JPH10298620A - Method for charging ore and the like into blast furnace - Google Patents

Method for charging ore and the like into blast furnace

Info

Publication number
JPH10298620A
JPH10298620A JP12008397A JP12008397A JPH10298620A JP H10298620 A JPH10298620 A JP H10298620A JP 12008397 A JP12008397 A JP 12008397A JP 12008397 A JP12008397 A JP 12008397A JP H10298620 A JPH10298620 A JP H10298620A
Authority
JP
Japan
Prior art keywords
ore
blast furnace
furnace
reduction
ores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12008397A
Other languages
Japanese (ja)
Inventor
Takashi Orimoto
隆 折本
Masaaki Naito
誠章 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12008397A priority Critical patent/JPH10298620A/en
Publication of JPH10298620A publication Critical patent/JPH10298620A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the lowering of a heat level at the lower part of a furnace while sufficiently executing the reduction of ore at the time of operating at high O/C and to reduce the producing cost of molten iron while continuing stable operation by injecting a large quantity of pulverized fine coal from a tuyere in a blast furnace and charging the roe having high reducibility from the furnace top. SOLUTION: The pulverized fine coal is injected at >=160 kg/t-p from the tuyere in the blast furnace and while alternately charging the ore and coke from the furnace top in layers, the high O/C operation is executed and the charging quantity of the coke is reduced. At this time, the ore kind having high reducibility to 1200 deg.C is charged on the upper layer in each ore layer, desirably charged at 20-50 mass % of each ore layer. By this method, the dripping temp. of the reduced ore is raised and the lowering of the heat level at the lower part of the furnace is prevented and the stable operation can be obtd. without remarkably increasing the fuel ratio. This reducibility is evaluated when the are can be reduced at >=60% with the gas of CO:N2 =3:7 while raising the temp. to 1200 deg.C at 7 deg.C/min after reducing to wustite with gaseous mixture of CO:CO2 =1:1 matching to the furnace condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉への原料装入
方法に関する。
[0001] The present invention relates to a method for charging raw materials into a blast furnace.

【0002】[0002]

【従来の技術】高炉での還元効率を向上して燃料比を低
減させるため、鉱石類の装入方法については多くの報告
がある。従来技術の殆どは高炉半径方向の鉱石/コーク
ス重量比(以下、O/C)をムーバブルアーマーまたは
旋回シュートにより制御し、COガス利用率を向上させ
るものである。
2. Description of the Related Art There have been many reports on ore charging methods for improving the reduction efficiency and reducing the fuel ratio in a blast furnace. Most of the prior art controls the ore / coke weight ratio (hereinafter, O / C) in the blast furnace radial direction by a movable armor or a swirling chute to improve the CO gas utilization rate.

【0003】この方法は、O/Cが低いとき(4以下)
には有効な方法であるが、羽口から多量に微粉炭を吹き
込む操業を行う際には、装入物のO/Cが高くなり
(5.0〜5.5)、従来の方法では高炉半径方向の中
間部から周辺部にかけて局所的に極めてO/Cの高い部
分(7以上)が生じる。この極めてO/Cの高い部分で
は、鉱石層の上層部でガスの還元ポテンシャル低下によ
る鉱石類の還元遅滞が生じるため、高炉内の融着帯に相
当する1200℃以上の領域で上層部の鉱石類が溶融し
易くなり、炉下部熱レベル低下につながる。
This method is used when the O / C is low (4 or less).
However, when a large amount of pulverized coal is blown from the tuyere, the O / C of the charge increases (5.0 to 5.5). An extremely high O / C (7 or more) locally occurs from the radially intermediate portion to the peripheral portion. In this extremely high O / C portion, ore reduction is delayed due to a reduction in the gas reduction potential in the upper layer of the ore layer. Therefore, the ore in the upper layer in the region of 1200 ° C. or more corresponding to the cohesive zone in the blast furnace is generated. Are easily melted, leading to a lower heat level in the lower part of the furnace.

【0004】[0004]

【発明が解決しようとする課題】従来技術では、高O/
C操業時には鉱石類の還元遅滞により1200℃以上の
領域で鉱石類が溶融し易くなる。したがって、スラグ及
び溶銑は十分加熱されないうちに滴下するため、炉下部
の熱レベルは低下する。また、このときの鉱石類の還元
は不完全であるため、鉱石中に未還元の酸化鉄(Fe
O)が多量に含まれている。これらのFeOは脈石成分
とともに融液を形成し、高炉炉下部に滴下する。これら
の融液は滴下中あるいは炉床の湯溜まりで、下記(1)
式のようにコークスや溶銑中の炭素と反応し還元され
る。
In the prior art, high O /
During the C operation, ores are easily melted in a region of 1200 ° C. or more due to delay in reduction of ores. Therefore, the slag and the hot metal are dropped before being sufficiently heated, so that the heat level in the lower part of the furnace is reduced. In addition, since the reduction of ores at this time is incomplete, unreduced iron oxide (Fe
O) is contained in a large amount. These FeOs form a melt together with the gangue component and are dropped into the lower part of the blast furnace. These melts are dropped or in the pool of the hearth, and the following (1)
As shown in the formula, it reacts with carbon in coke and hot metal and is reduced.

【0005】(1)式の反応は吸熱反応であるため、ス
ラグ中のFeOが多いほど炉下部の熱レベルは低下す
る。 FeO+C=Fe+CO ・・・・・(1) したがって、高O/C操業時には鉱石類の還元を十分に
することにより、高炉炉下部の熱レベルを低下させない
ことが課題である。
Since the reaction of the formula (1) is an endothermic reaction, the more FeO in the slag, the lower the heat level in the lower part of the furnace. FeO + C = Fe + CO (1) Therefore, it is an issue to reduce the heat level in the lower part of the blast furnace by sufficiently reducing the ore during the high O / C operation.

【0006】[0006]

【課題を解決するための手段】以上の課題を解決するた
め、本発明では鉱石層上層部に1200℃までの被還元
性が良好な鉱石類を装入することにより還元率を低下さ
せず、鉱石類の滴下温度及びスラグ中FeO維持を実現
し、高O/C操業時でも高炉炉下部の熱レベルを維持す
る方法を見出した。すなわち、高炉羽口から微粉炭を
160kg/t−p以上吹き込み、炉頂から鉱石類とコ
ークスを交互に層状に装入する際に、1200℃までの
被還元性が高い鉱石類を各鉱石層の上層に装入すること
を特徴とする高炉への鉱石類装入方法。
In order to solve the above-mentioned problems, the present invention does not reduce the reduction rate by charging ore having good reducibility up to 1200 ° C. in the upper layer of the ore layer, A method for realizing the dropping temperature of ore and maintaining FeO in slag and maintaining the heat level in the lower part of the blast furnace even during high O / C operation was found. That is, when pulverized coal is blown at 160 kg / tp or more from the blast furnace tuyere and the ore and coke are charged alternately in layers from the furnace top, ore having high reducibility up to 1200 ° C. is added to each ore layer. A method for charging ore into a blast furnace, wherein the ore is charged into an upper layer of the blast furnace.

【0007】高炉内の各鉱石類層の20〜50mas
s%を1200℃での被還元性の高鉱石類とすることを
特徴とする高炉への鉱石類装入方法。 CO,CO2 を容積比1:1で混合したガスで100
0℃でウスタイトまで還元した後、7℃/minで12
00℃まで昇温しながらCOとN2 を容積比3:7で混
合したガスで還元した後の還元率が60%以上である鉱
石類を1200℃までの被還元性の高い鉱石類として使
用することを特徴とする高炉への鉱石類装入方法であ
る。
[0007] 20 to 50 mas of each ore layer in the blast furnace
A method for charging ore into a blast furnace, wherein s% is a reducible high ore at 1200 ° C. CO and CO 2 at a volume ratio of 1: 1,
After reduction to wustite at 0 ° C, 12 ° C at 7 ° C / min.
Ores with a reduction rate of 60% or more after reduction with a gas mixture of CO and N 2 at a volume ratio of 3: 7 while raising the temperature to 00 ° C. are used as ores with high reducibility up to 1200 ° C. This is a method for charging ore into a blast furnace.

【0008】[0008]

【発明の実施の形態】微粉炭吹き込み量が160kg/
t以上の高O/C操業時にはコークス装入量を低減でき
るが、コークス層は高炉内で通気性を確保する役割を担
っていることから、ある量以上を装入しなければならな
い(5000m3 級の高炉で25t/チャージ程度)。
したがって、O/Cの増大に伴い鉱石類の層厚は増加す
ることになり、鉱石層の上層部は還元ガスの還元ポテン
シャルが低下するため未還元部分が増加する。これらの
還元不十分な鉱石類は高炉内の融着帯に相当する120
0℃以上の領域で溶融し易くなり、炉下部熱レベル低下
につながる。
BEST MODE FOR CARRYING OUT THE INVENTION The pulverized coal injection amount is 160 kg /
Although the amount of coke charged can be reduced at the time of high O / C operation of at least t, since the coke layer plays a role of securing air permeability in the blast furnace, it must be charged at a certain amount or more (5000 m 3). About 25t / charge in a high-grade blast furnace).
Therefore, the layer thickness of the ore increases with an increase in O / C, and the unreduced portion increases in the upper layer of the ore layer because the reduction potential of the reducing gas decreases. These under-reduced ores correspond to the cohesive zone in the blast furnace,
Melting becomes easy in the region of 0 ° C. or higher, which leads to a decrease in the heat level in the lower part of the furnace.

【0009】このような高O/C操業時の課題を解決す
るには、1200℃までの還元率を高める必要がある。
現在、900℃での被還元性はJISで規格されJIS
−RIという指標になっているが、1200℃までの還
元率を評価する統一された方法はない。1200℃まで
の還元率は、1100℃以上の温度で顕著になる鉱石類
の軟化により左右される。すなわち、900℃のJIS
−RIでは鉱石類の軟化による気孔閉塞が起こらないた
め、実炉での鉱石類の還元挙動を正確に反映することが
困難である。
In order to solve such a problem at the time of high O / C operation, it is necessary to increase the reduction rate up to 1200 ° C.
At present, the reducibility at 900 ° C is specified by JIS.
Although the index is -RI, there is no unified method for evaluating the reduction rate up to 1200 ° C. The reduction rate up to 1200 ° C. depends on the softening of the ore which becomes significant at temperatures above 1100 ° C. That is, JIS at 900 ° C
In -RI, since pore closure due to softening of ores does not occur, it is difficult to accurately reflect the reduction behavior of ores in an actual furnace.

【0010】試料を1000℃でCO−CO2 混合ガス
(混合比1:1vol%)と平衡させる理由は、試験条
件を実炉での鉱石類の還元率に一致させるためである。
垂直ゾンデによるサンプリングにより実炉では1000
℃で還元率がほぼ30%のウスタイトとなることが知ら
れており、上記の還元条件(平衡に達するまで2〜3時
間)で同等の還元率にすることができる。1000℃で
の還元率を調整した後、還元ガスをCO−N2 混合ガス
(混合比3:7vol%、5〔リットル/min〕)に
変え、7℃/minで昇温しながら1200℃までの還
元率を測定する。
The reason why the sample is equilibrated at 1000 ° C. with a CO—CO 2 mixed gas (mixing ratio: 1: 1 vol%) is to match the test conditions with the reduction rate of ores in an actual furnace.
1000 in actual furnace by sampling with vertical sonde
It is known that the reduction rate becomes about 30% wustite at ℃, and the same reduction rate can be obtained under the above-mentioned reduction conditions (2 to 3 hours until equilibrium is reached). After adjusting the reduction rate at 1000 ° C., the reducing gas was changed to a CO—N 2 mixed gas (mixing ratio 3: 7 vol%, 5 [liter / min]), and the temperature was raised to 1200 ° C. while increasing the temperature at 7 ° C./min. Is measured.

【0011】1200℃まで測定する理由は、高炉内の
融着帯面上がほぼ1200℃であり、融着帯までの還元
率により炉下部の熱レベルに影響を及ぼす滴下開始温度
やスラグ中のFeO量がほぼ決まるからである。7℃/
minで昇温する理由も上述の垂直ゾンデによる測定に
より、実炉の場合、5〜10℃/minで昇温されてい
るからである。
The reason for the measurement up to 1200 ° C. is that the temperature on the surface of the cohesive zone in the blast furnace is almost 1200 ° C. This is because the amount of FeO is substantially determined. 7 ℃ /
The reason why the temperature is raised at a minimum is that the temperature is raised at a rate of 5 to 10 ° C./min in the case of an actual furnace by the measurement using the above-described vertical sonde.

【0012】CO−N2 混合ガスを用いるのは以下の理
由による。高温還元を行う高炉のボッシュガス組成は、
通常、CO:35〜40vol%、N2 :50〜55v
ol%、H2 :2〜5vol%、CO2 :2〜5vol
%であり、主成分はCOとN2 である。H2 とCO2
還元に影響を与えるガスであるが、ボッシュガス中の割
合が小さく、また、常に同じ組成のガスを用いる限り鉱
石類の評価には問題ない。
The CO-N 2 mixed gas is used for the following reasons. The composition of the blast furnace that performs high-temperature reduction is
Usually, CO: 35~40vol%, N 2 : 50~55v
ol%, H 2 : 2 to 5 vol%, CO 2 : 2 to 5 vol
%, And the main components are CO and N 2 . H 2 and CO 2 are also gases that affect the reduction, but there is no problem in the evaluation of ores as long as the proportion in the Bosch gas is small and a gas of the same composition is always used.

【0013】上記の試験方法により1200℃での還元
率が60%以上の鉱石類を、高炉内部に装入された複数
の鉱石類層の各々の上層に装入することが還元率を高め
る点で好ましい。鉱石類層の上層に装入する方法として
は、通常還元率(55〜60%程度)の鉱石類を1バッ
チ目に装入した後、別の鉱石庫から切り出した1200
℃での還元率が60%以上の鉱石類を2バッチ目に装入
する方法がある。
According to the above-mentioned test method, charging an ore having a reduction rate of not less than 60% at 1200 ° C. into each upper layer of a plurality of ore layers charged inside the blast furnace increases the reduction rate. Is preferred. As a method of charging the ore layer into the upper layer, the ore having a normal reduction rate (about 55 to 60%) is charged in the first batch and then 1200 is cut out from another ore storage.
There is a method in which ores having a reduction rate at 60 ° C. of 60% or more are charged in the second batch.

【0014】ここで、1200℃での還元率が60%以
上とした理由は、1200℃での還元率が60%以上の
鉱石類はより高温部に降下するまでの間にさらに還元さ
れ鉱石類の滴下温度が1450℃以上、スラグ中FeO
が30mass%以下となり、高炉の炉下部熱レベルを
低下させないことが確認されたからである。
Here, the reason why the reduction rate at 1200 ° C. is 60% or more is that the ore whose reduction rate at 1200 ° C. is 60% or more is further reduced before dropping to a higher temperature part. Temperature of 1450 ℃ or more, FeO in slag
Is 30 mass% or less, and it was confirmed that the heat level in the lower part of the blast furnace was not reduced.

【0015】1200℃までの還元率が60%以上の鉱
石類の装入量は鉱石類の20〜50mass%が好まし
い。ここで、20mass%未満では鉱石類層の上層部
の被還元性の改善効果が小さく炉下部熱レベル維持が困
難であり、50mass%超では操業上の問題は無いが
高被還元性鉱石類の製造コストが割高なため、微粉炭吹
き込みによるメリットを十分享受できなくなるからであ
る。
The amount of the ore having a reduction rate of not less than 60% up to 1200 ° C. is preferably 20 to 50 mass% of the ore. Here, if it is less than 20 mass%, the effect of improving the reducibility of the upper layer of the ore layer is small, and it is difficult to maintain the heat level in the lower part of the furnace. This is because the production cost is relatively high, and the advantages of pulverized coal injection cannot be sufficiently enjoyed.

【0016】ここで、鉱石類とは鉄鉱石、焼結鉱、パレ
ットであり、高炉炉下部とは朝顔より下の滴下帯、炉
芯、湯溜まりのことである。
Here, the ores are iron ore, sintered ore, and pallets, and the lower part of the blast furnace is a drip zone, a furnace core, and a water pool below the morning glory.

【0017】[0017]

【実施例】以下に、本発明での実施例を説明する。本発
明の測定法として、試験を簡潔にするために、試料重量
を20gとし、CO−CO2 混合ガス(混合比1:1)
で1000℃でウスタイトまで還元した後、CO−N2
混合ガス(混合比3:7)の流量を5〔リットル/mi
n〕として7℃/minで1200℃まで還元して還元
率を測定した。経済性を考慮しなければ試料重量に比例
させてCO−N2 混合ガスの流量も変えてもよい。鉱石
類の還元率は以下の式によ計算した。
Embodiments of the present invention will be described below. As a measuring method of the present invention, in order to simplify the test, a sample weight was set to 20 g, and a CO-CO 2 mixed gas (mixing ratio 1: 1).
And reduced to wustite at 1000 ° C. with CO—N 2
The flow rate of the mixed gas (mixing ratio 3: 7) was 5 [liter / mi].
n] at a rate of 7 ° C./min to 1200 ° C. to measure the reduction rate. If economics are not taken into consideration, the flow rate of the CO—N 2 mixed gas may be changed in proportion to the sample weight. The reduction rate of ores was calculated by the following equation.

【0018】還元率〔%〕=(還元された酸素量)/
(FeOと結合している酸素量)×100 (還元された酸素量)は排ガスと還元ガスの組成変化か
ら計算することができ、(FeOと結合している酸素
量)は試料の化学分析により測定できる。なお、表1に
操業結果を示す。
Reduction rate [%] = (reduced oxygen amount) /
(The amount of oxygen combined with FeO) × 100 (the amount of reduced oxygen) can be calculated from the composition change of the exhaust gas and the reducing gas, and the (amount of oxygen combined with FeO) is obtained by chemical analysis of the sample. Can be measured. Table 1 shows the operation results.

【0019】[0019]

【表1】 [Table 1]

【0020】内容積4000m3 の高炉で、通常操業時
は本発明の測定法での還元率が60%以上の鉱石類は使
用していない。通常鉱石類の内訳は、焼結鉱88mas
s%、塊鉱石12mass%である。通常鉱石類の本発
明の測定法での還元率は55.0%であり、滴下開始温
度は1380℃であった。なお、滴下開始温度を定量化
する際には、本発明とは別の大型の滴下試験装置を用い
た(以下の例でも同様)、通常鉱石類のみを使用した場
合、微粉炭比140kg/t−p、燃料比490kg/
t−p、溶銑温度1515℃の操業を行っていた。
In a blast furnace having an inner volume of 4000 m 3 , ores having a reduction ratio of 60% or more according to the measurement method of the present invention are not used during normal operation. Ores are usually broken down by sinter ore 88mas
s% and lump ore 12 mass%. The reduction rate of ordinary ores in the measurement method of the present invention was 55.0%, and the dropping start temperature was 1380 ° C. When quantifying the dropping start temperature, a large dropping test apparatus different from the present invention was used (the same applies to the following examples). When only ordinary ores were used, the pulverized coal ratio was 140 kg / t. -P, fuel ratio 490 kg /
tp, the hot metal temperature was operating at 1515 ° C.

【0021】実施例1は本発明の測定方法での還元率が
60.1%の高被還元性鉱石類の鉱石層の上層部に50
mass%装入した例である。高被還元性鉱石類以外の
鉱石類は通常鉱石類と同じものである。このとき、鉱石
類の還元率が向上したため滴下開始温度は1460℃と
なり高炉の炉下部熱レベルを容易に維持することが可能
であった。したがって、燃料比を殆ど増加することなく
200kg/t−pの微粉炭吹き込みが可能となった。
Example 1 shows that 50% of the ore layer of highly reducible ores having a reduction rate of 60.1% by the measuring method of the present invention was placed on the upper layer.
This is an example in which mass% is charged. Ores other than highly reducible ores are usually the same as ores. At this time, since the reduction rate of the ore was improved, the dropping start temperature was 1460 ° C., and the heat level in the lower part of the blast furnace could be easily maintained. Therefore, pulverized coal injection of 200 kg / tp could be performed without increasing the fuel ratio.

【0022】実施例2は本発明の測定法での還元率が6
2.3%の高被還元性鉱石類の鉱石層の上層部に20m
ass%装入した例である。このとき、鉱石類の滴下開
始温度は1450℃となり、実施例1の場合と同様に、
燃料比の殆ど増加することなく200kg/t−pの微
粉炭吹き込みが可能となった。
In Example 2, the reduction rate was 6 in the measurement method of the present invention.
20m above the ore layer of 2.3% high reducible ore
This is an example in which ass% is charged. At this time, the dropping start temperature of the ore is 1450 ° C., as in the case of Example 1,
200 kg / tp pulverized coal injection was possible without increasing the fuel ratio.

【0023】比較例1は本発明の測定法での還元率が6
2.3%の高被還元性鉱石類を鉱石層の上層部に10m
ass%装入した例である。このとき、高被還元性鉱石
類の配合率が低いため鉱石類の還元率はやや向上したも
のの効果が小さく、滴下開始温度は1400℃であり高
炉の炉下部熱レベルを維持することが困難であった。し
たがって、溶銑温度を維持するため燃料比の増加を余儀
なくされ燃料比507kg/t−p、微粉炭比も180
kg/t−pまでしか吹き込むことができなかった。
Comparative Example 1 has a reduction ratio of 6 in the measurement method of the present invention.
2.3% of highly reducible ore is placed 10m above the ore layer
This is an example in which ass% is charged. At this time, since the compounding ratio of the highly reducible ores is low, the reduction ratio of the ores is slightly improved, but the effect is small. The dropping start temperature is 1400 ° C., and it is difficult to maintain the heat level in the lower part of the blast furnace. there were. Therefore, the fuel ratio must be increased to maintain the hot metal temperature, and the fuel ratio is 507 kg / tp and the pulverized coal ratio is also 180.
It could only blow up to kg / tp.

【0024】比較例2は本発明の測定法での還元率が5
8.9%の鉱石類を鉱石層の上層部に50mass%装
入した例である。このとき、上層部に装入した鉱石類の
還元率が不十分であるため鉱石類の還元率はやや向上し
たものの効果が小さく、滴下開始温度は1390℃であ
り、高炉の炉下部熱レベルを維持することが困難であっ
た。したがって、溶銑温度を維持するため燃料比の増加
を余儀なくされ燃料比505kg/t−p、微粉炭比も
175kg/t−pまでしか吹き込むことができなかっ
た。
Comparative Example 2 has a reduction rate of 5 in the measurement method of the present invention.
This is an example in which 8.9% ore was charged at 50 mass% in the upper layer of the ore layer. At this time, since the reduction rate of the ore charged in the upper layer part was insufficient, the reduction rate of the ore was slightly improved, but the effect was small, and the dropping start temperature was 1390 ° C. It was difficult to maintain. Therefore, the fuel ratio was forced to increase in order to maintain the hot metal temperature, and the fuel ratio could be blown only up to 505 kg / tp and the pulverized coal ratio up to 175 kg / tp.

【0025】[0025]

【発明の効果】本発明により、燃料比を大幅に増大する
ことなく安定操業を継続しながら安価な微粉炭を多量に
吹き込むことが可能となり、溶銑製造コストを下げるこ
とができる。
According to the present invention, a large amount of inexpensive pulverized coal can be blown while continuing stable operation without greatly increasing the fuel ratio, and the cost of hot metal production can be reduced.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高炉羽口から微粉炭を160kg/t−
p以上吹き込み、炉頂から鉱石類とコークスを交互に層
状に装入する際に、1200℃までの被還元性が高い鉱
石類を各鉱石層の上層に装入することを特徴とする高炉
への鉱石類装入方法。
1. Pulverized coal from a blast furnace tuyere at 160 kg / t-
When the ore and the coke are charged alternately in layers from the furnace top by injecting p or more, ore with high reducibility up to 1200 ° C is charged into the upper layer of each ore layer. Ore loading method.
【請求項2】 高炉内の各鉱石類層の20〜50mas
s%を1200℃での被還元性の高い鉱石類とすること
を特徴とする請求項1記載の高炉への鉱石類装入方法。
2. 20 to 50 mas of each ore layer in the blast furnace
2. The method for charging ore into a blast furnace according to claim 1, wherein the s% is an ore having a high reducibility at 1200 ° C.
【請求項3】 CO,CO2 を容積比1:1で混合した
ガスで1000℃でウスタイトまで還元した後、7℃/
minで1200℃まで昇温しながらCOとN2 を容積
比3:7で混合したガスで、還元した後の還元率が60
%以上である鉱石類を1200℃までの被還元性の高い
鉱石類として使用することを特徴とする請求項1または
請求項2記載の高炉への鉱石類装入方法。
Wherein CO, CO 2 volume ratio of 1: After reduction to wustite at 1000 ° C. in a mixed gas by 1, 7 ° C. /
While reducing the temperature to 1200 ° C. in min. with a gas obtained by mixing CO and N 2 at a volume ratio of 3: 7, the reduction rate after reduction was 60%.
3. The method for charging ores into a blast furnace according to claim 1 or 2, wherein the ores having a percentage of not less than 1% are used as ores having high reducibility up to 1200 ° C.
JP12008397A 1997-04-24 1997-04-24 Method for charging ore and the like into blast furnace Withdrawn JPH10298620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12008397A JPH10298620A (en) 1997-04-24 1997-04-24 Method for charging ore and the like into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12008397A JPH10298620A (en) 1997-04-24 1997-04-24 Method for charging ore and the like into blast furnace

Publications (1)

Publication Number Publication Date
JPH10298620A true JPH10298620A (en) 1998-11-10

Family

ID=14777492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12008397A Withdrawn JPH10298620A (en) 1997-04-24 1997-04-24 Method for charging ore and the like into blast furnace

Country Status (1)

Country Link
JP (1) JPH10298620A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146414A (en) * 2000-11-06 2002-05-22 Nippon Steel Corp Method for operating blast furnace
KR100413820B1 (en) * 1999-12-22 2003-12-31 주식회사 포스코 Method for working in the blast furnace to improve the condition under the high pulverized coal injection
KR100762455B1 (en) * 2001-05-17 2007-10-02 주식회사 포스코 Method for charging large ore into blast furnace to control co gas coefficient?co of utilization
JP2013256696A (en) * 2012-06-13 2013-12-26 Nippon Steel & Sumitomo Metal Corp Method for operating blast furnace
JP2019143226A (en) * 2018-02-23 2019-08-29 日本製鉄株式会社 Method for charging blast furnace feed

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413820B1 (en) * 1999-12-22 2003-12-31 주식회사 포스코 Method for working in the blast furnace to improve the condition under the high pulverized coal injection
JP2002146414A (en) * 2000-11-06 2002-05-22 Nippon Steel Corp Method for operating blast furnace
JP4598256B2 (en) * 2000-11-06 2010-12-15 新日本製鐵株式会社 Blast furnace operation method
KR100762455B1 (en) * 2001-05-17 2007-10-02 주식회사 포스코 Method for charging large ore into blast furnace to control co gas coefficient?co of utilization
JP2013256696A (en) * 2012-06-13 2013-12-26 Nippon Steel & Sumitomo Metal Corp Method for operating blast furnace
JP2019143226A (en) * 2018-02-23 2019-08-29 日本製鉄株式会社 Method for charging blast furnace feed

Similar Documents

Publication Publication Date Title
AU744754B2 (en) Method of making iron and steel
JP5546675B1 (en) Blast furnace operating method and hot metal manufacturing method
CN113088791B (en) Method for preparing rare earth steel by reducing rare earth oxide step by step in refining process
US20230175087A1 (en) Method for producing liquid pig iron from a DRI product
CN101743330B (en) Process for producing molten iron
JPH10298620A (en) Method for charging ore and the like into blast furnace
JP4097010B2 (en) Molten steel manufacturing method
JPH0913107A (en) Operation of blast furnace
JP2020164886A (en) Operating method of blast furnace
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
KR102524475B1 (en) Method for controlling slag composition for hydrogen-based reduction ironmaking process by controlling the mixing ratio of low-reduced iron, sintered ore and coke, and slag compostion thereof
JP2560669B2 (en) Method of manufacturing hot metal
JP2001288477A (en) Method for preparing high-reactivity coke for blast furnace
JPH11315308A (en) Operation of blast furnace
JPH0635604B2 (en) Blast furnace operation method
KR20030048319A (en) Manufacturing method of iron ore sinter
JP2897363B2 (en) Hot metal production method
JPH0788522B2 (en) Blast furnace operation method
JP3017009B2 (en) Blast furnace operation method
Kuhn Science Break: Steel
JPS63176407A (en) Production of molten iron
JPH07278624A (en) Operation method to blow large amount of pulverized carbon to blast furnace
KR101053970B1 (en) Method of manufacturing molten steel with controlled carbon content.
JPH0425321B2 (en)
JPH02200711A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706