JP2001288477A - Method for preparing high-reactivity coke for blast furnace - Google Patents

Method for preparing high-reactivity coke for blast furnace

Info

Publication number
JP2001288477A
JP2001288477A JP2000101657A JP2000101657A JP2001288477A JP 2001288477 A JP2001288477 A JP 2001288477A JP 2000101657 A JP2000101657 A JP 2000101657A JP 2000101657 A JP2000101657 A JP 2000101657A JP 2001288477 A JP2001288477 A JP 2001288477A
Authority
JP
Japan
Prior art keywords
coke
iron
blast furnace
coke oven
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000101657A
Other languages
Japanese (ja)
Inventor
Seiji Nomura
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000101657A priority Critical patent/JP2001288477A/en
Publication of JP2001288477A publication Critical patent/JP2001288477A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare high-strength high-reactivity coke for blast furnaces without detriment to chamber type coke oven side walls. SOLUTION: In this method, 0.05-5 mass % of iron is added to coal, and carbonization proceeds with the coke oven wall temperature kept at 1,100 deg.C or lower. Iron ore or iron dust should be the iron source. It is desired that the coke oven combustion chamber bottom temperature be adjusted so that the coke oven wall surface temperature stay below 1,100 deg.C throughout the entire carbonization period from just after coal injection through just before coke extraction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の燃料比を低
減させ、生産性を向上させて高炉操業を実施可能にする
ための、高炉用高反応性コークスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly reactive coke for a blast furnace for reducing the fuel ratio of the blast furnace, improving the productivity and enabling the operation of the blast furnace.

【0002】[0002]

【従来の技術】通常の高炉においては、炉頂から鉄鉱石
(焼結鉱)および通常高炉用コークスを層状に装入し、
この鉄鉱石を炉内で還元した後、溶融状態にある銑鉄を
製造している。
2. Description of the Related Art In a normal blast furnace, iron ore (sinter) and normal blast furnace coke are charged in layers from the furnace top.
After reducing this iron ore in a furnace, pig iron in a molten state is produced.

【0003】ところで、高炉には、熱保存帯と呼ばれる
温度が1000℃程度でほぼ一定の領域があり、この温
度は通常高炉用コークスのガス化開始温度に相当する。
すなわち、高炉内でC+CO2=2COで表されるコー
クスのガス化反応が起るためには、約1000℃以上の
温度が必要となる。鉄鉱石の還元は、その約70%が熱
保存帯より高温領域で生じるが、温度が高くなるに伴
い、還元平衡ガス組成が高CO濃度側になり、還元反応
を進めるためには、より高いCO濃度組成のガスが必要
となる。さらに、約1100℃以上で、鉄鉱石からの融
液生成が見られ、その結果として鉄鉱石(焼結鉱)中へ
の還元ガスの浸透が抑制されてしまう。このため、熱保
存帯温度が高いと、COガスによる鉄鉱石の間接還元を
有効に活用できず、還元効率もある値以上に向上しな
い。
[0003] In the blast furnace, there is a substantially constant region called a heat preservation zone at a temperature of about 1000 ° C, which usually corresponds to the gasification start temperature of coke for blast furnace.
That is, in order to cause a gasification reaction of coke represented by C + CO 2 = 2CO in the blast furnace, a temperature of about 1000 ° C. or more is required. About 70% of the reduction of iron ore occurs in the higher temperature region than the heat preservation zone. However, as the temperature increases, the composition of the reduction equilibrium gas becomes higher and the CO concentration becomes higher. A gas having a CO concentration composition is required. Furthermore, at about 1100 ° C. or higher, a melt is generated from iron ore, and as a result, permeation of the reducing gas into iron ore (sinter) is suppressed. For this reason, if the heat storage zone temperature is high, the indirect reduction of iron ore by CO gas cannot be effectively used, and the reduction efficiency does not improve to a certain value or more.

【0004】一方、高炉用高反応性コークスは、反応性
が高いことから、高炉内のCO2がコークス表面に接し
た際、C+CO2=2COの反応がより低温から活発に
行われる。また、その結果として、炉内に生じたCOガ
スが鉄鉱石と有効に反応して、還元反応が促進される。
On the other hand, since highly reactive coke for blast furnaces has high reactivity, when CO 2 in the blast furnace comes into contact with the coke surface, the reaction of C + CO 2 = 2CO is actively performed from a lower temperature. As a result, the CO gas generated in the furnace effectively reacts with the iron ore to promote the reduction reaction.

【0005】C+CO2=2COの反応は吸熱反応であ
り、高炉における熱保存帯温度を低下させる効果があ
る。すなわち、通常高炉用コークス使用時は、1000
℃程度の熱保存帯が生成し、その温度がほとんど変化し
ないのに対し、高炉用高反応性コークスを使用すること
によって、熱保存帯温度を900〜950℃に低下させ
ることが可能となる。その結果、還元平衡ガス組成が低
CO濃度側になり、還元平衡到達点に余裕ができるた
め、還元がより進行することになり、還元効率が向上す
る。このため、高炉用高反応性コークスを通常高炉用コ
ークスの一部、あるいは全量と置換して使用することが
できれば、高炉の還元効率が向上し、コークス比を低下
できる。
The reaction of C + CO 2 = 2CO is an endothermic reaction, and has the effect of lowering the temperature of the heat storage zone in the blast furnace. That is, when using coke for normal blast furnace, 1000
While a heat storage zone of about ℃ is generated and its temperature hardly changes, the use of a highly reactive coke for a blast furnace makes it possible to lower the heat storage zone temperature to 900 to 950 ° C. As a result, the composition of the reduction equilibrium gas is on the low CO concentration side, and the reduction equilibrium reaching point can be afforded, so that the reduction proceeds more and the reduction efficiency is improved. For this reason, if the high-reactivity coke for blast furnace can be used by replacing part or all of the coke for normal blast furnace, the reduction efficiency of the blast furnace can be improved and the coke ratio can be reduced.

【0006】しかしこれまでは、高炉での使用に適した
高炉用高反応性コークスの製造方法が確立されていなか
ったため、高炉の還元効率向上には限界があった。
However, a method for producing a highly reactive coke for a blast furnace suitable for use in a blast furnace has not been established so far, and there is a limit in improving the reduction efficiency of the blast furnace.

【0007】[0007]

【発明が解決しようとする課題】従来行われてきた高炉
用高反応性コークス製造法は、高炉用コークスの製造に
適さない、コークス化した際に反応性が高くなる非微粘
結炭や一般炭を原料炭に配合するか、あるいはコークス
のガス化反応を促進する触媒としての役割を持つアルカ
リ類や鉄分を原料炭に配合する方法であった。
The method of producing high-reactivity coke for blast furnaces, which has been conventionally carried out, is not suitable for the production of coke for blast furnaces. In this method, charcoal is blended into coking coal, or alkalis or iron, which has a role as a catalyst for promoting the gasification reaction of coke, are blended into coking coal.

【0008】しかし、非微粘結炭や一般炭の配合による
方法は、配合量が少いと反応性が向上せず、配合量を多
くするとコークス強度を維持することが困難であった。
コークス強度が低いと、高炉の炉頂から装入する時に粉
化してしまい、高炉の通気性を悪化させることになる。
また、アルカリ類配合による方法は、高炉の炉壁煉瓦損
傷や付着物生成を促進し、高炉安定操業および寿命延長
の面から好ましくない。さらに、鉄分を石炭と混合して
コークス炉で乾留すると、ある一定の温度以上では、コ
ークス炉の炉壁を構成する珪石煉瓦と鉄分が反応し、炉
壁が損傷するため、望ましくないという問題点があっ
た。
[0008] However, in the method based on the blending of non-fine caking coal or general coal, if the blending amount is small, the reactivity is not improved, and if the blending amount is large, it is difficult to maintain coke strength.
When the coke strength is low, the coke is powdered when charged from the top of the blast furnace, which deteriorates the permeability of the blast furnace.
In addition, the method based on the blending of alkalis promotes damage to bricks of a furnace wall of the blast furnace and formation of deposits, and is not preferable in terms of stable operation of the blast furnace and extension of life. Furthermore, when iron is mixed with coal and carbonized in a coke oven, at a certain temperature or higher, the silica brick and the iron constituting the furnace wall of the coke oven react with the iron, and the furnace wall is damaged, which is undesirable. was there.

【0009】そこで本発明においては、コークス強度を
確保して高炉の通気性を維持することができ、かつ、高
炉寿命、高炉安定操業の面で問題がない、高炉用高反応
性コークスの製造方法を提供することを目的とする。
Therefore, in the present invention, a method for producing a highly reactive coke for a blast furnace, which can secure the coke strength and maintain the air permeability of the blast furnace, and has no problems in terms of the blast furnace life and the stable operation of the blast furnace. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は以下の通
りである。
The gist of the present invention is as follows.

【0011】(1)室式コークス炉において、鉄分が石
炭に対し0.05〜5質量%となるように鉄源を添加
し、コークス炉の炉壁表面温度を1100℃以下に保つ
ことを特徴とする、高炉用高反応性コークスの製造方
法。
(1) In a room-type coke oven, an iron source is added so that the iron content is 0.05 to 5% by mass with respect to coal, and the furnace wall surface temperature of the coke oven is maintained at 1100 ° C. or lower. A method for producing a highly reactive coke for a blast furnace.

【0012】(2)鉄源が、鉄鉱石または鉄ダストであ
ることを特徴とする、前記(1)の高炉用高反応性コー
クスの製造方法。
(2) The method for producing a highly reactive coke for a blast furnace according to the above (1), wherein the iron source is iron ore or iron dust.

【0013】(3)石炭装入直後からコークス窯出前ま
での全乾留時間におけるコークス炉の炉壁表面温度を1
100℃以下に保つようにコークス炉の燃焼室底部温度
を調整することを特徴とする、請求項1記載の高炉用高
反応性コークスの製造方法。
(3) The surface temperature of the coke oven wall during the entire carbonization time from immediately after charging coal to before leaving the coke kiln is 1
The method for producing a highly reactive coke for a blast furnace according to claim 1, wherein the bottom temperature of the combustion chamber of the coke oven is adjusted so as to keep the temperature at 100 ° C or lower.

【0014】[0014]

【発明の実施の形態】コークス炉の炉壁を構成する珪石
煉瓦と鉄分が反応するのは、酸化鉄(FeO)とSiO
2が反応して低融点のファイヤライト(2FeO・Si
2)を生成するためであり、生成温度は約1170℃
である。さらに、珪石煉瓦中、あるいは石炭中にはCa
Oが若干含まれており、FeO−CaO−SiO2の三
元状態図から判断すると、約1110℃で低融点のスラ
グが生成する。そこで、このような反応を抑制するため
に、コークス炉の炉壁表面温度を1100℃以下にすれ
ば、炉壁煉瓦を損傷することなく、高炉用高反応性コー
クスを製造することが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The reaction between the silica brick constituting the furnace wall of a coke oven and iron is caused by iron oxide (FeO) and SiO
2 reacts with low melting point firelite (2FeO.Si
O 2 ) at a temperature of about 1170 ° C.
It is. Furthermore, Ca is contained in silica bricks or coal.
Slightly contains O, and slag having a low melting point is generated at about 1110 ° C. as judged from the ternary phase diagram of FeO—CaO—SiO 2 . Therefore, if the furnace wall surface temperature of the coke oven is set to 1100 ° C. or lower in order to suppress such a reaction, it is possible to manufacture highly reactive coke for a blast furnace without damaging the oven wall brick. .

【0015】コークス炉の炉温は、通常、フリューと呼
ばれる燃焼室の温度で表され、この燃焼室内で燃料ガス
と空気が混合されて燃焼する。また、燃焼室内の温度
は、通常底部ほど高い。コークス炉の燃焼室で発生した
熱は、厚み120mm程度の炉壁を介して炭化室内の石
炭に供給される。したがって、コークス炉の炉壁表面温
度は常にコークス炉燃焼室温度よりも低い。
[0015] The furnace temperature of a coke oven is usually represented by the temperature of a combustion chamber called flue, in which fuel gas and air are mixed and burned. Also, the temperature in the combustion chamber is usually higher at the bottom. Heat generated in the combustion chamber of the coke oven is supplied to coal in the coking chamber through a furnace wall having a thickness of about 120 mm. Therefore, the furnace wall surface temperature of the coke oven is always lower than the coke oven combustion chamber temperature.

【0016】従来、コークス炉の炉壁表面温度について
は、乾留中においては測定不可能であったため全く考慮
されていなかったが、コークス炉の燃焼室底部温度と炉
壁表面温度には相関があり、燃焼室底部温度を一定値以
下に制御することにより炉壁表面温度を一定値以下に保
つことができる。すなわち、コークス炉の燃焼室底部温
度と炉壁表面温度の関係は、炉の形式、炉壁煉瓦の材
質、厚み、燃焼室の燃焼構造によって異なる。したがっ
て、各コークス炉において、石炭装入直後からコークス
窯出前までの燃焼室底部の温度と炉壁表面温度の関係を
調査することにより、両者の相関を求めることができ
る。この相関に基づいて、コークス炉の炉壁表面温度を
一定値以下に保つためのコークス炉の燃焼室底部温度の
条件を見出し、この条件にコークス炉の燃焼室底部温度
を保てば、常に炉壁表面温度を一定値以下に保つことが
可能である。
Conventionally, the furnace wall surface temperature of a coke oven has not been considered at all because it could not be measured during carbonization, but there is a correlation between the bottom temperature of the combustion chamber of the coke oven and the furnace wall surface temperature. By controlling the temperature of the bottom of the combustion chamber to a certain value or less, the furnace wall surface temperature can be kept at a certain value or less. That is, the relationship between the temperature of the bottom of the combustion chamber of the coke oven and the surface temperature of the furnace wall varies depending on the type of furnace, the material and thickness of the furnace wall brick, and the combustion structure of the combustion chamber. Therefore, in each coke oven, by investigating the relationship between the temperature at the bottom of the combustion chamber and the temperature of the furnace wall surface from immediately after charging the coal to before exiting the coke oven, the correlation between the two can be obtained. Based on this correlation, a condition for the bottom temperature of the combustion chamber of the coke oven to keep the surface temperature of the furnace wall of the coke oven at a certain value or less is found. It is possible to keep the wall surface temperature below a certain value.

【0017】石炭に鉄源を添加し、上述したような条件
でコークス炉で乾留することにより、反応性の高い高炉
用コークスを製造することができる。ここで、鉄源と
は、鉄を含む化合物の総称である。鉄分添加によりコー
クスの反応性が向上するのは、鉄が触媒として作用する
ためである。
By adding an iron source to coal and dry-distilling it in a coke oven under the conditions described above, highly reactive blast furnace coke can be produced. Here, the iron source is a general term for compounds containing iron. The reason why the reactivity of coke is improved by the addition of iron is that iron acts as a catalyst.

【0018】また、石炭に対する鉄源の添加割合は、石
炭に対する鉄としての添加量を0.05〜5質量%とす
る。これは、添加割合が0.05質量%未満では、触媒
としての効果を発揮させるには少すぎ、添加割合が5質
量%を越えると、コークス強度が低下するためである。
0.05〜5質量%の添加割合であれば、微粉鉄鉱石を
石炭に混合した場合、微粉鉄鉱石は石炭粒子間の空隙に
入り込むため、コークス炉炭化室内の石炭の装入密度は
変化しない。コークス強度は炭化室内の石炭の装入密度
と相関があり、炭化室内の石炭の装入密度が高いほどコ
ークス強度は高い。このため、この添加率の範囲であれ
ば、コークス強度が損なわれることはない。
The addition ratio of the iron source to the coal is such that the addition amount of iron to the coal is 0.05 to 5% by mass. This is because if the addition ratio is less than 0.05% by mass, the effect as a catalyst is too small, and if the addition ratio exceeds 5% by mass, the coke strength decreases.
If the addition ratio is 0.05 to 5% by mass, when the fine iron ore is mixed with the coal, the fine iron ore enters the voids between the coal particles, so that the charging density of the coal in the coke oven carbonization chamber does not change. . The coke strength has a correlation with the charging density of coal in the coking chamber, and the higher the charging density of coal in the coking chamber, the higher the coke strength. For this reason, the coke strength is not impaired within the range of the addition rate.

【0019】また、石炭に対する鉄分の添加割合が0.
05〜5質量%の範囲であれば、添加割合の増加ととも
に乾留後コークスの反応性は向上する。したがって、鉄
源は、石炭の種類および鉄源の種類に応じて、目標とす
るコークス反応性を得るのに必要な量を決定して石炭に
添加すればよい。
Further, the addition ratio of iron to coal is 0.1%.
When the content is in the range of 0.05 to 5% by mass, the reactivity of coke after dry distillation improves as the addition ratio increases. Accordingly, the iron source may be added to the coal in an amount necessary to obtain the target coke reactivity according to the type of coal and the type of iron source.

【0020】さらに、鉄源としては、高炉法で多量に使
用されている鉄鉱石や、製鉄所内で発生する鉄を含む微
粉状の鉄ダストを用いることができる。
Further, as the iron source, iron ore used in a large amount in the blast furnace method, or fine iron dust containing iron generated in an ironworks can be used.

【0021】用いる鉄鉱石や鉄ダストの粒度としては、
−150μm程度以下が望ましい。これは、粒度が小さ
いほど比表面積が大きく、触媒としての能力が高いため
である。製鉄所で使用されている微粉鉄鉱石の粒度は通
常−150μm程度であり、この微粉鉄鉱石を添加する
ことにより、コークスの反応性を向上させることができ
る。
The particle size of iron ore or iron dust used is as follows.
It is desirably about -150 μm or less. This is because the smaller the particle size, the larger the specific surface area and the higher the ability as a catalyst. The particle size of fine iron ore used in steel works is usually about -150 μm, and the reactivity of coke can be improved by adding this fine iron ore.

【0022】コークス中に内含される鉄分は高炉におい
て銑鉄となるため、同じ質量の銑鉄を生産するのに必要
な焼結鉱の量を減らすことができる。これにより焼結鉱
を生産する焼結機の負荷を低減することができ、焼結機
の寿命を延長することができるというメリットがある。
また、高稼働率操業を余儀なくされている焼結機におい
ては、生産量を下げることによって、単位焼結鉱あたり
の製造コストが低減されるという効果も得ることができ
る。
Since the iron contained in the coke becomes pig iron in the blast furnace, the amount of sinter required to produce the same mass of pig iron can be reduced. This has the advantage that the load on the sintering machine that produces sinter can be reduced, and the life of the sintering machine can be extended.
Further, in a sintering machine which is forced to operate at a high operation rate, it is possible to obtain the effect of reducing the production amount and thereby reducing the production cost per unit sinter.

【0023】[0023]

【実施例】炉幅400mm、炉高1000mm、炉長1
000mmの電気加熱式試験コークス炉を用い、粘結炭
60%、非微粘結炭40%の配合炭に、粒度−150μ
mの微粉鉄鉱石を2質量%配合し、試験炉の上部より配
合炭を装入して乾留した。この鉄鉱石中の鉄含有量は6
7%なので、石炭に対する鉄分としての添加率は1.3
%であった。また、乾留試験中における炉壁表面温度の
最大値が、全乾留期間を通じて1100℃以下となるよ
うに、電気加熱発熱体の設置してある加熱室の温度を1
150℃に制御した。焼成後のコークスについては、窒
素で冷却した後、JIS K2151に準じたコークスのドラム
強度指数(150回転後+15mm指数)および反応性を測定
した。結果を表1に示す。
[Example] Furnace width 400mm, furnace height 1000mm, furnace length 1
Using a 000 mm electrically heated test coke oven, a blended coal of 60% caking coal and 40% non-fine caking coal was added with a particle size of -150 μm.
m of fine iron ore was blended at 2% by mass, and blended coal was charged from the upper part of the test furnace and carbonized. The iron content in this iron ore is 6
Since it is 7%, the addition ratio as iron to coal is 1.3.
%Met. In addition, the temperature of the heating chamber in which the electric heating element is installed is set to 1 so that the maximum value of the furnace wall surface temperature during the carbonization test is 1100 ° C. or less throughout the entire carbonization period.
The temperature was controlled at 150 ° C. After the coke was fired, the coke was cooled with nitrogen, and then the coke drum strength index (after 150 rotations +15 mm index) and reactivity according to JIS K2151 were measured. Table 1 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】比較例1は、微粉鉄鉱石を添加しない例で
あり、ドラム強度は84.1、反応性は12ml/mi
nであるのに対し、発明例におけるドラム強度は84.
0、反応性は30ml/minであり、コークス強度が
同じレベルである高炉用高反応性コークスを得ることが
できた。
Comparative Example 1 is an example in which fine iron ore was not added. The drum strength was 84.1 and the reactivity was 12 ml / mi.
n, the drum strength in the invention example is 84.
0, the reactivity was 30 ml / min, and a highly reactive coke for blast furnace having the same level of coke strength could be obtained.

【0026】比較例2は、微粉鉄鉱石の添加率が10質
量%(鉄分としての添加率は6.7質量%)の例であ
り、鉄分の添加率が大きく、反応性は上昇したが、コー
クス強度が2.6低下した。
Comparative Example 2 is an example in which the addition ratio of fine iron ore is 10% by mass (the addition ratio as iron is 6.7% by mass). The addition ratio of iron is large, and the reactivity is increased. The coke strength decreased by 2.6.

【0027】比較例3は、微粉鉄鉱石の添加率が0.0
3質量%(鉄分としての添加率は0.02質量%)の例
であり、鉄分の添加率が小さく、コークス反応性は、微
粉鉄鉱石を添加しない比較例1と同じ程度であった。
In Comparative Example 3, the addition ratio of fine iron ore was 0.0
This is an example of 3% by mass (the addition ratio of iron is 0.02% by mass), the addition ratio of iron is small, and the coke reactivity is about the same as Comparative Example 1 in which fine iron ore is not added.

【0028】比較例4は、乾留試験中の全乾留期間を通
じての炉壁表面温度の最大値が1200℃である例で、
コークス強度が同じレベルであり、高炉用高反応性コー
クスを得ることができたが、乾留試験後に炉壁煉瓦を取
り出して調査したところ、炉壁表面が大きく浸食されて
おり、煉瓦内部に鉄の浸潤層が観察された。
Comparative Example 4 is an example in which the maximum value of the furnace wall surface temperature during the entire carbonization period during the carbonization test is 1200 ° C.
Although the coke strength was the same level, highly reactive coke for blast furnaces could be obtained.However, when the furnace wall brick was taken out and examined after the carbonization test, the furnace wall surface was greatly eroded, and iron An infiltration layer was observed.

【0029】以上より、本発明によれば、コークスの強
度を低下させず、コークス炉の炉壁を損傷せずに、高炉
用高反応性コークスが製造できた。
As described above, according to the present invention, a highly reactive coke for a blast furnace could be manufactured without reducing the strength of the coke and without damaging the furnace wall of the coke oven.

【0030】[0030]

【発明の効果】本発明により、極めて簡易な方法で、コ
ークス強度を損なわず、高炉用高反応性コークスが製造
可能となる。本発明により、高炉での使用に適した高反
応性コークスの製造方法が確立され、高炉の還元効率を
向上でき、工業的価値は大きい。
According to the present invention, highly reactive coke for a blast furnace can be manufactured by an extremely simple method without impairing the coke strength. According to the present invention, a method for producing highly reactive coke suitable for use in a blast furnace is established, the reduction efficiency of the blast furnace can be improved, and the industrial value is great.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 室式コークス炉において、鉄分が石炭に
対し0.05〜5質量%となるように鉄源を添加し、コ
ークス炉の炉壁表面温度を1100℃以下に保つことを
特徴とする、高炉用高反応性コークスの製造方法。
In a room coke oven, an iron source is added so that the iron content is 0.05 to 5% by mass with respect to coal, and the furnace wall surface temperature of the coke oven is maintained at 1100 ° C. or lower. To produce a highly reactive coke for a blast furnace.
【請求項2】 鉄源が、鉄鉱石または鉄ダストであるこ
とを特徴とする、請求項1記載の高炉用高反応性コーク
スの製造方法。
2. The method for producing highly reactive coke for a blast furnace according to claim 1, wherein the iron source is iron ore or iron dust.
【請求項3】 石炭装入直後からコークス窯出前までの
全乾留時間におけるコークス炉の炉壁表面温度を110
0℃以下に保つようにコークス炉の燃焼室底部温度を調
整することを特徴とする、請求項1記載の高炉用高反応
性コークスの製造方法。
3. The coke oven wall surface temperature during the total carbonization time from immediately after charging coal to before exiting the coke oven is 110.
The method for producing a highly reactive coke for a blast furnace according to claim 1, wherein the temperature of the bottom of the combustion chamber of the coke oven is adjusted so as to keep the temperature at 0 ° C or lower.
JP2000101657A 2000-04-04 2000-04-04 Method for preparing high-reactivity coke for blast furnace Withdrawn JP2001288477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101657A JP2001288477A (en) 2000-04-04 2000-04-04 Method for preparing high-reactivity coke for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101657A JP2001288477A (en) 2000-04-04 2000-04-04 Method for preparing high-reactivity coke for blast furnace

Publications (1)

Publication Number Publication Date
JP2001288477A true JP2001288477A (en) 2001-10-16

Family

ID=18615657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101657A Withdrawn JP2001288477A (en) 2000-04-04 2000-04-04 Method for preparing high-reactivity coke for blast furnace

Country Status (1)

Country Link
JP (1) JP2001288477A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103756701A (en) * 2014-01-21 2014-04-30 河北联合大学 High-reactivity coke and production method thereof
KR20180107171A (en) 2016-02-24 2018-10-01 제이에프이 스틸 가부시키가이샤 Manufacturing method of ferro-coke
CN115216320A (en) * 2022-08-17 2022-10-21 酒泉钢铁(集团)有限责任公司 Production method of iron-carbon composite furnace charge
CN115466808A (en) * 2022-09-19 2022-12-13 武安市裕华钢铁有限公司 Blast furnace smelting method with high oxygen enrichment and large slag quantity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103756701A (en) * 2014-01-21 2014-04-30 河北联合大学 High-reactivity coke and production method thereof
CN103756701B (en) * 2014-01-21 2015-11-25 河北联合大学 Hyperergy coke and production method thereof
KR20180107171A (en) 2016-02-24 2018-10-01 제이에프이 스틸 가부시키가이샤 Manufacturing method of ferro-coke
CN115216320A (en) * 2022-08-17 2022-10-21 酒泉钢铁(集团)有限责任公司 Production method of iron-carbon composite furnace charge
CN115216320B (en) * 2022-08-17 2023-09-08 酒泉钢铁(集团)有限责任公司 Production method of iron-carbon composite furnace burden
CN115466808A (en) * 2022-09-19 2022-12-13 武安市裕华钢铁有限公司 Blast furnace smelting method with high oxygen enrichment and large slag quantity

Similar Documents

Publication Publication Date Title
US20020005089A1 (en) Method of and apparatus for manufacturing the metallic iron
JP2010189762A (en) Process for manufacturing granular iron
JP6119700B2 (en) Blast furnace operation method
JPH08134516A (en) Operation of blast furnace
JP2001288477A (en) Method for preparing high-reactivity coke for blast furnace
AU2006335814B2 (en) Method for manufacturing metallic iron
RU2347764C2 (en) Method of producing portland cement clinker from industrial wastes
WO2004050921A1 (en) Process for producing molten iron
JP2008056985A (en) Method for operating blast furnace
JP4529838B2 (en) Sinter ore and blast furnace operation method
JP The effect of additives and reductants on the strength of reduced iron ore pellet
JP2012526201A (en) Refractory lining for titanium ore beneficiation
KR101918363B1 (en) Carbon composite iron oxide briquette comprising the carbon composite comprising volatile matter, and reduction method thereof at oxidation atmosphere
JPH10298620A (en) Method for charging ore and the like into blast furnace
RU2771889C1 (en) Method for smelting steel from scrap metal in electric arc furnace
RU2771888C1 (en) Method for smelting steel from scrap metal in electric arc furnace
JP4598256B2 (en) Blast furnace operation method
JP3136927B2 (en) Carbonaceous brick for blast furnace with excellent alkali resistance and method for producing the same
KR100611167B1 (en) Method for producing low silicon hot-metal
JP2001348576A (en) Method for producing highly reactive coke for blast furnace
JPH0635604B2 (en) Blast furnace operation method
RU2150514C1 (en) Charge briquette for production of high-grade steel and method of charge briquette preparation
JP5400600B2 (en) Blast furnace operation method
JPH0867919A (en) Production of sintered ore made of limonite based ore
JP2969249B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605