, due to changes in the ore charging schedule, the particle size distribution in the radial direction has a minimum point in the middle of the furnace.

これに対して本発明方法では半径方向の070分布を(
A)と同一にする装入スケジュールC(1099876
54322111)O(10988776655432
1)を採用し炉壁部装入時(分配シュート傾動角度1お
よび2)のみ粗粒を装入するようにすれば、半径方向の
粒径分布制御のみで、炉内ガス流分布を制御できる。第
5図中(C)が本発明による半径方向0/C分布および
半径方向粒径分布である。
On the other hand, in the method of the present invention, the 070 distribution in the radial direction is (
Charging schedule C (1099876
54322111)O(10988776655432
If 1) is adopted and coarse particles are charged only when charging the furnace wall (distribution chute tilt angles 1 and 2), the gas flow distribution in the furnace can be controlled only by controlling the particle size distribution in the radial direction. . (C) in FIG. 5 shows the radial O/C distribution and radial particle size distribution according to the present invention.

(発明の効果) 以上説明したように本発明は、ベルレス式高炉に原料を
装入するに際し、炉中心部から炉側壁方向に向って原料
を装入すべ(分配シュートの傾動角度を制御すると共に
、装入後の前記原料表面の堆積角が20度を超えないよ
うに前記分配シュートの傾動角度、各傾動角度における
旋回数、下部ゲート弁開度のうちの少なくとも一つを制
御するものである為、高炉内における半径方向の070
分布および粒径分布を独立に、かつ精度良く制御するこ
とができ、高炉の操業上きわめて大なる効果を奏するも
のである。
(Effects of the Invention) As explained above, when charging raw materials into a bell-less blast furnace, the present invention allows the raw materials to be charged from the center of the furnace toward the side wall of the furnace (while controlling the tilt angle of the distribution chute). , at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve is controlled so that the deposition angle on the surface of the raw material after charging does not exceed 20 degrees. Therefore, 070 in the radial direction inside the blast furnace
The distribution and particle size distribution can be controlled independently and with high precision, which is extremely effective in blast furnace operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の説明図、第2図はコークス層の堆
積角と炉中心部コークス層厚との関係図、第3図は同じ
くコークス層の堆積角と炉の中心部鉱石粒径との関係図
、第4図は分配シュートの傾動角度とモータ軸トルクと
の関係図、第5図は炉壁ガス流強化を目的とした従来の
装入方法と本発明方法との比較説明図、第6図は従来方
法の説明図、第7図は従来方法における混合層の形成状
況の説明図である。 ■は高炉、3は原料、6は炉頂バンカー、7はストソク
レヘル、8は下部ゲート弁、10は分配シュート。 第5図 第6図 中心を陸磁石才tヰも(篇り モー9軸トルク(k象−九ン
Figure 1 is an explanatory diagram of the method of the present invention, Figure 2 is a relationship between the coke layer deposition angle and the coke layer thickness at the center of the furnace, and Figure 3 is a relationship between the coke layer deposition angle and the ore grain size at the center of the furnace. Figure 4 is a diagram showing the relationship between the tilting angle of the distribution chute and the motor shaft torque, and Figure 5 is a comparative illustration of the conventional charging method and the method of the present invention aimed at strengthening the furnace wall gas flow. , FIG. 6 is an explanatory diagram of the conventional method, and FIG. 7 is an explanatory diagram of the state of formation of a mixed layer in the conventional method. ■ is the blast furnace, 3 is the raw material, 6 is the furnace top bunker, 7 is the struthole, 8 is the lower gate valve, and 10 is the distribution chute. Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)ベルレス式高炉に原料を装入するに際し、炉中心
部から炉側壁方向に向って原料を装入すべく分配シュー
トの傾動角度を制御すると共に、装入後の前記原料表面
の堆積角が20度を超えないように前記分配シュートの
傾動角度、各傾動角度における旋回数、下部ゲート弁開
度のうちの少なくとも一つを制御することを特徴とする
ベルレス式高炉の原料装入方法。
(1) When charging raw materials into a bell-less blast furnace, the tilting angle of the distribution chute is controlled so that the raw materials are charged from the center of the furnace toward the side wall of the furnace, and the deposition angle on the surface of the raw materials after charging is controlled. A method for charging materials into a bellless blast furnace, characterized in that at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve is controlled so that the distribution chute does not exceed 20 degrees.
JP1902486A 1986-01-29 1986-01-29 Method for charging starting material into bell-less blast furnace Pending JPS62177109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1902486A JPS62177109A (en) 1986-01-29 1986-01-29 Method for charging starting material into bell-less blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1902486A JPS62177109A (en) 1986-01-29 1986-01-29 Method for charging starting material into bell-less blast furnace

Publications (1)

Publication Number Publication Date
JPS62177109A true JPS62177109A (en) 1987-08-04

Family

ID=11987898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1902486A Pending JPS62177109A (en) 1986-01-29 1986-01-29 Method for charging starting material into bell-less blast furnace

Country Status (1)

Country Link
JP (1) JPS62177109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179899A (en) * 2008-02-15 2008-08-07 Jfe Steel Kk Furnace top bunker of blast furnace and using method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179899A (en) * 2008-02-15 2008-08-07 Jfe Steel Kk Furnace top bunker of blast furnace and using method therefor
JP4591520B2 (en) * 2008-02-15 2010-12-01 Jfeスチール株式会社 Raw material charging method for blast furnace using furnace top bunker and bellless type charging equipment

Similar Documents

Publication Publication Date Title
JPS62177109A (en) Method for charging starting material into bell-less blast furnace
JPS62260010A (en) Charging method of mixed raw material for bell-less type blast furnace
JP3787237B2 (en) Method of charging high-pellet iron ore into a blast furnace
JPS6314808A (en) Raw material charging method for bell-less type blast furnace
JPS62270711A (en) Method for charging raw material to bell-less type blast furnace
EP3896177B1 (en) Method for charging raw material into bell-less blast furnace, and blast furnace operation method
JPS6339641B2 (en)
JPH0225507A (en) Method and apparatus for charging raw material in bell-less type blast furnace
JP3700457B2 (en) Blast furnace operation method
JPS62260009A (en) Charging method for pellet-compounded raw material in bell-less type blast furnace
JPH02401B2 (en)
JPS62218507A (en) Raw material charging method for bell-less blast furnace
JPS61227109A (en) Charging method for blast furnace charge
JP4317505B2 (en) Raw material charging method for bell-type blast furnace
JPH05179320A (en) Raw material charging method for bell-less blast furnace
JP2847995B2 (en) Raw material charging method for bellless blast furnace
JPS62290810A (en) Charging method for different kind raw material for bell-less type blast furnace
JPS62224608A (en) Operating method for bell-less type blast furnace
JPH1088208A (en) Method for charging charged material into bell-less type blast furnace
JPH0213919Y2 (en)
JP2001049312A (en) Method for charging raw material in bell-less blast furnace
JPH03153806A (en) Method for charging raw material into blast furnace
JP2754617B2 (en) Raw material charging method for bell blast furnace
JPS63140008A (en) Method for charging raw material into blast furnace
JP3700458B2 (en) Low Si hot metal manufacturing method