JP4139578B2 - Raw material charging method to blast furnace - Google Patents

Raw material charging method to blast furnace Download PDF

Info

Publication number
JP4139578B2
JP4139578B2 JP2001155752A JP2001155752A JP4139578B2 JP 4139578 B2 JP4139578 B2 JP 4139578B2 JP 2001155752 A JP2001155752 A JP 2001155752A JP 2001155752 A JP2001155752 A JP 2001155752A JP 4139578 B2 JP4139578 B2 JP 4139578B2
Authority
JP
Japan
Prior art keywords
raw material
furnace
hopper
blast furnace
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001155752A
Other languages
Japanese (ja)
Other versions
JP2002348604A (en
Inventor
佐藤  淳
良行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001155752A priority Critical patent/JP4139578B2/en
Publication of JP2002348604A publication Critical patent/JP2002348604A/en
Application granted granted Critical
Publication of JP4139578B2 publication Critical patent/JP4139578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高炉への原料装入方法に関し、詳細には高炉の炉頂部に設置されているファネルフローとなる原料ホッパーを用いて、鉄鉱石、焼結鉱、ペレットなどの原料の二種類以上を炉内に装入する場合において、それらの配合割合の特異な特定銘柄原料を特定時期に効率よく原料ホッパーから高炉内へ排出、装入する高炉への原料装入方法であって、先に高炉内に装入されているコークスの特性(半径方向形状等)に対応させて原料を装入する方法に関するものである。
【0002】
【従来の技術】
高炉で使用される原料は、鉄鉱石、焼結鉱、ペレットなどの外、石灰石などの副原料があり、これらを個々に、さらには粒度などによって更に細かく種別してそれぞれの原料ホッパーに装入、貯蔵される。このように種別されている原料を高炉へ装入する場合は、高炉の操業条件の安定化、生産される銑鉄の品質の安定化などのため、それぞれの原料を所要配合量ずつ原料ホッパーからベルトコンベア上に切り出し高炉の装入バッチ毎の量にして集合ホッパーに予め装入するとともに、コークスと集合ホッパーから切り出した原料とを交互に炉頂より高炉炉内に装入しつつ高炉操業が行われる。
【0003】
ところで、高炉操業においては、高炉の操業条件の安定化等のため操業中においても細かな原料装入の調整、例えば焼結鉱やペレットなどの配合割合を変えた特定銘柄原料を特定時期に炉内に装入し、炉内ガスの流れを調整するなどといったことを行う必要があるが、このような場合、上記の高炉への原料装入方法では、鉄鉱石、焼結鉱、ペレットなどの配合割合は原料ホッパーから切り出された時点で決められており、また集合ホッパーから切り出され、ベルトコンベア更にはベルレス式高炉のように炉頂部に設置されている原料投入用の固定ホッパーあるいはベル式高炉のようにベルバンカを介して炉内に装入する時点では鉄鉱石、焼結鉱、ペレットなどの混合度合いが高まり、このため、炉内の所望位置に例えばペレットやブリケット等の配合割合が相対的に少ないなどの特定銘柄原料を装入するといったことを特定時期にタイミングよく行うことはできない。
【0004】
そこで、本発明者等は、上記の問題点を改善するため調査研究を重ね、先に、炉頂部に設置されている原料投入用の固定ホッパー等の原料ホッパーを用い鉄鉱石、焼結鉱、ペレットなどの原料の二種類以上を炉内に装入する場合において、それらの配合割合の特異な特定銘柄原料を特定時期に効率よく前記原料ホッパーから高炉内へ排出、装入する高炉への原料装入方法を開発し提供した(特願2000−3701号参照)。
【0005】
一方、高炉への原料装入による装入物(原料)としては、性状の大きく異なるペレットと焼結鉱が主として使用され、従来の高炉への装入物分布制御方式ではこれら原料の銘柄まで分布させ制御して高炉炉内へ装入することが難しいため、ベルト上や原料堆積ホッパ内で他鉱石と事前に均一に混合させそれを高炉炉内に装入することで制御している。
【0007】
【発明が解決しようとする課題】
本発明は、上記の実状に基づいてなしたものであって、その目的は、銘柄や安息角度の異なる特定銘柄原料を、高炉炉内の半径方向に濃度分布を持たせて装入し得る高炉への原料装入方法を提供するものである。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明(請求項1)に係る高炉への原料装入方法は、ベルレス高炉の炉頂部に設置された、ファネルフローとなる原料ホッパーから、ペレットを含む原料を旋回シュートを介して炉内にその外周部から中心部へ順次装入するに際し、先に装入するコークスの炉頂での炉径方向の堆積形状をM型堆積形状にするとともに、前記原料ホッパーの直胴部中間に前記ペレットが積載されるように前記原料ホッパーに前記原料を装入した後、前記原料ホッパーから前記原料を切り出すことにより、前記原料中のペレットを炉内無次元半径0.8の部位に前記原料中の当該ペレットの配合割合よりも高いペレット濃度となるように装入することを特徴とするものである。
また、本発明(請求項2)に係る高炉への原料装入方法は、ベルレス高炉の炉頂部に設置された、ファネルフローとなる原料ホッパーから、ペレットを含む原料を旋回シュートを介して炉内にその外周部から中心部へ順次装入するに際し、先に装入するコークスの炉頂での炉径方向の堆積形状をV型堆積形状にするとともに、前記原料ホッパーの直胴部中間に前記ペレットが積載されるように前記原料ホッパーに前記原料を装入した後、前記原料ホッパーから前記原料を切り出すことにより、前記ペレットを炉内無次元半径0.1の部位に前記原料中の当該ペレットの配合割合よりも高いペレット濃度となるように装入することを特徴とするものである。
【0010】
ところで、本発明者等は、先の特願2000−3701号において、次の如き高炉への原料装入方法を提案している。すなわち、その提案の高炉への原料装入方法は、高炉の炉頂部に設置されファネルフローの排出特性を備える原料ホッパーを用いて鉄鉱石、焼結鉱、ペレットなどの原料の二種類以上を高炉炉内に装入する場合において、予め前記原料ホッパーにおける原料積載高さ位置とファネルフローの特性とを把握し、その把握された原料積載高さ位置とファネルフローの特性との関係より、特定銘柄原料を特定時期に高炉へ装入すべく原料ホッパー内の特定銘柄原料積載高さ位置に装入して前記原料ホッパーから高炉炉内へ排出、装入するものである。
【0011】
上記ファネルフローでの原料排出は、ホッパー形状や粒子の物理性状(形状、比重等)により多少差があるが、ホッパー下部の排出口直上部が優先的に排出され、原料の上部表面に漏斗状(ファネル状)の穴が開き、穴周辺の原料上部表面が内部に崩壊しながら穴が拡大し、ホッパー内部壁に達した後、壁に沿って上部から下部に原料が排出される。図1は、その排出順を模式的に示すもので符号▲1▼〜▲5▼の順に排出される。なお、図において、1は原料ホッパー、2はホッパー傾斜壁、3はホッパー胴部、4は原料、5はホッパー内の原料表面位置を示す。また、αはホッパー壁の傾斜角度であって、(切出される原料の安息角/2+45度)より小さい角度に形成され、これによりファネルフローが得られる。
【0012】
而して、原料ホッパー内の原料は、図1のように排出されるので、排出したい時期の原料ホッパー内の位置に特定銘柄原料が来るように原料を装入することで、鉄鉱石、焼結鉱、ペレットなどの原料の二種類以上の配合割合の特異な特定銘柄原料を特定時期に効率よく原料ホッパーから高炉内へ排出、装入することができると考えた。
【0013】
そこで、このことを実験により確認した。原料として平均粒径に殆ど差がない焼結鉱75%、ペレット25%の実験銘柄原料を用い、原料ホッパーとして、ホッパー壁傾斜角度α=50°を持つホッパーで実験を行った。
【0014】
実験は、図2に示すように、原料ホッパー6に焼結鉱7を装入するとともに、先ず上記実験銘柄をAの位置(直胴部中間)に装入した。そして排出すると同時に切り出し時間の経過時間に対する排出されてくるペレットの混合割合を実測した。この要領で、順次Bの位置(直胴部下部)、Cの位置(直胴部境上)、Dの位置(コーン部3/4)、Eの位置(コーン部1/4)に実験銘柄を装入して同様に実測した。その結果を図3に示す。なお、図3の横軸の切り出し時間は切り出し完了までの時間を1.00とし無次元化して示す。
【0015】
図3から明らかなように、原料ホッパー内の実験銘柄原料の装入(積載)高さ位置によって排出されてくるペレットの混合割合が変化し、コーン部のEやDの位置では切り出し初期と終わり頃に多くのペレットが排出され、またAの位置では、初期にコーン部の中心が排出し穴ができた後にすり鉢状に排出するため、切り出し初期は少ないが中心に穴が開いた時から排出が始まることが分かる。このことは、原料ホッパー内で上記図1に示す▲1▼から▲5▼の流れ、すなわちファネルフローとなって原料が排出されることが分かる。
【0016】
そして、上記のようにして把握された原料ホッパーにおけるファネルフローの排出特性を基に、更に調査、研究を重ねた結果、原料ホッパー内の特定銘柄原料積載高さ位置を変えて原料を高炉内に装入する場合、先に装入されているコークスの炉内半径方向の堆積形状によって、特定銘柄原料の炉径方向の分布が変化することを見出した。すなわち、上記と同様の要領で、原料として平均粒径に殆ど差がない焼結鉱75%、ペレット25%の実験銘柄(特定銘柄)原料を用い、原料ホッパーとして、ホッパー壁傾斜角度α=50°を持つホッパーで実験を行ったところ、図4に示す結果が得られた。
【0017】
なお、上記実験では、図2におけるAの位置(直胴部中間)、Bの位置(直胴部下部)又はDの位置(コーン部3/4)の各位置に実験銘柄(特定銘柄)であるペレットを装入する一方、先に装入したコークス層の炉頂での炉径方向の堆積形状をV型装入時(炉壁から炉中心に向かって一様な傾斜を有する堆積形状)とM型装入時(炉壁寄りにピークを有した後、炉中心に向かって一様な傾斜を有する堆積形状)の二形状を対象に、実験高炉へ装入した。そして、このときの炉内半径方向のペレットの混合割合を実測した。図4aはV型装入時、図4bはM型装入時の場合である。
【0018】
上記図4aからは、コークスがV型装入の場合、Aの位置では炉中心側に特定銘柄が多く堆積し、Bの位置では炉中心側の堆積がやや減少し、その分炉壁側の堆積がやや増加し、Dの位置ではかなり平均化してくることが分かる。
また、上記図4bからは、コークスがM型装入の場合、Aの位置では炉壁側で多く、コークスのピーク高さ位置で堆積が少なく、Bの位置では炉壁側でやや減少し、コークスのピーク高さ位置でやや増加し、Dの位置ではかなり平均化してくることが分かる。
【0022】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。図は、本発明に係る原料装入方法を適用するベルレス高炉の炉頂部の概要図である。ベルレス高炉8の炉頂部9には、固定の原料ホッパー10、コークス用のホッパー11及び旋回シュート12を備えており、原料ホッパー10とコークス用ホッパー11から交互に切り出して原料とコークスは旋回シュート12により炉内に装入される。このとき、装入原料は旋回シュート12により、一般に外周部から中心部へ旋回しながら炉内に装入されるので、原料ホッパー10から排出順通りに炉径方向(外周部から中心部)の原料分布が生じる。なお、図には原料ホッパー10とコークス用ホッパー11を左右に分けて設置したように描いているが、操業中の原料OとコークスCの炉内への装入順(例えばO↓O↓C↓等)によっては原料ホッパー10にコークスが、またコークス用ホッパー11側に原料が装入されることがある。
【0023】
上記ベルレス高炉8を用いて特定銘柄原料を、先に装入したコークスの炉頂での炉径方向の堆積形状に対応させて(1)無次元半径0.8の部位に、及び(2)無次元半径0.1の部位にそれぞれ原料中の当該特定銘柄原料の配合割合よりも高い濃度となるように装入する各方法の実施要領について説明する。なお、このときの特定銘柄原料はペレットでその配合割合は25%である。
【0024】
上記(1)の特定銘柄原料を無次元半径0.8の部位に原料中の当該特定銘柄原料の配合割合よりも高い濃度となるように装入する方法の実施要領は以下のとおりである。すなわち、図4(特に図4b)の結果から、先に装入するコークスの炉頂での炉径方向の堆積形状をM型堆積形状にする一方、原料ホッパー10の直胴部中間(図2のAの位置)に特定銘柄原料をベルトコンベアを介して装入し、切り出す。これにより、特定銘柄原料は、炉内の無次元半径0.8付近の装入位置に制御されて装入される。また、(2)の特定銘柄原料を無次元半径0.1の部位に原料中の当該特定銘柄原料の配合割合よりも高い濃度となるように装入する方法の実施要領は以下のとおりである。すなわち、上記と同様に図4(特に図4a)の結果から、先に装入するコークスの炉頂での炉径方向の堆積形状をV型堆積形状にする一方、原料ホッパー10の直胴部中間(図2のAの位置)に特定銘柄原料をベルトコンベアを介して装入し、切り出す。これにより、特定銘柄原料は、炉内の無次元半径0.1付近の装入位置に制御されて装入される。
【0025】
上記のように、同一配合割合の特定銘柄原料であっても、先に装入したコークスの炉頂での炉径方向の堆積形状に対応させて、その特定銘柄原料を、ファネルフローとなる排出特性を備える原料ホッパー10の同じ原料装入高さ位置に装入して高炉炉内に装入することにより、その特定銘柄原料の半径方向の銘柄分布を制御して装入することができる。
【0030】
【発明の効果】
以上説明したように、本発明に係る高炉への原料装入方法によれば、銘柄や安息角度の異なる特定銘柄原料を、先に装入したコークスの炉頂での炉径方向(炉中心から炉壁の間)の堆積形状に対応させて高炉炉内の炉径方向に濃度分布を持たせて装入することができる。
【0031】
また、本発明(請求項2)に係る高炉への原料装入方法によれば、銘柄や安息角度の異なる特定銘柄原料を、先に装入したコークスの炉頂での堆積角度に対応させて堆積角度(層厚)を調整して装入することができる。
【図面の簡単な説明】
【図1】原料ホッパー内におけるファネルフローによる原料の排出順を示す模式図である。
【図2】原料ホッパー内の特定銘柄原料の装入位置を示す模式図である。
【図3】原料ホッパー内の特定銘柄原料の装入位置と切り出し後の経過時間に対する排出されてくるペレットの混合割合との関係を示すグラフ図である。
【図4】 原料ホッパー内の特定銘柄原料(ペレット)の積載高さ位置を変えて高炉炉内に装入した場合の、特定銘柄原料の炉径方向の配合割合を示すグラフ図であって、aは先に装入されたコークスがV型装入の場合、bは先に装入されたコークスがM型装入の場合である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a raw material charging method to a blast furnace, and in detail, using a raw material hopper that becomes a funnel flow installed at the top of the blast furnace, two or more kinds of raw materials such as iron ore, sintered ore, and pellets Is a raw material charging method to a blast furnace in which specific brand raw materials having a specific blending ratio are efficiently discharged from the raw material hopper into the blast furnace at a specific time and charged. characteristics of the coke which is charged into the blast furnace in correspondence with the (radial shape, etc.) to a method of charging raw materials.
[0002]
[Prior art]
The raw materials used in the blast furnace include iron ore, sintered ore, pellets, and other auxiliary materials such as limestone. These are individually and further classified according to the particle size, etc., and charged into each raw material hopper. Stored. When charging raw materials classified in this way into the blast furnace, each raw material is fed from the raw material hopper to the belt in the required blending amount in order to stabilize the operating conditions of the blast furnace and the quality of the pig iron produced. The blast furnace operation is carried out while charging the coke and the raw material cut out from the collect hopper alternately into the blast furnace from the top of the furnace while precharging the blast furnace in a batch for each batch of blast furnace cut out on the conveyor. Is called.
[0003]
By the way, in the blast furnace operation, to stabilize the operating conditions of the blast furnace, etc., even during operation, finely adjusted raw material charging, for example, specified brand raw materials with different blending ratios such as sintered ore and pellets at the specified time It is necessary to do things such as charging inside and adjusting the flow of gas in the furnace. In such a case, in the above raw material charging method to the blast furnace, iron ore, sintered ore, pellets, etc. The blending ratio is determined when it is cut out from the raw material hopper, and is cut out from the collective hopper and installed at the top of the furnace like a belt conveyor and bell-less type blast furnace, or a fixed hopper or bell type blast furnace for feeding raw materials. At the time of charging into the furnace through the bell banker, the degree of mixing of iron ore, sintered ore, pellets, etc. is increased. For this reason, for example, pellets and briquettes are placed at desired positions in the furnace. Ratio of formulation can not be performed with good timing to a specific time that such charged a certain brand material, such as relatively small.
[0004]
Therefore, the present inventors repeated research and research to improve the above-mentioned problems, and first, using a raw material hopper such as a fixed hopper for raw material input installed at the top of the furnace, iron ore, sintered ore, When charging two or more kinds of raw materials such as pellets into the furnace, the raw materials for the blast furnace that efficiently discharge and charge the specific brand raw materials with a specific mixing ratio from the raw material hopper into the blast furnace at a specific time. A charging method was developed and provided (see Japanese Patent Application No. 2000-3701).
[0005]
On the other hand, pellets and sintered ore with very different properties are mainly used as the raw material (raw material) charged to the blast furnace. The conventional distribution control method for the raw material distribution to the blast furnace distributes to the brands of these raw materials. Therefore, it is difficult to control and charge it into the blast furnace furnace, so it is controlled by uniformly mixing it with other ores in advance on the belt or in the raw material deposition hopper and charging it into the blast furnace furnace.
[0007]
[Problems to be solved by the invention]
The present invention has been made based on the above-mentioned actual situation, and the purpose thereof is a blast furnace capable of charging specific brand raw materials having different brands and repose angles with a concentration distribution in the radial direction in the blast furnace. The raw material charging method is provided.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the raw material charging method to the blast furnace according to the present invention (Claim 1) swirls the raw material containing pellets from the raw material hopper to be a funnel flow installed at the top of the bellless blast furnace. upon sequentially charged into the center portion from the outer peripheral portion via a chute in the furnace, with the furnace radial deposition geometry of the furnace top of the coke to be charged into previously M-type pile geometry, of the material hopper After charging the raw material into the raw material hopper so that the pellets are loaded in the middle of the straight body part, the raw material is cut out from the raw material hopper so that the pellets in the raw material have a dimensionless radius 0.8 in the furnace. The above-mentioned part is charged so that the pellet concentration is higher than the blending ratio of the pellets in the raw material .
Moreover, the raw material charging method to the blast furnace according to the present invention (Claim 2) is that the raw material containing pellets is fed into the furnace through a turning chute from the raw material hopper which becomes a funnel flow installed at the top of the bellless blast furnace. In order to sequentially charge from the outer peripheral portion to the central portion, the deposition shape of the coke to be charged in the furnace radial direction at the top of the furnace is changed to a V-shaped deposition shape, and the intermediate portion of the raw material hopper is placed in the middle of the straight body portion. After the raw material is loaded into the raw material hopper so that the pellets are loaded, the raw material is cut out from the raw material hopper so that the pellet in the raw material has a dimensionless radius of 0.1 in the furnace. It is characterized by charging so that it may become a pellet density | concentration higher than the mixture ratio of this.
[0010]
By the way, the present inventors have proposed the following raw material charging method to a blast furnace in Japanese Patent Application No. 2000-3701. In other words, the proposed method of charging raw materials into a blast furnace uses two or more types of raw materials such as iron ore, sintered ore and pellets using a raw material hopper installed at the top of the blast furnace and having funnel flow discharge characteristics. When charging into the furnace, grasp the raw material loading height position and funnel flow characteristics in the raw material hopper in advance, and identify the specific brand from the relationship between the grasped raw material loading height position and funnel flow characteristics. In order to charge the raw material into the blast furnace at a specific time, the raw material is loaded at a specific brand raw material loading height position in the raw material hopper, and discharged from the raw material hopper into the blast furnace furnace.
[0011]
The material discharge in the above funnel flow is slightly different depending on the hopper shape and the physical properties (shape, specific gravity, etc.) of the particles, but the upper part of the discharge port immediately below the hopper is preferentially discharged, and the funnel shape is formed on the upper surface of the material. A (funnel-shaped) hole is opened, the upper surface of the raw material around the hole collapses inside, the hole expands, reaches the inner wall of the hopper, and then the raw material is discharged from the upper part to the lower part along the wall. FIG. 1 schematically shows the discharge order, and the discharge is performed in the order of reference numerals (1) to (5). In the figure, 1 is a raw material hopper, 2 is a hopper inclined wall, 3 is a hopper body, 4 is a raw material, and 5 is a raw material surface position in the hopper. Further, α is an inclination angle of the hopper wall, and is formed at an angle smaller than (the angle of repose of the raw material to be cut out / 2 + 45 degrees), whereby a funnel flow is obtained.
[0012]
Thus, since the raw material in the raw material hopper is discharged as shown in FIG. 1, by introducing the raw material so that the specific brand raw material comes to the position in the raw material hopper at the time when it is desired to discharge, We thought that it was possible to efficiently discharge and charge specific brand-name raw materials containing two or more kinds of raw materials such as ores and pellets from the raw material hopper into the blast furnace at a specific time.
[0013]
Therefore, this was confirmed by experiments. Experiments were performed using 75% sintered ore and 25% pellets with almost no difference in average particle size as raw materials, and a hopper having a hopper wall inclination angle α = 50 ° as a raw material hopper.
[0014]
In the experiment, as shown in FIG. 2, the sintered ore 7 was charged into the raw material hopper 6, and first, the experimental brand was first charged at the position A (in the middle of the straight body). At the same time as discharging, the mixing ratio of the discharged pellets with respect to the elapsed time of the cutting time was measured. In this manner, the experimental brands are sequentially placed at the position B (the lower part of the straight body part), the position C (on the straight body part boundary), the position D (cone part 3/4), and the position E (cone part 1/4). Was measured in the same manner. The result is shown in FIG. Note that the cut-out time on the horizontal axis in FIG. 3 is shown as dimensionless with the time until cut-out completion being 1.00.
[0015]
As is clear from FIG. 3, the mixing ratio of the pellets to be discharged changes depending on the loading (loading) height position of the experimental brand raw material in the raw material hopper. A lot of pellets are discharged around the time, and at the position A, the center of the cone part is discharged at the beginning and a hole is formed. After that, it is discharged in the shape of a mortar. Can be seen. This shows that the raw material is discharged in the flow of (1) to (5) shown in FIG.
[0016]
As a result of further investigation and research based on the funnel flow discharge characteristics in the raw material hopper as grasped as described above, the raw material is placed in the blast furnace by changing the specific brand raw material loading height position in the raw material hopper. When charging, it was found that the distribution of the specific brand raw material in the furnace radial direction changes depending on the shape of the coke previously charged in the furnace in the radial direction . That is, in the same manner as described above, an experimental brand (specific brand) raw material of 75% sintered ore and pellet 25% having almost no difference in average particle size is used as a raw material, and a hopper wall inclination angle α = 50 as a raw material hopper. When an experiment was conducted using a hopper having a temperature of °, the result shown in FIG. 4 was obtained.
[0017]
In the above experiment, experimental brands (specific brands) at positions A (in the middle of the straight barrel), B (bottom of the trunk), or D (cone 3/4) in FIG. While a certain pellet is charged, the shape of the coke layer charged in the furnace radial direction at the top of the coke layer is V-shaped at the time of charging (deposition shape having a uniform inclination from the furnace wall toward the furnace center). And M type (the shape of the deposit with a uniform slope toward the center of the furnace after having a peak near the furnace wall) was charged into the experimental blast furnace. And the mixing ratio of the pellet of the radial direction in a furnace at this time was measured. FIG. 4a shows the case of V-type loading, and FIG. 4b shows the case of M-type loading.
[0018]
From the above FIG. 4a, when the coke is V-type charging, a lot of specific brands are deposited on the furnace center side at the position A, and the deposition on the furnace center side is slightly reduced at the position B, and the amount of It can be seen that the deposition is slightly increased and is considerably averaged at the D position.
Also, from FIG. 4b above, when the coke is M-type charging, there is much on the furnace wall side at the position A, less deposition at the peak height position of the coke, and a slight decrease on the furnace wall side at the position B. It can be seen that it slightly increases at the peak height position of the coke and is considerably averaged at the position of D.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 5 is a schematic view of the top of a bell-less blast furnace to which the raw material charging method according to the present invention is applied. The top portion 9 of the bell-less blast furnace 8 includes a fixed raw material hopper 10, a coke hopper 11, and a swivel chute 12, and the raw material and coke are alternately cut out from the raw material hopper 10 and the coke hopper 11. Is charged into the furnace. At this time, since the charged raw material is generally charged into the furnace by the turning chute 12 while turning from the outer peripheral part to the central part, the raw material hopper 10 in the furnace radial direction (from the outer peripheral part to the central part) in the discharge order. Raw material distribution occurs. In FIG. 5 , the raw material hopper 10 and the coke hopper 11 are depicted as being divided into left and right, but the charging order of the raw material O and the coke C during operation into the furnace (for example, O ↓ O ↓) Depending on C ↓ and the like, coke may be charged into the raw material hopper 10 and raw material may be charged into the coke hopper 11 side.
[0023]
Using the bell-less blast furnace 8, the specific brand raw material is made to correspond to the shape of the coke charged in the furnace at the top of the furnace radial direction (1) in a dimensionless radius of 0.8, and (2) The execution point of each method of charging so that it may become a density | concentration higher than the mixing | blending ratio of the said specific brand raw material in a raw material in the site | part of a dimensionless radius 0.1 is demonstrated. In addition, the specific brand raw material at this time is a pellet, and the mixture ratio is 25%.
[0024]
The implementation point of the above-mentioned method (1) of charging the specific brand raw material in a portion having a dimensionless radius of 0.8 so as to have a concentration higher than the blending ratio of the specific brand raw material in the raw material is as follows. That is, from the result of FIG. 4 (particularly, FIG. 4b), the deposition shape in the furnace radial direction at the top of the coke initially charged is changed to the M-type deposition shape, while the middle portion of the straight body portion of the raw material hopper 10 (FIG. 2). The specific brand raw material is charged via a belt conveyer at the position A) of (A). As a result, the specific brand material is charged while being controlled at a charging position in the furnace near a dimensionless radius of 0.8. In addition, the implementation point of the method of charging the specific brand raw material (2) so as to have a concentration higher than the blending ratio of the specific brand raw material in the raw material at a dimensionless radius of 0.1 is as follows. . That is, the a from 4 (especially Fig. 4a) result in the same manner, while the furnace radial deposition geometry of the furnace top of the coke to be charged into previously V-deposition geometry, straight body portion of the raw material hopper 10 A specific brand raw material is charged in the middle (position A in FIG. 2) via a belt conveyor and cut out. As a result, the specific brand material is charged while being controlled at a charging position in the furnace near a dimensionless radius of 0.1.
[0025]
As described above, even for specific brand raw materials with the same blending ratio, the specific brand raw materials are discharged into funnel flow in accordance with the shape of the coke previously charged at the top of the furnace in the radial direction. By charging the raw material hopper 10 having the characteristics at the same raw material charging height position and charging it into the blast furnace furnace, the specific brand raw material can be charged while controlling the distribution of the brand name in the radial direction.
[0030]
【The invention's effect】
As described above, according to the raw material charging process of the blast furnace according to the present onset Ming, stocks and different specific brand raw materials of repose angle, the furnace radial direction (the furnace center of the furnace top of the coke was charged into previously It is possible to charge with a concentration distribution in the furnace radial direction in the blast furnace furnace in accordance with the deposition shape between the wall and the furnace wall.
[0031]
Further, according to the raw material charging method to the blast furnace according to the present invention (Claim 2), the specific brand raw materials having different brands and repose angles are made to correspond to the deposition angle of the previously charged coke at the top of the furnace. The deposition angle (layer thickness) can be adjusted for charging.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the discharge order of raw materials by funnel flow in a raw material hopper.
FIG. 2 is a schematic diagram showing a charging position of a specific brand raw material in a raw material hopper.
FIG. 3 is a graph showing a relationship between a charging position of a specific brand raw material in a raw material hopper and a mixing ratio of discharged pellets with respect to an elapsed time after cutting.
FIG. 4 is a graph showing the blending ratio of specific brand raw materials in the furnace radial direction when the loading height position of the specific brand raw materials (pellets) in the raw material hopper is changed and charged into the blast furnace, a is when the previously charged coke is a V-type charge, and b is when the previously charged coke is an M-type charge.

Claims (2)

ベルレス高炉の炉頂部に設置された、ファネルフローとなる原料ホッパーから、ペレットを含む原料を旋回シュートを介して炉内にその外周部から中心部へ順次装入するに際し
に装入するコークスの炉頂での炉径方向の堆積形状をM型堆積形状にするとともに、前記原料ホッパーの直胴部中間に前記ペレットが積載されるように前記原料ホッパーに前記原料を装入した後、前記原料ホッパーから前記原料を切り出すことにより、前記原料中のペレットを炉内無次元半径0.8の部位に前記原料中の当該ペレットの配合割合よりも高いペレット濃度となるように装入することを特徴とする高炉への原料装入方法。
From the raw material hopper, which becomes the funnel flow, installed at the top of the bellless blast furnace, when the raw materials containing pellets are sequentially charged into the furnace from the outer periphery to the center through the turning chute ,
The raw material hopper is loaded with the pellets placed in the middle of the straight body portion of the raw material hopper, while the shape of the coke initially charged in the furnace radial direction is changed to the M-type stacked shape. After charging, the raw material is cut out from the raw material hopper so that the pellet concentration in the raw material becomes a pellet concentration higher than the blending ratio of the pellet in the raw material at a portion having a dimensionless radius in the furnace of 0.8. A raw material charging method for a blast furnace, characterized in that it is charged into a blast furnace.
ベルレス高炉の炉頂部に設置された、ファネルフローとなる原料ホッパーから、ペレットを含む原料を旋回シュートを介して炉内にその外周部から中心部へ順次装入するに際し、From the raw material hopper, which becomes the funnel flow, installed at the top of the bellless blast furnace, when the raw materials containing pellets are sequentially charged into the furnace from the outer periphery to the center through the turning chute,
先に装入するコークスの炉頂での炉径方向の堆積形状をV型堆積形状にするとともに、前記原料ホッパーの直胴部中間に前記ペレットが積載されるように前記原料ホッパーに前記原料を装入した後、前記原料ホッパーから前記原料を切り出すことにより、前記ペレットを炉内無次元半径0.1の部位に前記原料中の当該ペレットの配合割合よりも高いペレット濃度となるように装入することを特徴とする高炉への原料装入方法。The raw material hopper is loaded with the pellets placed in the middle of the straight body portion of the raw material hopper, while the shape of the coke initially charged in the furnace radial direction at the top of the furnace is changed to a V-shaped deposition shape. After charging, by cutting out the raw material from the raw material hopper, the pellet is charged in a portion having a dimensionless radius of 0.1 in the furnace so that the pellet concentration is higher than the blending ratio of the pellet in the raw material. A raw material charging method into a blast furnace characterized by:
JP2001155752A 2001-05-24 2001-05-24 Raw material charging method to blast furnace Expired - Lifetime JP4139578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001155752A JP4139578B2 (en) 2001-05-24 2001-05-24 Raw material charging method to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001155752A JP4139578B2 (en) 2001-05-24 2001-05-24 Raw material charging method to blast furnace

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007334709A Division JP2008095206A (en) 2007-12-26 2007-12-26 Method for charging raw material into blast furnace

Publications (2)

Publication Number Publication Date
JP2002348604A JP2002348604A (en) 2002-12-04
JP4139578B2 true JP4139578B2 (en) 2008-08-27

Family

ID=18999881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155752A Expired - Lifetime JP4139578B2 (en) 2001-05-24 2001-05-24 Raw material charging method to blast furnace

Country Status (1)

Country Link
JP (1) JP4139578B2 (en)

Also Published As

Publication number Publication date
JP2002348604A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP2820478B2 (en) Feeding method for bellless blast furnace
EP1445334A1 (en) Raw material charging method for bell-less blast furnace
JP4139578B2 (en) Raw material charging method to blast furnace
JPS60208404A (en) Method and device for charging raw material to blast furnace
RU2742997C1 (en) Raw materials into a blast furnace loading method
JP7073962B2 (en) How to charge the bellless blast furnace
JP3573780B2 (en) Raw material charging method for bellless blast furnace
JP2008095206A (en) Method for charging raw material into blast furnace
JP2994026B2 (en) Feeding method for bellless blast furnace
JP4680344B2 (en) Raw material charging method to blast furnace
RU2759939C1 (en) Method for loading raw materials into the blast furnace
JPH046761B2 (en)
JPS62260010A (en) Charging method of mixed raw material for bell-less type blast furnace
JP4045897B2 (en) Raw material charging method for bell-less blast furnace
JPH02305911A (en) Bell-less type raw material charging method for vertical furnace
US20240052439A1 (en) Method for charging raw materials into blast furnace
JP2002302706A (en) Method for charging raw material into blast furnace
JPS60251208A (en) Method for charging raw material to blast furnace
JPH0329311Y2 (en)
JPS6339642B2 (en)
JPH0421724B2 (en)
JP2968410B2 (en) Scrap charging method in blast furnace
JP2023079158A (en) Raw material charging device and raw material charging method for bell-less blast furnace
JPS63100113A (en) Bell-less charging apparatus in blast furnace
JPH04304305A (en) Method for charging raw material in blase furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4139578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

EXPY Cancellation because of completion of term