JPS62260010A - Charging method of mixed raw material for bell-less type blast furnace - Google Patents

Charging method of mixed raw material for bell-less type blast furnace

Info

Publication number
JPS62260010A
JPS62260010A JP10423486A JP10423486A JPS62260010A JP S62260010 A JPS62260010 A JP S62260010A JP 10423486 A JP10423486 A JP 10423486A JP 10423486 A JP10423486 A JP 10423486A JP S62260010 A JPS62260010 A JP S62260010A
Authority
JP
Japan
Prior art keywords
furnace
mixed raw
raw material
charging
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10423486A
Other languages
Japanese (ja)
Other versions
JPH0510402B2 (en
Inventor
Yoshimasa Kajiwara
梶原 義雅
Takanobu Inada
隆信 稲田
Tsutomu Tanaka
努 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10423486A priority Critical patent/JPS62260010A/en
Publication of JPS62260010A publication Critical patent/JPS62260010A/en
Publication of JPH0510402B2 publication Critical patent/JPH0510402B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To stabilize a blast furnace operation by controlling the ratio between an iron source and reducing agent in mixed raw materials to be charged and controlling the operation of a distributing chute, thereby controlling the charging direction and heaping angle of the mixed raw materials. CONSTITUTION:The mixed raw materials for iron source and reducing agent fed out of storage tanks 13, 14 are charged through a charging belt conveyor 2 and a furnace top bunker 6 into the bell-lens type blast furnace 1 via the distributing chute 10. The weight ratio of the iron source and reducing agent in the mixed raw materials is controlled to be constant or with lapse of time by adjusting feeding valves (not shown) of the tanks 13, 14, a lower gate valve 8 of the bunker 6, etc. The angle thetaof inclination of the distributing chute 10 is so controlled as to increase in an arrow direction so that the raw materials are charged in the furnace wall direction from the central part of the furnace. At least one of the angle of inclination of the distributing chute 10, the number of swiveling at the respective angles of inclination and the lower gate valve are controlled at the same instant to control the heaping angle of the mixed raw materials after charging in the furnace to <=20 deg., by which the mixed raw materials are uniformly mixed in the furnace.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ベルレス式高炉の原料装入方法に係るもので
あり、より詳細には、炉内鉄源と還元剤を混合した原料
を装入する際に、炉内における装入原料の堆積角、半径
方向の鉄源と還元剤の重量比(以下ro/CJという)
分布、半径方向の粒径分布等のいわゆる装入物分布の制
御性を向上することを目的とした混合原料の装入方法に
関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for charging raw materials into a bellless blast furnace, and more specifically, the present invention relates to a method for charging raw materials into a bellless blast furnace. When charging, the deposition angle of the charging material in the furnace, the weight ratio of the iron source to the reducing agent in the radial direction (hereinafter referred to as ro/CJ)
The present invention relates to a method for charging mixed raw materials with the aim of improving the controllability of so-called charge distribution, such as distribution and radial particle size distribution.

(従来の技術およびその問題点) 高炉操業においては、高炉炉頂部における装入物のO/
C1粒径等の半径方向の分布を適正に制御して、炉内に
おける半径方向のガス流分布、熱流比分布を所定の範囲
に維持し、鉱石の還元・溶解を安定に行なう必要がある
(Prior art and its problems) In blast furnace operation, the O/
It is necessary to appropriately control the radial distribution of C1 grain size, etc., maintain the radial gas flow distribution and heat flow ratio distribution within the furnace within a predetermined range, and stably reduce and melt the ore.

ところで、従来の鉄源と還元剤とを炉内に交互に装入す
るいわゆる層状装入法においては、1000℃以上の高
温域において、鉄源が軟化・融着して、いわゆる融着帯
を形成し、ガスはコークス層を介して半径方向に再分配
されるため、融着帯形状を適正範囲に維持することが重
要であった。しかして、融着帯形状は炉内における半径
方向のガス流分布・熱流比分布によって決定されるから
、融着帯形状を制御する手段として、装入物分布制御が
重要であった。
By the way, in the conventional so-called layered charging method in which iron source and reducing agent are charged alternately into a furnace, the iron source softens and fuses in a high temperature range of 1000°C or higher, forming a so-called cohesive zone. It was important to maintain the cohesive zone shape within the proper range as the gas is redistributed radially through the coke layer. Since the cohesive zone shape is determined by the radial gas flow distribution and heat flow ratio distribution in the furnace, charge distribution control has been important as a means of controlling the cohesive zone shape.

しかし、実操業において融着帯形状を装入物分布制御で
適正に精度良く制御することは困難であり、しばしば中
間部で融着帯が必要以上に低下した場合や炉壁部で融着
帯が必要以上に低下した場合には、炉内原料の異常荷下
がり現象(スリップ・棚吊)が生じ、高炉の安定操業が
達成できなかった。
However, in actual operation, it is difficult to properly and accurately control the cohesive zone shape using charge distribution control, and it is often the case that the cohesive zone is lower than necessary in the middle part or the cohesive zone is formed on the furnace wall. If the value of the blast furnace was lower than necessary, an abnormal unloading phenomenon (slip/hanging) of the raw material in the furnace occurred, and stable operation of the blast furnace could not be achieved.

この問題を解決するため国分らは「鉄と鋼」第70巻4
号、1984年350頁に、鉄源と還元剤を完全に混合
して炉内に装入する方法を提案している。この完全混合
装入においては鉄源の伝熱面積が大巾に増加して、融着
帯の巾は層状装入時の約1/100と推算されており、
事実上、融着帯はないものとみなして良い。従って層状
装入時に問題となった融着帯形状異常による荷下がり悪
化の問題は、完全混合装入時には消滅する。更に、完全
混合装入時には通気性の改善というメリットもある。即
ち、シャフト部における通気性は層状装入時と大差ない
ものの、炉下部の通気性が、融着層の通気性の改善によ
って大巾に向上するのである。この混合装入時の融着層
の通気性の改善は、鉄源中の未還元FeOを主成分とす
るスラグが、隣在するコークスと直ちに溶融還元反応を
生じる結果、FeO系スラグのホールドアツプ量が減少
するためである。そして、通気性の改善によって高炉の
安定操業が達成できるばかりでなく、炉内への送風可能
量が増加し、高炉の生産量を増加することも可能である
In order to solve this problem, Kokubun et al.
No., 1984, p. 350, proposes a method in which the iron source and reducing agent are completely mixed and charged into the furnace. In this completely mixed charging, the heat transfer area of the iron source increases greatly, and the width of the cohesive zone is estimated to be about 1/100 of that of layered charging.
In fact, it can be considered that there is no cohesive zone. Therefore, the problem of worsening loading due to abnormal cohesive zone shape, which was a problem during layered charging, disappears when completely mixed charging is performed. Furthermore, there is also the advantage of improved air permeability during completely mixed charging. That is, although the air permeability in the shaft portion is not much different from that when charging in layers, the air permeability in the lower part of the furnace is greatly improved by improving the air permeability of the fusion layer. This improvement in the permeability of the cohesive layer during mixed charging is due to the fact that the slag whose main component is unreduced FeO in the iron source immediately undergoes a melt-reduction reaction with the adjacent coke, resulting in an increase in the hold up of the FeO-based slag. This is because the amount decreases. By improving air permeability, not only can the stable operation of the blast furnace be achieved, but also the amount of air that can be blown into the furnace increases, making it possible to increase the production volume of the blast furnace.

このように鉄源と還元剤とを完全に混合して炉内に装入
する方法は多くのメリットをもっているが、以下に示す
問題があるために、実操業には適用されていなかった。
Although this method of completely mixing the iron source and reducing agent and charging the mixture into the furnace has many advantages, it has not been applied to actual operations due to the following problems.

第1の問題は完全混合された原料が炉内装入時に再分離
し、炉内に偏析して堆積するため、炉内の半径方向のO
/C分布が均一とはならないことである。
The first problem is that completely mixed raw materials re-separate when entering the furnace, and are segregated and deposited inside the furnace.
/C distribution is not uniform.

第7図は従来の完全混合装入に使用しようとしたベルレ
ス式高炉の原料装入装置の概略図を示すものである。高
炉1の炉頂部へベルトコンベア2によって搬送された混
合原料3は、上部ゲート弁4、上部シール弁5を介して
一旦炉頂バンカー6内に貯蔵され、高炉内の装入物が荷
下がりして補給すべき所定のストックレベル7に到達す
ると、装入物流量調整用の下部ゲート弁8および下部シ
ール弁9を開操作し、炉頂バンカー6内の混合原料3を
分配シュート10を介して炉内に装入するのである。
FIG. 7 shows a schematic diagram of a material charging device for a bellless blast furnace intended to be used for conventional complete mixed charging. The mixed raw material 3 conveyed to the top of the blast furnace 1 by the belt conveyor 2 is temporarily stored in the top bunker 6 through the upper gate valve 4 and the upper seal valve 5, and the charge in the blast furnace is unloaded. When the predetermined stock level 7 to be replenished is reached, the lower gate valve 8 and the lower seal valve 9 for adjusting the charge flow rate are opened, and the mixed raw material 3 in the furnace top bunker 6 is passed through the distribution chute 10. It is charged into the furnace.

しかし分配シュートの傾動角度(θ)は第7図中に示す
ように、混合原料装入初期には大とし、装入末期には小
として、混合原料を炉壁部から炉中心方向に向かって装
入するため、前回炉内装入された混合原料で形成された
斜面上に今回の混合原料が装入され、斜面上で鉄源と還
元剤の分離が生じ、第7図中に模式的に示すように、炉
中心部および炉壁部に還元剤11が偏在し、炉中心部お
よび炉壁部のO/Cは不可避的に低下することになり、
半径方向に均一なO/C分布を得ることができない。
However, as shown in Figure 7, the tilting angle (θ) of the distribution chute is large at the beginning of charging the mixed raw material and small at the end of charging, so that the mixed raw material is directed from the furnace wall toward the center of the furnace. In order to charge, the mixed raw material this time is charged onto the slope formed by the mixed raw material that was previously loaded into the furnace, and the iron source and reducing agent are separated on the slope, as shown schematically in Figure 7. As shown, the reducing agent 11 is unevenly distributed in the furnace center and the furnace wall, and the O/C of the furnace center and the furnace wall inevitably decreases.
It is not possible to obtain a uniform O/C distribution in the radial direction.

第2の問題は、半径方向0/C分布の微調整が困難であ
ることである。即ち、従来の完全混合装入法においては
、分配シュートに供給される原料は、事前に鉄源と還元
剤とが完全に混合されており、炉内のガス流分布や荷下
がり速度分布が一定であれば、炉内の半径方向のO/C
分布は唯一の分布しかできない。しかし実操業において
は、炉壁レンガの損耗等を防止するため、炉壁熱負荷を
低下するO/C分布、即ち炉壁部でO/Cを平均値より
少し高くしたい場合があったり、あるいは、中心部のガ
ス流を確保するために中心部の○/Cを平均値より低下
したい場合がある。このような場合に、バンカー内に鉄
源と還元剤を完全に混合して均一化した状態で装入する
従来の完全装入法では、半径方向の070分布の微調整
は困難であった。
The second problem is that fine adjustment of the radial O/C distribution is difficult. In other words, in the conventional fully mixed charging method, the raw material supplied to the distribution chute is completely mixed with the iron source and reducing agent in advance, and the gas flow distribution and unloading rate distribution in the furnace are constant. If so, the radial O/C in the furnace
There can only be one distribution. However, in actual operation, in order to prevent the wear and tear of the furnace wall bricks, there are cases where it is desired to reduce the O/C distribution to reduce the furnace wall heat load, that is, to make the O/C slightly higher than the average value at the furnace wall. In some cases, it is desired to lower the ○/C in the center from the average value in order to ensure gas flow in the center. In such cases, it is difficult to fine-tune the 070 distribution in the radial direction using the conventional complete charging method in which the iron source and reducing agent are completely mixed and charged into the bunker in a uniform state.

以上詳述したように、従来のベルレス式高炉の混合原料
の装入方法においては、炉内原料が斜面を形成すること
による半径方向0/C分布の不均一性および半径方向0
/C分布の微調整が困難であるという問題があった。
As detailed above, in the conventional method of charging mixed raw materials into a bell-less blast furnace, the raw materials in the furnace form slopes, resulting in uneven radial 0/C distribution and radial 0/C distribution.
There was a problem in that fine adjustment of the /C distribution was difficult.

本発明は従来の完全混合装入法に関する前記問題をすべ
て解決するためになさたものであり、第1の問題点であ
る炉内原料が斜面を形成することに起因する半径方向0
/C分布の不均一性を解消するために、分配シュートの
傾動角度を制御して、混合原料を炉中心部から炉壁方向
に向かって装入するとともに、分配シュートの傾動角度
、各傾動角変における旋回数、下部ゲート弁開度のうち
少なくとも一つを制御して、装入後の炉内原料の堆積角
が20度を超えないようにすること、および、第2の問
題点である半径方向0/C分布の微調整の困難性を解消
するために、分配シュートに供給される混合原料中のO
/Cを経時的に制御することを目的とするものである。
The present invention was made in order to solve all of the above-mentioned problems regarding the conventional complete mixing charging method, and the first problem is that the radial zero 0.
In order to eliminate the non-uniformity of /C distribution, the tilting angle of the distribution chute is controlled to charge the mixed raw material from the center of the furnace toward the furnace wall, and the tilting angle of the distribution chute and each tilting angle are The second problem is to control at least one of the number of revolutions in the furnace and the opening degree of the lower gate valve so that the deposition angle of the raw material in the furnace after charging does not exceed 20 degrees. In order to overcome the difficulty in fine-tuning the radial O/C distribution, the O
The purpose is to control /C over time.

(問題点を解決するための手段) 本発明は、ベルレス式高炉に鉄源と還元剤の混合原料を
装入する方法において、前記混合原料中の鉄源と還元剤
の重量比率を一定あるいは経時的に制御し、かつ、分配
シュートの傾動角度を制御して前記混合原料を炉中心部
から炉壁方向に装入するとともに、炉内製人後の混合原
料の堆積角度が20度を超えないように分配シュートの
傾動角度、各傾動角度における旋回数、下部ゲート弁開
度のうち少なくとも一つを制御することを要旨とするベ
ルレス式高炉の混合原料装入方法である。
(Means for Solving the Problems) The present invention provides a method for charging a mixed raw material of an iron source and a reducing agent into a bellless blast furnace, in which the weight ratio of the iron source and reducing agent in the mixed raw material is kept constant or over time. and the tilting angle of the distribution chute to charge the mixed raw material from the center of the furnace toward the furnace wall, and the deposition angle of the mixed raw material after production in the furnace does not exceed 20 degrees. This is a mixed raw material charging method for a bellless blast furnace, the gist of which is to control at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve.

本発明の構成を第1図に基づいて説明する。原料がベル
トコンベア2によって炉頂に搬送され、上部ゲート弁4
、上部シール弁5を経て、炉頂バンカー6内に一旦貯蔵
され、高炉内の装入物のレベルが所定のストックレベル
7に到達すると、下部ゲート弁8、下部シール弁9を開
口し、分配シュート10を介して炉内に原料を装入する
フローは従来発明と同じである。
The configuration of the present invention will be explained based on FIG. The raw material is conveyed to the top of the furnace by a belt conveyor 2, and the upper gate valve 4
, the charge is temporarily stored in the top bunker 6 through the upper seal valve 5, and when the level of the charge in the blast furnace reaches a predetermined stock level 7, the lower gate valve 8 and the lower seal valve 9 are opened and the charge is distributed. The flow of charging raw materials into the furnace through the chute 10 is the same as in the conventional invention.

本発明の特徴は、装入後の炉内原料の堆積角を20度を
超えないようにするため、第1図中に矢印で示すように
分配シュートの傾動角度を小から大に順次増加するスケ
ジュールを設定して、混合原料を炉中心部から炉壁方向
に向かって装入し、かつ、装入中に分配シュートの傾動
角度、各傾動角度における旋回数、下部ゲート弁開度の
うち少なくとも一つを制御することである。なお装入後
の原料の堆積角を20度以下にした理由は、20度以下
であれば、装入時の原料の転がりが実用上無視でき、斜
面が実用上形成されないとみなされるためであり、この
20度以下という値は本発明者等の実験によって得られ
た値である。
The feature of the present invention is that the tilting angle of the distribution chute is gradually increased from small to large as shown by the arrow in FIG. Set a schedule, charge the mixed raw materials from the center of the furnace toward the furnace wall, and during charging, at least the following: the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve. One is to control. The reason why the stacking angle of the raw material after charging is set to 20 degrees or less is that if it is 20 degrees or less, the rolling of the raw material during charging can be practically ignored, and it is considered that no slope will be formed in practice. , this value of 20 degrees or less was obtained through experiments by the inventors.

すなわち、本発明者等は炉外において実物大模型を製作
し、コークス層の堆積角を種々変更して、鉱石装入を行
ない、混合層形成量および半径方向の粒径分布を測定し
た。その結果の一例を第2図、第3図に示す。第2図は
コークス層の堆積角と中心部のコークス層の層厚増加(
コークス単味層の層厚増加+172×混合層層厚増加)
の開発を示す図であり、同図より明らかな如くコークス
堆積角は20度を境にして、それを超えた場合には鉱石
装入による中心部のコークス層厚増加が顕著であるが、
それ以下では実用上無視しうにことが判明した。即ち半
径方向のO/C分布制御性の向上のためには装入後の原
料の堆積角を20度以下とすることが必要なのである。
That is, the present inventors manufactured a full-scale model outside the furnace, changed the deposition angle of the coke layer variously, charged ore, and measured the amount of mixed layer formation and the radial particle size distribution. Examples of the results are shown in FIGS. 2 and 3. Figure 2 shows the deposition angle of the coke layer and the increase in the thickness of the coke layer in the center (
Increase in thickness of single coke layer + 172 x increase in thickness of mixed layer)
As is clear from the figure, the coke deposition angle reaches a boundary of 20 degrees, and when it exceeds this, the thickness of the coke layer in the center increases significantly due to ore charging.
It turns out that anything less than that can be ignored in practice. That is, in order to improve the controllability of O/C distribution in the radial direction, it is necessary to set the stacking angle of the raw material after charging to 20 degrees or less.

第3図はコークス層の堆積角と中心部の鉱石(試験は全
量焼結鉱で実施した)の粒径の関係を示す図である。コ
ークス堆積角は20度を境にして、それを超えた場合に
は斜面での再分級によって中心部の鉱石粒径の増加が顕
著であるが、それ以下では、鉱石粒径の増加は実用上無
視しうるほど小さいことが明らかである。その理由は、
斜面の堆積角が充分小さく、装入時に当該旋回に対応す
る装入物の山が形成されても、原料が斜面を移動しない
ためと考えられる。即ち半径方向の粒径分布制御性の向
上のためには装入後の原料の堆積角を20度以下とする
ことが必要なのである。
FIG. 3 is a diagram showing the relationship between the deposition angle of the coke layer and the grain size of the ore in the center (the test was carried out using all sintered ore). The coke deposition angle has a boundary of 20 degrees, and when this is exceeded, the ore grain size in the center increases significantly due to reclassification on the slope, but below this, the ore grain size does not increase in practical terms. It is clear that it is so small that it can be ignored. The reason is,
This is thought to be because the stacking angle of the slope is sufficiently small, and even if a pile of charge material corresponding to the swirl is formed during charging, the raw material does not move along the slope. That is, in order to improve the controllability of the particle size distribution in the radial direction, it is necessary to set the stacking angle of the raw material after charging to 20 degrees or less.

以上述べたように半径方向のO/C分布および半径方向
の粒径分布の制御の大幅な向上のためには、装入後の原
料の表面の堆積角を20度以下とする必要がある。
As described above, in order to significantly improve the control of the radial O/C distribution and the radial particle size distribution, the deposition angle on the surface of the raw material after charging needs to be 20 degrees or less.

なお、原料の堆積角を実測し、当該堆積角が20度以下
となっているか否かは、高炉の炉頂部に通常設置されて
いるプロフィル計で確認することができる。プロフィル
計の型式はワイヤー〇先端にとりつけた重錐を堆積原料
の表面に降下させて計測する接触式でも、また、マイク
ロ波やレーザーを炉壁部または炉内原料層上の空間に設
置された発振器から発振し、原料堆積面で反射された反
射波を受信して計測する非接触弐でもよい。
Incidentally, the deposition angle of the raw material is actually measured, and whether or not the deposition angle is 20 degrees or less can be confirmed using a profile meter normally installed at the top of the blast furnace. Profile meters can be of the contact type, in which a heavy cone attached to the tip of a wire is lowered onto the surface of the deposited raw material, or the profile meter can be a contact type, in which a heavy cone attached to the tip of a wire is lowered to the surface of the deposited material, or a profile meter is a contact type, in which a heavy cone attached to the tip of a wire is lowered to the surface of the deposited material. It may also be a non-contact method that receives and measures the reflected waves oscillated from an oscillator and reflected on the raw material deposition surface.

しかして、装入後の原料の堆積角が20度を超えそうな
場合には、分配シュートの傾動角度、各傾動角度におけ
る旋回数、下部ゲート弁開度のうちの少なくとも一つを
制御し、前記プロフィル計による計測を実施してその効
果を確認しながら堆積角を20度以下に維持すべく制御
するのである。
If the stacking angle of the raw material after charging is likely to exceed 20 degrees, control at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve, The deposition angle is controlled to be maintained at 20 degrees or less while measuring the profile using the profile meter and confirming its effectiveness.

また、本発明方法では分配シュートの傾動角度を順次大
きくしてゆくのであるが、これはいかに当業者といえど
も容易に発明できるものではない。
Further, in the method of the present invention, the tilting angle of the distribution chute is gradually increased, but this cannot be easily invented even by a person skilled in the art.

すなわち、分配シュートの傾動角度を順次小さくしてゆ
〈従来法にあっては、分配シュート荷重および分配シュ
ート上の原料荷重によって生じるモーメントの方向と、
分配シュートの傾動方向が同一であるため、傾動モータ
にかかる軸トルクが小さく、従って、モータの定格トル
ク許容範囲内である。これに対し、分配シュートの傾動
角度を順次大きくしてゆく本発明方法では、分配シュー
ト荷重および分配シュート上の原料の荷重によって生じ
るモーメントの方向と分配シュートの傾動方向が逆であ
る。従って傾動モータにかがる軸トルクが大きく、モー
タの定格トルクを超えることが予想されたため、分配シ
ュートの傾動角度を順次大きくしてゆく本発明の如き発
明がなされていなかったのである。
That is, by gradually decreasing the tilting angle of the distribution chute (in the conventional method, the direction of the moment caused by the distribution chute load and the material load on the distribution chute,
Since the distribution chutes are tilted in the same direction, the shaft torque applied to the tilting motor is small and therefore within the allowable rated torque range of the motor. On the other hand, in the method of the present invention in which the tilting angle of the distribution chute is gradually increased, the direction of the moment generated by the distribution chute load and the load of the raw material on the distribution chute is opposite to the direction of the tilting of the distribution chute. Therefore, since the shaft torque applied to the tilting motor is large and expected to exceed the rated torque of the motor, an invention such as the present invention in which the tilting angle of the distribution chute is gradually increased has not been made.

しかし、本発明をするにあたり、分配シュートの傾動角
度を順次大きくしてゆく場合のモータ軸の必要トルクを
実測したところ第4図に示すように従来のモータ容量を
20%程度増加すれば常用する分配シュート傾動角度範
囲において、分配シュートの傾動角度を順次大きくして
ゆけることが判明した。
However, in carrying out the present invention, we actually measured the required torque of the motor shaft when the tilting angle of the distribution chute was gradually increased, and as shown in Figure 4, it was found that if the capacity of the conventional motor was increased by about 20%, it could be used regularly. It has been found that the tilting angle of the distribution chute can be gradually increased within the distribution chute tilting angle range.

従って小額の投資で分配シュートの傾動角度を順次大き
くしてゆく本発明が実施できるのである。
Therefore, the present invention in which the tilting angle of the distribution chute is gradually increased can be implemented with a small investment.

本発明の第2の特徴は分配シュートに供給される鉄源と
還元剤の混合原料の○/Cを経時的に制御することであ
る。そして、制御手段としては次のような手段が適して
いる。
The second feature of the present invention is to control over time the ○/C of the mixed raw material of iron source and reducing agent supplied to the distribution chute. The following means are suitable as the control means.

■炉頂バンガーから排出時に制御する方法。■Method of controlling when discharging from the furnace top banger.

鉄源と還元剤を別々の炉頂バンカー6に貯蔵し、高炉内
の装入物のレベルが所定のストックレベル7に到達する
と、鉄源と還元剤を貯蔵した炉頂バンカー6の各々の下
部ゲート弁8および下部シール弁9を開操作して鉄源と
還元剤を同時に切り出し、混合した状態で分配シュート
10に供給する。
The iron source and the reducing agent are stored in separate furnace top bunkers 6, and when the level of the charge in the blast furnace reaches a predetermined stock level 7, the iron source and the reducing agent are stored in the lower part of each of the furnace top bunkers 6. The iron source and the reducing agent are simultaneously cut out by opening the gate valve 8 and the lower seal valve 9, and are supplied to the distribution chute 10 in a mixed state.

この時、下部ゲート弁8の開度を経時的に制御すれば、
分配シュート10に供給される混合原料中のO/Cを時
々刻々制御することができる。また分配シュート10に
供給される混合原料中の鉄源と還元剤の混合状態を完全
にするために、第1図中に示す位置に混合装置12を設
置してもよい。
At this time, if the opening degree of the lower gate valve 8 is controlled over time,
The O/C in the mixed raw material supplied to the distribution chute 10 can be controlled from time to time. Further, in order to completely mix the iron source and the reducing agent in the mixed raw material supplied to the distribution chute 10, a mixing device 12 may be installed at the position shown in FIG.

なお、混合装置はその゛機能を有するものならその型式
は問わない。
Note that the type of mixing device does not matter as long as it has this function.

■貯槽から切り出し時に制御する方法 鉄源と還元剤11を貯蔵しである貯槽13.14から各
原料を同時に切り出し、装入ベルトコンベア2で炉頂に
搬送する。この時、貯槽13、  14の各ゲート弁の
開度を経時的に制御すれば、炉頂バンカー6を経由して
、分配シュート10に供給される混合原料中のO/Cを
経時的に制御することができる。しかしこの場合、装入
ベルトコンベア2上では鉄源と還元剤が完全には混合し
ていないので、炉頂バンカー6内に、例えばストーンボ
ックス15′等を設置して、炉頂バンカー6に供給され
る原料の通過中に原料を一旦衝突させて鉄源と還元剤の
混合を促進させる。もちろん混合装置であれば、種類を
特定するものではない。次に炉頂バンカー6から原料が
排出される時にファネルフローを生じて、炉頂バンカー
6に装入された時の混合原料のO/Cの経時変化と、炉
頂バンカー6から排出された混合原料中のO/Cの経時
変化が一致しないことが予想される。そこで、炉頂バン
カー6に装入された順に、炉頂バンカー6から排出され
るような対策をとる必要がある。第1図中には、このよ
うな目的でコーン16を設置した例を示す。もちろんこ
の他のマスフロー化の手段でも良いことはいうまでもな
い。更に排出時のO/C経時変化を別途計測して、貯槽
からの切り出し時の○/Cの経時変化をフィードバック
制御する方法もある。
(2) Method for controlling the time of cutting from the storage tank Each raw material is simultaneously cut out from the storage tanks 13 and 14 in which the iron source and the reducing agent 11 are stored, and conveyed to the top of the furnace by the charging belt conveyor 2. At this time, if the opening degree of each gate valve of the storage tanks 13 and 14 is controlled over time, the O/C in the mixed raw material supplied to the distribution chute 10 via the furnace top bunker 6 can be controlled over time. can do. However, in this case, since the iron source and reducing agent are not completely mixed on the charging belt conveyor 2, a stone box 15' or the like is installed in the furnace top bunker 6 to supply the iron source to the furnace top bunker 6. During the passage of the raw materials, the raw materials collide once to promote mixing of the iron source and the reducing agent. Of course, if it is a mixing device, the type is not specified. Next, a funnel flow occurs when the raw material is discharged from the furnace top bunker 6, and the O/C change over time of the mixed raw material when it is charged into the furnace top bunker 6, and the mixture discharged from the furnace top bunker 6. It is expected that the O/C changes over time in the raw materials will not match. Therefore, it is necessary to take measures such that the materials are discharged from the furnace top bunker 6 in the order in which they are charged into the furnace top bunker 6. FIG. 1 shows an example in which a cone 16 is installed for this purpose. Of course, it goes without saying that other means of mass flow may also be used. Furthermore, there is also a method of separately measuring the O/C change over time at the time of discharge, and feedback controlling the change over time of O/C at the time of cutting out from the storage tank.

(作   用) 本発明は、ヘルレス式高炉に鉄源と還元剤の混合原料を
装入する方法において、前記混合原料中の鉄源と還元剤
の重量比率を一定あるいは経時的に制御し、かつ、分配
シュートの傾動角度を制御して前記混合原料を炉中心部
からが壁方向に装入するとともに、炉内装入後の混合原
料の堆積角度が20度を超えないように分配シュートの
傾動角度、各傾動角度における旋回数、下部ゲート弁開
度のうち少なくとも一つを制御するものである為、炉内
における装入原料の堆積角や半径方向の070分布、半
径方向の粒径分布等のいわゆる装入物分布を精度よ(制
御できる。
(Function) The present invention provides a method for charging a mixed raw material of an iron source and a reducing agent into a Hellless blast furnace, in which the weight ratio of the iron source and reducing agent in the mixed raw material is controlled at a constant rate or over time, and The tilting angle of the distribution chute is controlled so that the mixed raw material is charged from the center of the furnace toward the wall, and the tilting angle of the distribution chute is controlled so that the deposition angle of the mixed raw material after charging into the furnace does not exceed 20 degrees. , the number of rotations at each tilt angle, and the opening degree of the lower gate valve, so it controls the stacking angle of the charging material in the furnace, the 070 distribution in the radial direction, the particle size distribution in the radial direction, etc. The so-called charge distribution can be controlled with precision.

(実 施 例) 本発明の効果を確認するため、炉外において実物大模型
を製作し、装入物分布試験を実施した。
(Example) In order to confirm the effects of the present invention, a full-scale model was manufactured outside the furnace and a charge distribution test was conducted.

なお試験に使用した装入原料は実際の高炉で使用してい
る原料を使用した。また、試験における原料の装入条件
は、荷下がりがないことおよび送風がないことを除けば
、実際の高炉と同一の条件である。また、半径方向の0
70分布は、装入試験後の原料をエポキシ系樹脂で固化
して装置外にとりだして計測した。
The charging raw material used in the test was the same as that used in an actual blast furnace. In addition, the raw material charging conditions in the test were the same as those in an actual blast furnace, except that there was no unloading and no air blowing. Also, 0 in the radial direction
70 distribution was measured by solidifying the raw material after the charging test with epoxy resin and taking it out of the apparatus.

■均一な半径方向0/C分布例 従来の混合装入法における分配シュートの傾動角度のス
ケジュールは(1、■、2.2.3.3.4.4.5.
5.6.6.7.7)であった。
■Uniform radial 0/C distribution example The schedule for the tilting angle of the distribution chute in the conventional mixed charging method is (1, ■, 2.2.3.3.4.4.5.
5.6.6.7.7).

()内は分配シュートの傾動角度の大きさと順序を示し
ており、数字が小さい方が分配シュートの傾動角度を大
きく設定しである。また、旋回数は14旋回である。こ
れに対し、本発明では炉内 ゛原料の堆積角を20度以
下とするため、分配シュート傾動角度のスケジュールを
(10,9,9,8,7,6,5,4,3,2,2,1
,1,1)とした。その結果、装入後の原料の堆積角は
中心部で16度、中間部から炉壁部にかけては0〜5度
とほぼ所望の堆積角を得た。
The numbers in parentheses indicate the magnitude and order of the tilting angle of the distribution chute, and the smaller the number, the larger the tilting angle of the distribution chute. The number of turns is 14. On the other hand, in the present invention, in order to keep the deposition angle of raw materials in the furnace to 20 degrees or less, the distribution chute tilting angle schedule is (10, 9, 9, 8, 7, 6, 5, 4, 3, 2, 2,1
, 1, 1). As a result, the deposition angle of the raw materials after charging was 16 degrees at the center and 0 to 5 degrees from the middle to the furnace wall, which was the almost desired deposition angle.

第5図(イ)に炉頂バンカーに装入された混合原料のO
/Cの経時変化、(ロ)に分配シュートに供給された混
合原料のO/Cの経時変化および(ハ)に装置内の混合
原料の半径方向のO/C分布を示す。従来法では、斜面
を形成するため、装入時に鉄源と還元剤が分離してO/
Cは中心部と炉壁部で低下している。これに対し、本発
明では炉内原料の堆積角を20度以下に維持できたため
、装入時の混合原料の分離が生じず、半径方向の070
分布はほぼ均一となり、本発明の有効性が実証された。
Figure 5 (a) shows the O of the mixed raw material charged into the furnace top bunker.
(B) shows the change in O/C of the mixed raw material supplied to the distribution chute over time, and (C) shows the radial O/C distribution of the mixed raw material in the device. In the conventional method, since the slope is formed, the iron source and reducing agent are separated during charging and O/
C decreases in the center and the furnace wall. On the other hand, in the present invention, since the stacking angle of the raw materials in the furnace could be maintained at 20 degrees or less, the mixed raw materials did not separate during charging, and the angle of 070 degrees in the radial direction
The distribution was almost uniform, demonstrating the effectiveness of the present invention.

なお、本実施例の混合原料調整法は貯槽から切り出し時
に鉄源と還元剤を混合し、炉頂バンカー内にはストーン
ボックスとコーンを設置した。
In addition, in the mixed raw material preparation method of this example, the iron source and the reducing agent were mixed at the time of cutting from the storage tank, and a stone box and a cone were installed in the furnace top bunker.

■中心部のみO/Cを低下する例 従来の混合装入法では、第5図(ハ)に破線で示すした
如(、中心部と炉壁部ともに○/Cが低下し、中心部の
みのO/Cを低下することはできなかった。これに対し
、本発明では第6図に示す如く、炉頂バンカーに装入さ
れた混合原料の0/Cを、装入初期のみ低下させ(同図
(イ))、分配シュートに初期に供給されるO/Cを低
下させた結果(同図(ロ))、装置内に初期に原料が堆
積する中心部のみのO/Cを低下させることができた(
同図(ハ))。なお分配シューHtQ動角度のスケジュ
ールは前記■と同一にした。
■Example in which O/C decreases only in the center area In the conventional mixed charging method, O/C decreases in both the center area and the furnace wall, as shown by the broken line in Figure 5 (C), and only in the center area. On the other hand, in the present invention, as shown in Fig. 6, the O/C of the mixed raw material charged into the furnace top bunker was reduced only at the initial stage of charging ( As a result of lowering the O/C initially supplied to the distribution chute ((b) in the same figure), the O/C is reduced only in the center where raw materials initially accumulate in the equipment. I was able to do it (
Same figure (c)). Note that the schedule for the distribution shoe HtQ movement angle was the same as in (2) above.

(発明の効果) 以上説明したように本発明は、本発明は、ヘルレス式高
炉に鉄源と還元剤の混合原料を装入する方法において、
前記混合原料中の鉄源と還元剤の重量比率を一定あるい
は経時的に制御し、かつ、分配シュートの傾動角度を制
御して前記混合原料を炉中心部から炉壁方向に装入する
とともに、炉内装入後の混合原料の堆積角度が20度を
超えないように分配シュートの傾動角度、各傾動角度に
おける旋回数、下部ゲート弁開度のうち少なくとも一つ
を制御するものである為、炉内における装入原料の堆積
角やO/C分布、半径方向の粒径分布等のいわゆる装入
物分布を精度よく制御できる。
(Effects of the Invention) As explained above, the present invention provides a method for charging a mixed raw material of an iron source and a reducing agent into a Hellless blast furnace.
Controlling the weight ratio of the iron source and reducing agent in the mixed raw material at a constant rate or over time, and controlling the tilting angle of the distribution chute to charge the mixed raw material from the center of the furnace toward the furnace wall, The furnace controls at least one of the tilting angle of the distribution chute, the number of turns at each tilting angle, and the opening degree of the lower gate valve so that the deposition angle of the mixed raw material after entering the furnace does not exceed 20 degrees. The so-called charge distribution, such as the stacking angle of the charge material, the O/C distribution, and the radial particle size distribution, can be controlled with high precision.

すなわち、本発明によれば、装入時の混合原料の分離を
防止し、かつ、分配シュートに供給される混合原料中の
○/Cを経時的に変化させることによって、完全混合装
入時の炉内の半径方向の070分布を微調整することが
でき、高炉の操業上、掻めで大なる効果を奏するもので
ある。
That is, according to the present invention, separation of the mixed raw material during charging is prevented, and by changing ○/C in the mixed raw material supplied to the distribution chute over time, The 070 distribution in the radial direction within the furnace can be finely adjusted, and this has a great effect on the operation of the blast furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるベルレス式高炉の混合原料装入方
法の概略説明図、第2図はコークス層の堆積角と炉中心
部コークス層厚との関係図、第3図は同じくコークス層
の堆積角と炉の中心部鉱石粒径との関係図、第4図は分
配シュートの傾動角度とモータ軸トルクとの関係図、第
5図(イ)〜(ハ)は本発明による半径方向0/C分布
を均一にする混合原料の装入方法の試験結果を示す図、
第6図(イ)〜(ハ)は本発明による中心部の0/Cの
みを低下する混合原料の装入方法の試験結果を示す図、
第7図は従来法によるベルレス式高炉の混合原料の装入
方法の概略説明図である。 1は高炉、3は混合原料、6は炉頂バンカー、8は下部
ゲート弁、10は分配シュート、11は還元剤、12は
混合装置。 特許出願人 住友金属工業株式会社 第1図 1.1 11遺氾刊
Figure 1 is a schematic explanatory diagram of the mixed raw material charging method for a bellless blast furnace according to the present invention, Figure 2 is a relationship between the coke layer deposition angle and the coke layer thickness at the center of the furnace, and Figure 3 is a diagram showing the relationship between the coke layer deposition angle and the coke layer thickness at the center of the furnace. Figure 4 is a diagram showing the relationship between the deposition angle and the ore grain size at the center of the furnace, Figure 4 is a diagram showing the relationship between the tilting angle of the distribution chute and the motor shaft torque, and Figures 5 (A) to (C) are the diagrams showing the relationship between the tilting angle of the distribution chute and the ore grain size in the central part of the furnace. A diagram showing the test results of a method of charging mixed raw materials that makes the /C distribution uniform,
FIGS. 6(A) to 6(C) are diagrams showing the test results of the mixed raw material charging method that reduces only the 0/C in the center according to the present invention,
FIG. 7 is a schematic explanatory diagram of a conventional method for charging mixed raw materials into a bellless blast furnace. 1 is a blast furnace, 3 is a mixed raw material, 6 is a furnace top bunker, 8 is a lower gate valve, 10 is a distribution chute, 11 is a reducing agent, and 12 is a mixing device. Patent Applicant: Sumitomo Metal Industries, Ltd. Figure 1 1.1 11 Izu Publishing

Claims (1)

【特許請求の範囲】[Claims] (1)ベルレス式高炉に鉄源と還元剤の混合原料を装入
する方法において、前記混合原料中の鉄源と還元剤の重
量比率を一定あるいは経時的に制御し、かつ、分配シュ
ートの傾動角度を制御して前記混合原料を炉中心部から
炉壁方向に装入するとともに、炉内装入後の混合原料の
堆積角度が20度を超えないように分配シュートの傾動
角度、各傾動角度における旋回数、下部ゲート弁開度の
うち少なくとも一つを制御することを特徴とするベルレ
ス式高炉の混合原料装入方法。
(1) In a method of charging a mixed raw material of an iron source and a reducing agent into a bell-less blast furnace, the weight ratio of the iron source and reducing agent in the mixed raw material is controlled at a constant rate or over time, and the distribution chute is tilted. The mixed raw material is charged from the center of the furnace toward the furnace wall by controlling the angle, and the tilting angle of the distribution chute is adjusted at each tilting angle so that the deposition angle of the mixed raw material after loading into the furnace does not exceed 20 degrees. A method for charging a mixed raw material into a bellless blast furnace, characterized by controlling at least one of the number of rotations and the opening degree of a lower gate valve.
JP10423486A 1986-05-06 1986-05-06 Charging method of mixed raw material for bell-less type blast furnace Granted JPS62260010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10423486A JPS62260010A (en) 1986-05-06 1986-05-06 Charging method of mixed raw material for bell-less type blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10423486A JPS62260010A (en) 1986-05-06 1986-05-06 Charging method of mixed raw material for bell-less type blast furnace

Publications (2)

Publication Number Publication Date
JPS62260010A true JPS62260010A (en) 1987-11-12
JPH0510402B2 JPH0510402B2 (en) 1993-02-09

Family

ID=14375268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10423486A Granted JPS62260010A (en) 1986-05-06 1986-05-06 Charging method of mixed raw material for bell-less type blast furnace

Country Status (1)

Country Link
JP (1) JPS62260010A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362805A (en) * 1986-09-03 1988-03-19 Sumitomo Metal Ind Ltd Raw material charging method for bell-less type blast furnace
JPS63166907A (en) * 1986-12-27 1988-07-11 Nkk Corp Control method for charging material distribution in oxygen blast furnace
JP2009185322A (en) * 2008-02-05 2009-08-20 Kobe Steel Ltd Method for monitoring abnormal charge into blast furnace, and monitoring device using the method
JP2010150644A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Method for charging raw material to blast furnace
JP2012097301A (en) * 2010-10-29 2012-05-24 Jfe Steel Corp Method for charging raw material into blast furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922311A (en) * 1972-06-22 1974-02-27
JPS57207104A (en) * 1981-06-16 1982-12-18 Sumitomo Metal Ind Ltd Charging method for bell-less type blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922311A (en) * 1972-06-22 1974-02-27
JPS57207104A (en) * 1981-06-16 1982-12-18 Sumitomo Metal Ind Ltd Charging method for bell-less type blast furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362805A (en) * 1986-09-03 1988-03-19 Sumitomo Metal Ind Ltd Raw material charging method for bell-less type blast furnace
JPH0512403B2 (en) * 1986-09-03 1993-02-18 Sumitomo Metal Ind
JPS63166907A (en) * 1986-12-27 1988-07-11 Nkk Corp Control method for charging material distribution in oxygen blast furnace
JP2009185322A (en) * 2008-02-05 2009-08-20 Kobe Steel Ltd Method for monitoring abnormal charge into blast furnace, and monitoring device using the method
JP2010150644A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Method for charging raw material to blast furnace
JP2012097301A (en) * 2010-10-29 2012-05-24 Jfe Steel Corp Method for charging raw material into blast furnace

Also Published As

Publication number Publication date
JPH0510402B2 (en) 1993-02-09

Similar Documents

Publication Publication Date Title
JP2012172224A (en) Apparatus and method for charging raw material into blast furnace
JPS62260010A (en) Charging method of mixed raw material for bell-less type blast furnace
US11680748B2 (en) Method for charging raw materials into blast furnace
JPS62260009A (en) Charging method for pellet-compounded raw material in bell-less type blast furnace
JPS62270711A (en) Method for charging raw material to bell-less type blast furnace
JPS62177109A (en) Method for charging starting material into bell-less blast furnace
JP3700457B2 (en) Blast furnace operation method
EP3751010B1 (en) Method for charging raw materials into blast furnace
US20240052439A1 (en) Method for charging raw materials into blast furnace
JPS6314808A (en) Raw material charging method for bell-less type blast furnace
JPH05179320A (en) Raw material charging method for bell-less blast furnace
JP4139578B2 (en) Raw material charging method to blast furnace
JPH04235206A (en) Method and apparatus for charging raw material in bellless blast furnace
JP3700458B2 (en) Low Si hot metal manufacturing method
JPS6339642B2 (en)
JP4317505B2 (en) Raw material charging method for bell-type blast furnace
JP2004091801A (en) Method for charging raw material into bell-less blast furnace
JPH0798966B2 (en) Blast furnace raw material charging method
JPS63140008A (en) Method for charging raw material into blast furnace
JPH0329311Y2 (en)
JPS62290810A (en) Charging method for different kind raw material for bell-less type blast furnace
JPH02129311A (en) Method for charging raw material in bellless type blast furnace
JPS62218507A (en) Raw material charging method for bell-less blast furnace
JPH05279715A (en) Method for charging raw material in bell-less blast furnace
JPH02305912A (en) Bell-less type raw material charging method for vertical furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees