JPS62270711A - Method for charging raw material to bell-less type blast furnace - Google Patents

Method for charging raw material to bell-less type blast furnace

Info

Publication number
JPS62270711A
JPS62270711A JP11339386A JP11339386A JPS62270711A JP S62270711 A JPS62270711 A JP S62270711A JP 11339386 A JP11339386 A JP 11339386A JP 11339386 A JP11339386 A JP 11339386A JP S62270711 A JPS62270711 A JP S62270711A
Authority
JP
Japan
Prior art keywords
charging
furnace
reducing agent
distribution
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11339386A
Other languages
Japanese (ja)
Other versions
JPH0465882B2 (en
Inventor
Yoshimasa Kajiwara
梶原 義雅
Chisato Yamagata
山縣 千里
Shinichi Suyama
須山 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11339386A priority Critical patent/JPS62270711A/en
Publication of JPS62270711A publication Critical patent/JPS62270711A/en
Publication of JPH0465882B2 publication Critical patent/JPH0465882B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To control the O/C distribution in a radial direction in a bell-less type blast furnace with good accuracy by successively increasing the tilting angle of a distributing chute at the time of charging an iron source and reducing agent into the blast furnace. CONSTITUTION:The tilting angle of the distributing chute 10 is controlled in order to charge the iron source 12 from the furnace wall toward the central part of the furnace in the stage of charging the iron source 12 at the the time of charging the iron source 12 and the reducing agent 11 into the bell-less type blast furnace 1. The tilting angle of the distributing chute 10 is so controlled as to charge the reducing agent 11 from the central part of the furnace toward the furnace wall in the stage of charging the reducing agent 11. At least one among the tilting angle of the distributing chute 10, the number of swivelings at respective angles and the opening degree of a lower gate valve 8 are controlled in such a manner that the heaping angle of a stock level 7 of the reducing agent 11 after the charging does not exceed 20 deg..

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明はベルレス式高炉の原料装入方法に関するもので
あり、より詳細には、炉内半径方向の鉄源と還元剤の重
量比(以下ro/CJと略記する)分布の制御性を向上
させることを目的とした原料装入方法に関するものであ
る。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for charging raw materials in a bellless blast furnace, and more specifically, to a method for charging raw materials into a bellless blast furnace. This invention relates to a raw material charging method aimed at improving the controllability of the weight ratio (hereinafter abbreviated as ro/CJ) distribution of a reducing agent.

(従来の技術) 高炉操業においては、高炉炉頂部における装入物のO/
C1粒径等の半径方向の分布を適正に制御して、炉内に
おける半径方向のガス流分布、熱流比分布を所定の範囲
に維持し、鉱石の還元・溶解を安定に行なう必要がある
(Prior art) In blast furnace operation, the O/
It is necessary to appropriately control the radial distribution of C1 grain size, etc., maintain the radial gas flow distribution and heat flow ratio distribution within the furnace within a predetermined range, and stably reduce and melt the ore.

従来のベルレス式高炉の原料装入方法を第4図を用いて
説明する。第4図はベルレス式高炉の炉頂部の原料装入
装置の概略図を示すものであり、高炉1の炉頂部へベル
トコンベア2によって搬送された原料3は、上部ゲート
弁4、上部シール弁5を介して一旦炉頂バンカー6内に
貯蔵され、高炉内の装入物が荷下がりして補給すべき所
定のストックレベル7に到達すると、装入物流量調整用
の下部ゲート弁8および下部シール弁9を開操作し、炉
頂バンカー6内の原料を分配シュート10を介して炉内
に装入するのである。
A method of charging raw materials into a conventional bell-less blast furnace will be explained with reference to FIG. FIG. 4 shows a schematic diagram of the raw material charging device at the top of the furnace of a bellless type blast furnace. Once the charge in the blast furnace is unloaded and reaches a predetermined stock level 7 to be replenished, the lower gate valve 8 for adjusting the charge flow rate and the lower seal The valve 9 is opened and the raw material in the furnace top bunker 6 is charged into the furnace through the distribution chute 10.

(発明が解決しようとする問題点) しかしながら従来の原料装入方法では半径方向のO/C
分布の制御性が不充分であった。
(Problem to be solved by the invention) However, in the conventional raw material charging method, the O/C in the radial direction
Controllability of distribution was insufficient.

すなわち、■鉄源装入時に形成される混合層形成量の変
動、■原料の堆積角の変動、■炉内装入時間の変動、等
によって半径方向のO/C分布が変動し易いことがあげ
られる。以下、その各々について詳述する。
In other words, the O/C distribution in the radial direction is likely to fluctuate due to ■variations in the amount of mixed layer formed when charging the iron source, ■variations in the stacking angle of the raw material, ■variations in the time taken to feed into the furnace, etc. It will be done. Each of them will be explained in detail below.

■鉄源装入時に形成される混合層形成量の変動について 従来の原料装入方法においては、分配シュートの傾動角
度(第4図中のθ:分分配シュート底面と高炉の炉軸と
のなす角度)を所定の角度から順次減少させて、原料を
炉内の炉壁部から順次中心部へ装入していた。従って、
はとんどの場合、装入後の原料の表面形状は第4図に示
すようなM型かあるいはM型の形状を成しており、いず
れも斜面を形成していた。このため還元剤層の上に鉄源
を装入した場合、鉄源落下位置近傍の還元剤層の表層部
の一部が鉄源の衝撃エネルギーによって削りとられて炉
中心方向に移動し、炉中心部に広範囲にわたる鉄源と還
元剤の混合層を形成して堆積するのである。
■ Regarding fluctuations in the amount of mixed layer formed during iron source charging In the conventional material charging method, the tilting angle of the distribution chute (θ in Figure 4: the angle between the bottom of the distribution chute and the axis of the blast furnace) The raw material was charged into the furnace from the wall of the furnace to the center of the furnace by gradually decreasing the angle (angle) from a predetermined angle. Therefore,
In most cases, the surface shape of the raw material after charging was M-shaped or M-shaped as shown in FIG. 4, and in both cases, a slope was formed. For this reason, when the iron source is charged above the reducing agent layer, a part of the surface layer of the reducing agent layer near the iron source falling position is scraped off by the impact energy of the iron source and moves toward the center of the furnace. A mixed layer of iron source and reducing agent is formed in the center and deposited over a wide range of areas.

ベルレス装入法における混合層形成に関して本発明者の
うちの1名は実物大模型を用いた研究を報告している(
「鉄と鋼」第71巻、1985年、175頁)。この混
合層測定例を第5図に示す。
Regarding the formation of a mixed layer in the bellless charging method, one of the inventors has reported a study using a full-scale model (
"Tetsu to Hagane" Vol. 71, 1985, p. 175). An example of this mixed layer measurement is shown in FIG.

本測定例では、鉄源として焼結鉱を、また、還元剤とし
てコークスを用いている。図中、破線は焼結鉱装入前の
コークス層の表面形状であり、実線は焼結鉱装入後のコ
ークス層の表面形状を示す。
In this measurement example, sintered ore is used as the iron source and coke is used as the reducing agent. In the figure, the broken line shows the surface shape of the coke layer before charging the sintered ore, and the solid line shows the surface shape of the coke layer after charging the sintered ore.

中心部近傍には、炉壁部の焼結鉱落下位置近傍に存在し
ていたコークスが移動されて、コークス単味層と焼結鉱
とコークスの混合層が広範囲に形成されている。このよ
うに、コークス層が斜面を形成していると、焼結鉱装入
時にコークス層の表面形状が変化し、半径方向のO/C
分布は、焼結鉱装入前後の原料の表面形状から計算され
るO/C分布とは大きく異なる。更に混合層形成量は分
配シュート傾動角度のスケジュールや装入量などの制御
可能な因子以外にも、原料の粒度構成変動や炉内ガス流
分布変動によるコークス層表面形状変動などの外乱因子
の影響を受ける。従って、従来の斜面を形成させるベル
レス装入法では半径方向のO/C分布の制御性は不充分
だったのである。
In the vicinity of the center, the coke that was present near the sintered ore falling position on the furnace wall is moved, and a single coke layer and a mixed layer of sintered ore and coke are formed over a wide area. In this way, if the coke layer forms a slope, the surface shape of the coke layer changes when charging sintered ore, and the O/C in the radial direction changes.
The distribution is significantly different from the O/C distribution calculated from the surface shape of the raw material before and after charging the sintered ore. Furthermore, the amount of mixed layer formed is influenced by not only controllable factors such as the distribution chute tilt angle schedule and charging amount, but also disturbance factors such as changes in the particle size composition of the raw material and changes in the surface shape of the coke layer due to changes in the gas flow distribution in the furnace. receive. Therefore, the conventional bellless charging method of forming an inclined surface has insufficient controllability of the O/C distribution in the radial direction.

中原料の堆積角の変動について 斜面の形成による半径方向0/C分布に及ぼす第2の問
題点は、装入原料の堆積角の変動によって半径方向のO
/C分布が変動し易いことである。
The second problem with the radial O/C distribution due to the formation of slopes is the variation in the radial O/C distribution due to the variation in the stacking angle of the charged material.
/C distribution is likely to fluctuate.

すなわち、斜面を形成している場合、炉内のガス流分布
の変動によって原料の表層形状が容易に変化するため、
同一の分配シュートの傾動角度スケジュール、同一の装
入量すなわち同一装入条件で炉内に原料を装入したとし
ても、半径方向の0/C分布は変動し易いのである。
In other words, when a slope is formed, the surface shape of the raw material changes easily due to fluctuations in the gas flow distribution within the furnace.
Even if raw materials are charged into the furnace with the same tilting angle schedule of the distribution chute and the same charging amount, that is, the same charging conditions, the 0/C distribution in the radial direction is likely to fluctuate.

■炉内装入時間の変動について 第3の問題点は、斜面の形成の有無にかかわらず、分配
シュート傾動角度を大から小へ順次減少させる従来の装
入法において生じる。すなわち、従来の装入法において
は、単位時間当りの原料層厚増加量の小さい部分、すな
わち炉壁部から単位時間当りの原料層厚増加量の大きい
部分、すなわち中心部へ向けて原料が装入されている。
■Regarding variation in furnace charging time The third problem arises in the conventional charging method in which the distribution chute tilt angle is gradually decreased from large to small, regardless of whether or not a slope is formed. In other words, in the conventional charging method, the raw material is charged from the part where the raw material layer thickness increases per unit time is small, that is, the furnace wall, to the part where the raw material layer thickness increases per unit time, that is, the center part. is included.

このため原料の含有水分量の変動や原料の粒度構成変動
等によって、下部ゲート弁における流出特性が変化し、
炉内への全装入時間が変動する場合、装入末期の原料の
炉内装入位置である中心部における原料の層厚変動が極
めて顕著になるのである。
For this reason, the outflow characteristics at the lower gate valve change due to changes in the moisture content of the raw material, changes in the particle size composition of the raw material, etc.
When the total charging time into the furnace varies, the layer thickness of the raw material at the center, which is the position at which the raw material is introduced into the furnace at the end of charging, becomes extremely variable.

このように分配シュートの傾動角度を鉄源装入時および
還元剤装入時ともに大から小へ順次減少させる従来のベ
ルレス式高炉の原料装入方法にあっては半径方向のO/
C分布の制御性が不充分であった。
In the conventional material charging method for bell-less blast furnaces, in which the tilting angle of the distribution chute is gradually decreased from large to small both when charging the iron source and when charging the reducing agent, the radial O/
Controllability of C distribution was insufficient.

本発明は、上記した問題点を解消し、炉内における半径
方向のO/C分布の制御性の向上を図れるベルレス式高
炉の原料装入方法を提供せんとするものである。
The present invention aims to solve the above-mentioned problems and provide a method for charging materials into a bellless blast furnace, which can improve the controllability of the radial O/C distribution in the furnace.

(問題点を解決するための手段) 本発明に係るベルレス式高炉の原料装入方法は、鉄源の
装入時には炉壁から炉中心部に向って鉄源を装入すべく
分配シュートの1引動角度を制御し、また、還元剤の装
入時には炉中心部から炉壁方向に向って還元剤を装入す
べく分配シュートの傾動角度を制御すると共に、装入後
の還元剤表面の堆積角が20度を超えないように前記分
配シュートの傾動角度、各傾動角度における旋回数、下
部ゲート弁開度のうちの少なくとも一つを制御すること
を要旨と、するものである。
(Means for Solving the Problems) The raw material charging method for a bellless blast furnace according to the present invention is such that when charging the iron source, one of the distribution chutes is charged so that the iron source is charged from the furnace wall toward the center of the furnace. In addition, when charging the reducing agent, the tilting angle of the distribution chute is controlled so that the reducing agent is charged from the center of the furnace toward the furnace wall. The gist is to control at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve so that the angle does not exceed 20 degrees.

本発明においては、前記した問題点を解決するために次
のような方法を採用した。
In the present invention, the following method was adopted to solve the above-mentioned problems.

すなわち、第1の問題点である混合層形成量の変動を防
止するためには、混合層そのものが形成されない条件、
つまり斜面が形成されない条件を現出することである。
That is, in order to prevent the variation in the amount of mixed layer formation, which is the first problem, the conditions under which the mixed layer itself is not formed,
In other words, the goal is to create conditions under which slopes will not form.

前記実物大模型を用いた研究報告によると焼結鉱層の上
にコークスを装入する場合にはコークスの所有する衝撃
エネルギーが小さいために混合層はほとんど形成されな
いことが判明している。従って、混合層形成を抑制する
ためには、鉄源装入時の還元剤層の表面の堆積角を良好
に制御すればよいことがわかる。
According to a research report using the above-mentioned full-scale model, it has been found that when coke is charged onto a sintered ore layer, a mixed layer is hardly formed because the impact energy possessed by the coke is small. Therefore, it can be seen that in order to suppress the formation of a mixed layer, the deposition angle of the surface of the reducing agent layer at the time of charging the iron source should be well controlled.

本発明者等は炉外において実物大模型を製作し、コーク
ス層の堆積角を種々変更して焼結鉱装入を行ない、コー
クス層堆積角の混合層形成量に及ぼす影響を調査した。
The present inventors manufactured a full-scale model outside the furnace, charged sinter with various coke layer deposition angles, and investigated the effect of the coke layer deposition angle on the amount of mixed layer formation.

その結果を第2図に示す。混合層形成量の指針として中
心部のコークス層の層厚増加(コークス単味層の層厚増
加+172×混合層厚増加)を採用した。同図より明ら
かな如くコークス層堆積角は20度を境にして、それを
超えた場合には焼結鉱装入による中心部のコークス層厚
増加が顕著であるが、それ以下では実用上無視しうろこ
とが判明した。以上の結果をまとめると、混合層形成量
の変動を防止するためには、還元剤装入後の堆積角が2
0度を超えないようにすればよいことがわかる。
The results are shown in FIG. The increase in the thickness of the coke layer in the center (increase in the thickness of the single coke layer + 172×increase in the thickness of the mixed layer) was used as a guideline for the amount of mixed layer formed. As is clear from the figure, the coke layer deposition angle reaches a boundary of 20 degrees, and when it exceeds this, the thickness of the coke layer in the center increases significantly due to the charging of sinter, but below that, it is practically ignored. It turned out to be Shiro. To summarize the above results, in order to prevent fluctuations in the amount of mixed layer formation, the deposition angle after charging the reducing agent must be
It can be seen that the temperature should not exceed 0 degrees.

第2の問題点である原料の堆積角の変動を防止するため
には、ガス流分布の変動が防止できれば良いのであるが
、これは実際操業上は困難であり、むしろガス流分布が
変動しても原料の堆積角が変動しない条件を現出する必
要がある。しかして、鉄源は密度が大きく、しかも炉内
堆積角が小さいためガス流分布の変動による堆積角の変
動は受けにくいのであるが、還元剤は密度が小さく、し
かも炉内堆積角が大きいためガス流分布の変動によって
堆積角が変動し易い。従って還元剤の装入後の堆積角を
小さくしてガス流分布変動による堆積角変動を防止する
必要がある。
In order to prevent fluctuations in the stacking angle of the raw material, which is the second problem, it is sufficient to prevent fluctuations in the gas flow distribution, but this is difficult in actual operation, and rather the gas flow distribution fluctuates. It is necessary to create conditions in which the stacking angle of the raw material does not change even when However, since the iron source has a high density and a small deposition angle in the furnace, it is not susceptible to fluctuations in the deposition angle due to changes in gas flow distribution, but the reducing agent has a low density and a large deposition angle in the furnace, so The deposition angle tends to change due to changes in gas flow distribution. Therefore, it is necessary to reduce the deposition angle after charging the reducing agent to prevent fluctuations in the deposition angle due to fluctuations in gas flow distribution.

第3の問題点である炉内装入時間の変動による半径方向
のO/C分布変動を抑制するためには、単位時間当たり
の原料層厚増加量の大きい部位、すなわち中心部から単
位時間当たりの原料層厚増加量の小さい部位、すなわち
炉壁部へ向けて原料を装入すればよい。特に還元剤は含
有水分量の変動が鉄源よりも大きく、炉頂バンカーから
の排出時間、すなわち炉内装入時間の変動が大きいため
に還元剤の装入は中心部から炉壁部に向けて行なう必要
がある。
In order to suppress the third problem, radial O/C distribution fluctuations due to fluctuations in the furnace loading time, it is necessary to The raw material may be charged toward a portion where the increase in material layer thickness is small, that is, toward the furnace wall. In particular, the moisture content of the reducing agent fluctuates more than the iron source, and the discharge time from the furnace top bunker, that is, the time it takes to enter the furnace, fluctuates significantly. Therefore, the reducing agent is charged from the center toward the furnace wall. It is necessary to do it.

以上の考察に基づいて本発明においては、還元剤の装入
時に、■炉中心部から炉壁部にむかって装入すること、
■装入後の原料の表面の堆積角を20度以下とすること
により前述の従来法の問題点を解決するのである。勿論
、鉄源装入時に同様の対策をとれば、更に効果は良くな
るが、本発明の如く還元剤のみに適用しても以下に述べ
るように充分効果を有する。
Based on the above considerations, in the present invention, when charging the reducing agent, (1) charging from the center of the furnace toward the furnace wall;
(2) By setting the deposition angle on the surface of the raw material after charging to be 20 degrees or less, the above-mentioned problems of the conventional method are solved. Of course, if similar measures are taken when charging the iron source, the effect will be even better, but even if it is applied only to the reducing agent as in the present invention, the effect is sufficient as described below.

本発明の構成を第1図に基づいて説明する。なお、第1
図中第4図と同一番号は同一部分あるいは相当部分を示
し、説明を省略する。原料がベルトコンベア2によって
炉頂に搬送され、上部ゲート弁4、上部シール弁5を経
て一旦炉頂バンカー6内に貯蔵され、高炉1内の装入物
が荷下がりして補給すべき所定のストックレベル7に到
達すると下部ゲート弁8および下部シール弁9を開操作
し、分配シュー1−10を介して炉内に装入するフロー
は従来法と同じである。
The configuration of the present invention will be explained based on FIG. In addition, the first
In the figure, the same numbers as in FIG. 4 indicate the same or corresponding parts, and the explanation will be omitted. The raw material is conveyed to the top of the furnace by the belt conveyor 2, passes through the upper gate valve 4 and the upper seal valve 5, and is temporarily stored in the furnace top bunker 6. When the stock level 7 is reached, the lower gate valve 8 and the lower seal valve 9 are opened, and the flow of charging into the furnace via the distribution shoe 1-10 is the same as in the conventional method.

先ず、第1の条件である炉中心部から炉壁部に向かって
装入することを達成するために、分配シュートの傾動角
度を小から大に順次増加するスケジュールを設定する。
First, in order to achieve the first condition of charging from the center of the furnace toward the wall of the furnace, a schedule is set in which the tilt angle of the distribution chute is gradually increased from small to large.

第1図中に示す矢印が分配シュート傾動角度の動きを示
している。次に、第2の条件である装入後の堆積角を2
0度以下にすることを達成するために、分配シュートの
傾動角度、各傾動角度における旋回数、下部ゲート弁開
度のうちの少なくとも一つを任意設定可能とするのであ
る。
The arrows shown in FIG. 1 indicate the movement of the distribution chute tilt angle. Next, the second condition, the pile angle after charging, is set to 2
In order to achieve 0 degrees or less, at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve can be arbitrarily set.

かかる如く行なうことによって炉内には第1図に示すよ
うに還元剤11の堆積角を20度以下にできるのである
By doing so, the deposition angle of the reducing agent 11 in the furnace can be kept at 20 degrees or less, as shown in FIG.

一方、鉄源12は、従来法と同様に分配シュート10の
傾動角度を大から小へと順次減少して炉壁部から中心部
に向けて装入する結果、第1図中に示すように表面形状
はM型をなす、従って、炉中心部のO/Cが低く、炉壁
部のO/Cが高いような半径方向0/C分布を示すこと
になる。
On the other hand, as in the conventional method, the iron source 12 is charged from the furnace wall toward the center by decreasing the tilt angle of the distribution chute 10 from large to small, as shown in FIG. The surface shape is M-shaped, and therefore the O/C distribution in the radial direction is such that the O/C at the furnace center is low and the O/C at the furnace wall is high.

通常の高炉操業においては、中心ガス流を確保するため
、中心部のO/Cが低下した半径方向の0/C分布を指
向しており、本発明は充分その目的にかなうものである
。また、炉壁部に不活性帯が形成されるのを防止するた
め、適度の炉壁ガス流を確保したい場合には、鉄源の表
面形状がM型となるように分配シュート傾動角度、各傾
動角度における旋回数、下部ゲート弁開度のうち少なく
とも一つを制御すればよい。
In normal blast furnace operation, a radial O/C distribution with a reduced O/C in the center is aimed at in order to ensure a central gas flow, and the present invention satisfies that purpose. In addition, in order to prevent the formation of an inert zone on the furnace wall and to ensure an appropriate gas flow on the furnace wall, the distribution chute tilt angle should be adjusted so that the surface shape of the iron source is M-shaped. At least one of the number of turns in the tilting angle and the opening degree of the lower gate valve may be controlled.

本発明においては、鉄源装入前の還元剤層の堆積角が2
0度以下であるため、鉄源装入後の表面形状の制御は従
来法よりもはるかに容易である。
In the present invention, the deposition angle of the reducing agent layer before charging the iron source is 2.
Since the temperature is 0 degrees or less, it is much easier to control the surface shape after charging the iron source than in the conventional method.

また、本発明の効果を充分発揮させるため、高炉の炉頂
部に通常設置されているプロフィル計13で装入後の原
料の堆積角を実測し、所望の堆積角かえられていない場
合には分配シュートの傾動角度、各傾動角度における旋
回数、下部ゲート弁開度のうちの少なくとも一つを制御
して前記プロフィル計13による計測を実施し、その効
果を確認しながら・原料の堆積角を所望の範囲に制御す
ることもできる。更に、原料の炉内装入時間の制御性を
向上すΣために、炉頂バンカー内の原料堆積量のサウン
ジング14による計測や音響法等による原料装入時間の
計測を実施してもよいことは言うまでもない。
In addition, in order to fully demonstrate the effects of the present invention, the stacking angle of the raw material after charging is actually measured using a profile meter 13 normally installed at the top of the blast furnace, and if the desired stacking angle has not been changed, the distribution At least one of the tilting angle of the chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve is controlled, and measurement is performed using the profile meter 13, and while confirming the effect, the desired deposition angle of the raw material is obtained. It can also be controlled within the range of . Furthermore, in order to improve the controllability of the raw material charging time into the furnace, the amount of raw material deposited in the furnace top bunker may be measured by sounding 14, and the raw material charging time may be measured by an acoustic method, etc. Needless to say.

ところで、本発明方法では分配シュートの傾動角度を順
次大きくしてゆく方法を採用しているのであるが、これ
はいかに当業者といえども容易に発明できるものではな
い。
By the way, although the method of the present invention employs a method of gradually increasing the tilting angle of the distribution chute, this method cannot be easily invented even by a person skilled in the art.

すなわち、分配シュートの傾動角度を順次小さくしてゆ
〈従来法にあっては、分配シュート荷重および分配シュ
ート上の原料荷重によって生じるモーメントの方向と、
分配シュートの傾動方向が同一であるため、傾動モータ
にかかる軸トルクが小さく、従って、モータの定格トル
ク許容範囲内である。これに対し、分配シュートの傾動
角度を順次大きくしてゆく方法を採用する本発明方法で
は、分配シュート荷重および分配シュート上の原料の荷
重によって生じるモーメントの方向と分配シュートの傾
動方向が逆である。従って傾動モータにかかる軸トルク
が大きく、モータの定格トルクをを超えることが予想さ
れたため、分配シュートの傾動角度を順次大きくしてゆ
く本発明の如き発明がなされていなかったのである。
That is, by gradually decreasing the tilting angle of the distribution chute (in the conventional method, the direction of the moment caused by the distribution chute load and the material load on the distribution chute,
Since the distribution chutes are tilted in the same direction, the shaft torque applied to the tilting motor is small and therefore within the allowable rated torque range of the motor. In contrast, in the method of the present invention in which the tilting angle of the distribution chute is gradually increased, the direction of the moment generated by the distribution chute load and the load of the raw material on the distribution chute is opposite to the direction of the tilting of the distribution chute. . Therefore, since the shaft torque applied to the tilting motor is large and expected to exceed the rated torque of the motor, an invention such as the present invention in which the tilting angle of the distribution chute is gradually increased has not been made.

しかし、本発明をするにあたり、分配シュートの傾動角
度を順次大きくしてゆく場合のモータ軸の必要トルクを
実測したところ第3図に示すように従来のモータ容量を
20%程度増加すれば常用する分配シュート傾動角度範
囲において、分配シュートの傾動角度を順次大きくして
ゆけることが判明した。
However, in carrying out the present invention, we actually measured the required torque of the motor shaft when the tilting angle of the distribution chute was gradually increased, and as shown in Figure 3, it was found that if the capacity of the conventional motor was increased by about 20%, it could be used regularly. It has been found that the tilting angle of the distribution chute can be gradually increased within the distribution chute tilting angle range.

従って小額の投資で分配シュートの傾動角度を順次大き
くしてゆく本発明が実施できるのである。
Therefore, the present invention in which the tilting angle of the distribution chute is gradually increased can be implemented with a small investment.

(作   用) 本発明は、ベルレス式高炉に鉄源と還元剤を装入するに
際し、鉄源の装入時には炉壁から炉中心部に向って鉄源
を装入すべ(分配シュートの傾動角度を制御し、また、
還元剤の装入時には炉中心部から炉壁方向に向って還元
剤を装入すべ(分配シュートの傾動角度を制御すると共
に、装入後の還元剤表面の堆積角が20度を超えないよ
うに前記分配シュートの傾動角度、各傾動角度における
旋回数、下部ゲート弁開度のうちの少なくとも一つを制
御するものである為、炉内における半径方向の070分
布を精度よく制御できる。
(Function) When charging an iron source and a reducing agent to a bell-less blast furnace, the present invention is designed to charge the iron source from the furnace wall toward the center of the furnace (tilting angle of the distribution chute). control and also
When charging the reducing agent, charge it from the center of the furnace toward the furnace wall (control the tilt angle of the distribution chute and make sure that the angle of accumulation on the surface of the reducing agent after charging does not exceed 20 degrees). Since at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve is controlled, the 070 distribution in the radial direction in the furnace can be controlled with high precision.

(実 施 例) 本発明の効果を確認するため、炉外において前述の実物
大模型を用いて装入物分布試験を実施した。試験に使用
した鉄源は実際の高炉で使用している焼結鉱を、また還
元剤は同じくコークスを使用した。また試験における原
料の装入条件は、荷下がりがないことおよび送風がない
ことを除けば実際の高炉と同一の条件であり、半径方向
の0/C分布は装入後の原料をエポキシ系樹脂で固化し
て装置外にとりだし、計測した。
(Example) In order to confirm the effects of the present invention, a charge distribution test was conducted using the above-mentioned full-scale model outside the furnace. The iron source used in the test was sintered ore used in actual blast furnaces, and the reducing agent was coke. In addition, the charging conditions for raw materials in the test were the same as those in an actual blast furnace, except that there was no unloading and no air blowing. It was solidified, taken out of the device, and measured.

本発明を適用すれば、半径方向0/C分布を精度良く制
御できる。例えば従来装入法をC(112233445
56677) 、O(11223344556677)
と表記する。()内は分配シュートの傾動角度の大きさ
と順序を示しており数字の小さい方が、分配シュートの
傾動角度が大きく設定しである。旋回数は14旋回であ
った。
By applying the present invention, the radial O/C distribution can be controlled with high precision. For example, the conventional charging method was changed to C (112233445
56677), O(11223344556677)
It is written as. The numbers in parentheses indicate the magnitude and order of the tilting angle of the distribution chute, and the smaller the number, the larger the tilting angle of the distribution chute is set. The number of turns was 14.

一方、前記装入法と同一の半径方向0/C分布を得るた
めの本発明装入法は、C(1010998876543
211)、O(11112222333345)であっ
た。
On the other hand, the charging method of the present invention for obtaining the same radial 0/C distribution as the charging method described above uses C(1010998876543
211), O(11112222333345).

このような状態で使用するコークスの水分含有量を1.
5重量%から6.5重量%に増加して装入試験を実施し
た。
The moisture content of the coke used under these conditions is 1.
A charging test was carried out by increasing the amount from 5% by weight to 6.5% by weight.

従来の装入法においては、同一の分配シュートの傾動角
度スケジュール及び下部ゲート弁開度で装入したために
装入は14旋回では完了せず、約6秒超過した。このた
め、最終の分配シュートの傾動角度7でコークスが炉中
心部から中心部にかけて余分に装入され、中心部のコー
クス層厚が増加した。また、焼結鉱装入後の混合層形成
による中心部のコークス層厚増加量は若干低下した。こ
れらの総合結果として、下記表に示すように炉中心部の
O/Cは1.2から0.9に低下した。
In the conventional charging method, charging was performed using the same distribution chute tilting angle schedule and lower gate valve opening, so charging was not completed in 14 turns and took about 6 seconds longer. Therefore, at the final tilt angle of 7 of the distribution chute, extra coke was charged from the center to the center of the furnace, and the thickness of the coke layer in the center increased. In addition, the amount of increase in the thickness of the coke layer in the center due to the formation of a mixed layer after charging the sintered ore decreased slightly. As a comprehensive result, as shown in the table below, the O/C at the center of the furnace decreased from 1.2 to 0.9.

これに対して本発明による装入方法では、コークス水分
含有量の増加による装入コークス堆積量の増加を炉頂バ
ンカーに設置しであるサウンジングで検知し、コークス
水分増加前と同一のO/C分布を得るために下部ゲート
弁の開度を5%増加した。この結果、コークス装入時間
は106秒とほぼ同一に維持でき、コークス装入後の表
面の堆積角を20度以下に維持でき、焼結鉱装入時の混
合層形成による中心部のコークス層の層厚増加量は、コ
ークス水分含有量増加前と同じく10fiと極めて抑制
できた。これらの結果、中心部のO/Cは、1.1とコ
ークス水分含有量変更前とほぼ同一に維持でき、本発明
の有効性が確認できた。
On the other hand, in the charging method according to the present invention, an increase in the amount of charged coke deposited due to an increase in coke moisture content is detected by a sounding device installed in the furnace top bunker, and the same O/C ratio as before the increase in coke moisture is detected. The opening of the lower gate valve was increased by 5% to obtain the distribution. As a result, the coke charging time can be maintained almost the same at 106 seconds, the surface deposition angle after coke charging can be maintained at 20 degrees or less, and the coke layer in the center can be maintained due to the formation of a mixed layer when charging the sintered ore. The layer thickness increase was extremely suppressed to 10 fi, the same as before the increase in coke water content. As a result, the O/C in the center could be maintained at 1.1, which is almost the same as before changing the coke water content, confirming the effectiveness of the present invention.

以上のように本発明を用いて還元剤装入時に分配シュー
トの傾動角度を小から大となるように制御し、かつ還元
剤装入後の表面の堆積角を20度以下になるように分配
シュートの傾動角度、各傾動角度における旋回数、下部
ゲート弁開度のうちの少なくとも一つを制御することに
よって炉内における半径方向0/C分布の制御性を向上
できる。
As described above, the present invention is used to control the tilting angle of the distribution chute from small to large when charging the reducing agent, and to distribute the distribution so that the deposition angle on the surface after charging the reducing agent is 20 degrees or less. Controllability of the radial O/C distribution in the furnace can be improved by controlling at least one of the tilting angle of the chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve.

(発明の効果) 以上説明したように本発明は、ベルレス式高炉に鉄源と
還元剤を装入するに際し、鉄源の装入時には炉壁から炉
中心部に向って鉄源を装入すべく分配シュートの傾動角
度を制御し、また、還元剤の装入時には炉中心部から炉
壁方向に向って還元剤を装入すべく分配シュートの傾動
角度を制御すると共に、装入後の還元剤表面の堆積角が
20度を超えないように前記分配シュートの傾動角度、
各傾動角度における旋回数、下部ゲート弁開度のうちの
少な(とも一つを制御するものである為、炉内における
半径方向のO/C分布を精度よく制御でき、高炉の安定
操業に大なる効果を奏する。
(Effects of the Invention) As explained above, the present invention has the advantage that when charging an iron source and a reducing agent into a bellless blast furnace, the iron source is charged from the furnace wall toward the center of the furnace. The tilting angle of the distribution chute is controlled so that the reducing agent is charged from the center of the furnace toward the furnace wall when charging the reducing agent. the tilting angle of the distribution chute so that the deposition angle on the agent surface does not exceed 20 degrees;
Since it controls only one of the number of rotations at each tilting angle and the opening degree of the lower gate valve, the radial O/C distribution in the furnace can be controlled with precision, which is very important for stable operation of the blast furnace. It has a certain effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の説明図、第2図はコークス層の堆
積角と炉中心部のコークス層の層厚増加量との関係図、
第3図は分配シュートの傾動角度とモータ軸トルクとの
関係図、第4図は従来方法の説明図、第5図は従来方法
における混合層−の、形成状況の説明図である。 1は高炉、7はストックレベル、8は下部ゲート弁、1
0は分配シュート、11は還元剤、12は鉄源。
FIG. 1 is an explanatory diagram of the method of the present invention, and FIG. 2 is a diagram of the relationship between the deposition angle of the coke layer and the amount of increase in the thickness of the coke layer in the center of the furnace.
FIG. 3 is a diagram showing the relationship between the tilting angle of the distribution chute and the motor shaft torque, FIG. 4 is an explanatory diagram of the conventional method, and FIG. 5 is an explanatory diagram of the state of formation of the mixed layer in the conventional method. 1 is the blast furnace, 7 is the stock level, 8 is the lower gate valve, 1
0 is a distribution chute, 11 is a reducing agent, and 12 is an iron source.

Claims (1)

【特許請求の範囲】[Claims] (1)ベルレス式高炉に鉄源と還元剤を装入するに際し
、鉄源の装入時には炉壁から炉中心部に向って鉄源を装
入すべく分配シュートの傾動角度を制御し、また、還元
剤の装入時には炉中心部から炉壁方向に向って還元剤を
装入すべく分配シュートの傾動角度を制御すると共に、
装入後の還元剤表面の堆積角が20度を超えないように
前記分配シュートの傾動角度、各傾動角度における旋回
数、下部ゲート弁開度のうちの少なくとも一つを制御す
ることを特徴とするベルレス式高炉の原料装入方法。
(1) When charging the iron source and reducing agent into a bell-less blast furnace, the tilt angle of the distribution chute is controlled so that the iron source is charged from the furnace wall toward the center of the furnace. When charging the reducing agent, the tilting angle of the distribution chute is controlled so that the reducing agent is charged from the center of the furnace toward the furnace wall, and
At least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve is controlled so that the deposition angle on the surface of the reducing agent after charging does not exceed 20 degrees. A method for charging raw materials into a bellless blast furnace.
JP11339386A 1986-05-16 1986-05-16 Method for charging raw material to bell-less type blast furnace Granted JPS62270711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11339386A JPS62270711A (en) 1986-05-16 1986-05-16 Method for charging raw material to bell-less type blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11339386A JPS62270711A (en) 1986-05-16 1986-05-16 Method for charging raw material to bell-less type blast furnace

Publications (2)

Publication Number Publication Date
JPS62270711A true JPS62270711A (en) 1987-11-25
JPH0465882B2 JPH0465882B2 (en) 1992-10-21

Family

ID=14611169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11339386A Granted JPS62270711A (en) 1986-05-16 1986-05-16 Method for charging raw material to bell-less type blast furnace

Country Status (1)

Country Link
JP (1) JPS62270711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402125B1 (en) * 2001-11-15 2003-10-17 주식회사 포스코 Method and apparatus for charging cokes and ores in blast furnace after amending inner walls of the furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402125B1 (en) * 2001-11-15 2003-10-17 주식회사 포스코 Method and apparatus for charging cokes and ores in blast furnace after amending inner walls of the furnace

Also Published As

Publication number Publication date
JPH0465882B2 (en) 1992-10-21

Similar Documents

Publication Publication Date Title
JPS62270711A (en) Method for charging raw material to bell-less type blast furnace
JPS62260010A (en) Charging method of mixed raw material for bell-less type blast furnace
JP4296912B2 (en) Raw material charging method for vertical furnace
JPS62177109A (en) Method for charging starting material into bell-less blast furnace
JPS6314808A (en) Raw material charging method for bell-less type blast furnace
JPS62260009A (en) Charging method for pellet-compounded raw material in bell-less type blast furnace
JP3700457B2 (en) Blast furnace operation method
JP2001279309A (en) Method for charging raw material into blast furnace
JP3700458B2 (en) Low Si hot metal manufacturing method
JPH0225507A (en) Method and apparatus for charging raw material in bell-less type blast furnace
JPS62290809A (en) Raw material charging method for blast furnace
JPH05179320A (en) Raw material charging method for bell-less blast furnace
JPS6017005A (en) Charging method of raw material in bell-less type blast furnace
JPS62224608A (en) Operating method for bell-less type blast furnace
JPS61227109A (en) Charging method for blast furnace charge
JP4680344B2 (en) Raw material charging method to blast furnace
JPH04235206A (en) Method and apparatus for charging raw material in bellless blast furnace
JPS62290810A (en) Charging method for different kind raw material for bell-less type blast furnace
JPH02401B2 (en)
JP3978105B2 (en) Raw material charging method for blast furnace
JP2847995B2 (en) Raw material charging method for bellless blast furnace
JP2933468B2 (en) Method of charging molded coke into blast furnace
JPS62218507A (en) Raw material charging method for bell-less blast furnace
JPS6339642B2 (en)
JP2004204322A (en) Method for charging raw material for blast furnace

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term