JP2008056985A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2008056985A
JP2008056985A JP2006234799A JP2006234799A JP2008056985A JP 2008056985 A JP2008056985 A JP 2008056985A JP 2006234799 A JP2006234799 A JP 2006234799A JP 2006234799 A JP2006234799 A JP 2006234799A JP 2008056985 A JP2008056985 A JP 2008056985A
Authority
JP
Japan
Prior art keywords
coke
ferro
furnace
raw material
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006234799A
Other languages
Japanese (ja)
Other versions
JP4899726B2 (en
Inventor
Takeshi Sato
健 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006234799A priority Critical patent/JP4899726B2/en
Publication of JP2008056985A publication Critical patent/JP2008056985A/en
Application granted granted Critical
Publication of JP4899726B2 publication Critical patent/JP4899726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace, which can prevent air permeability inside the furnace from being aggravated when operating the blast furnace while using a mixture of a main raw material for the blast furnace and ferrocoke. <P>SOLUTION: The method for operating the blast furnace while mixing the ferrocoke produced by molding and carbonizing a material mainly containing coal and iron ore with an iron raw material and charging them from the furnace top includes controlling a position in a radial direction for charging the ferrocoke into the furnace to 0.12 to 1.0 by non-dimension radius. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フェロコークスを高炉原料として使用する際の高炉の操業方法に関する。   The present invention relates to a method for operating a blast furnace when ferro-coke is used as a blast furnace raw material.

石炭と鉄鉱石とを混合して成型した成型物を乾留して製造されるフェロコークスは、鉄鉱石が一部還元されていると同時に、鉄鉱石の触媒効果でコークスの反応性を高めることができ、焼結鉱、塊鉱石、ペレット等から構成される鉄原料(以下、主原料と記載する。)と混合して高炉原料として使用することにより高炉中のガス利用率を高め、還元材比を低下させることができることが知られている(例えば、特許文献1参照。)。特許文献1によれば、コークスは単独で高炉内に装入してコークス層を形成させ、鉄鉱石とフェロコークスとを混合して高炉内に装入することで、還元材比が低減し、生産性も向上するとされている。これは、フェロコークスを用いたことによる、高炉の熱保存帯温度低下と部分還元した鉄鉱石装入の双方の効果が同時に発現する手法であり、非常に有効である。   Ferro-coke produced by dry distillation of a molded product formed by mixing coal and iron ore is able to increase the coke reactivity due to the catalytic effect of iron ore at the same time that iron ore is partially reduced. It can be used as a blast furnace raw material by mixing with iron raw materials (hereinafter referred to as main raw materials) composed of sintered ore, lump ore, pellets, etc., and the ratio of reducing materials is increased. Is known to be able to reduce (see, for example, Patent Document 1). According to Patent Document 1, coke is charged into a blast furnace alone to form a coke layer, and iron ore and ferro-coke are mixed and charged into the blast furnace, thereby reducing the reducing material ratio, Productivity is also expected to improve. This is a very effective technique because both the effects of lowering the temperature of the blast furnace thermal preservation zone and charging partially reduced iron ore due to the use of ferro-coke are manifested simultaneously.

一方で、フェロコークスの使用には炉内通気性悪化の問題がある。高炉内において、コークスは下記式(1)に示すガス化反応の進行により脆弱化し、強度が低下する。
C+CO2=2CO ・・・(1)
式(1)のCO2は主原料の還元反応の際に発生する。高炉内の上・中部においてコークスが反応を受けるのは主に熱保存帯〜融着帯の領域であるが、劣化したコークスがさらに下方に移動する際に、または上記ガス化反応を受ける過程で、装入物荷重や移動する際の摩擦等により粉が発生する。発生した粉は炉下部に移動すると考えられるが、炉芯部のコークス粉率増加は通気性悪化の要因となることが知られている。通気性悪化時にはスリップ等の装入物降下不順、それに伴う炉熱変動等により安定操業が阻害され、銑鉄生産量の減少やコークス比上昇につながるため、炉内におけるコークス粉の発生は望ましくない。
On the other hand, the use of ferro-coke has a problem of deterioration of air permeability in the furnace. In the blast furnace, coke is weakened by the progress of the gasification reaction shown in the following formula (1), and the strength is reduced.
C + CO 2 = 2CO (1)
CO 2 of the formula (1) is generated during the reduction reaction of the main raw material. In the upper and middle parts of the blast furnace, the coke undergoes a reaction mainly in the region of the heat preservation zone to the cohesive zone, but when the deteriorated coke moves further downward or in the process of undergoing the above gasification reaction. Powder is generated due to the load of the load and the friction when moving. Although the generated powder is considered to move to the lower part of the furnace, it is known that an increase in the coke powder rate in the furnace core part causes deterioration in air permeability. When the air permeability deteriorates, the stable operation is hindered due to unsatisfactory descending of charges such as slips and the accompanying fluctuations in the furnace heat, leading to a reduction in pig iron production and an increase in the coke ratio. Therefore, generation of coke powder in the furnace is not desirable.

上記の現象は、高炉原料として通常の室炉コークスより反応性の高いフェロコークスを用いた場合により顕著化すると考えられる。従って、フェロコークス使用時には、コークスの高反応性化によって高炉中のガス利用率を高めることにより還元材比低下が期待できる反面、フェロコークスを高炉原料として多量に使用すると炉内通気性悪化により安定操業が阻害される恐れがある。
特開2006−28594号公報
It is considered that the above phenomenon becomes more prominent when ferro-coke having a higher reactivity than ordinary blast furnace coke is used as a blast furnace raw material. Therefore, when using ferro-coke, a reduction in the reducing material ratio can be expected by increasing the gas utilization rate in the blast furnace by increasing the coke reactivity, but if ferro-coke is used in a large amount as a raw material for blast furnace, it is stable due to deterioration of the air permeability in the furnace. Operation may be hindered.
JP 2006-28594 A

上記のように、フェロコークス使用時にフェロコークスから発生した粉が炉芯に蓄積するような状態となると、還元材比が低減しない場合があり問題である。   As described above, there is a problem in that the reducing material ratio may not be reduced when powder generated from ferrocoke is accumulated in the furnace core when ferrocoke is used.

したがって本発明の目的は、このような従来技術の課題を解決し、高炉の主原料にフェロコークスを混合して使用して操業する際に、炉内の通気性悪化を防止することのできる高炉の操業方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and to prevent deterioration of air permeability in the furnace when operating by mixing ferrocoke with the main raw material of the blast furnace. Is to provide a method of operation.

このような課題を解決するために本発明では、石炭と鉄鉱石とを主成分とする原料を成型して乾留して製造したフェロコークスと、鉄原料とを混合して炉頂から装入する高炉操業において、前記フェロコークスの半径方向での炉内装入位置を、無次元半径で0.12〜1.0の範囲内とすることを特徴とする高炉操業方法を用いる。   In order to solve such a problem, in the present invention, ferro-coke produced by dry distillation of a raw material mainly composed of coal and iron ore and iron raw material are mixed and charged from the top of the furnace. In blast furnace operation, a blast furnace operation method is used, in which the ferro-coke enters the furnace interior in the radial direction within a range of 0.12 to 1.0 in a dimensionless radius.

本発明によれば、高炉原料としてフェロコークスを多量に使用しても炉内の通気性を良好に維持可能であり、還元材比を低下させた操業を安定して行なうことができる。   According to the present invention, even if a large amount of ferro-coke is used as a blast furnace raw material, the air permeability in the furnace can be maintained satisfactorily, and an operation with a reduced reducing material ratio can be performed stably.

本発明においては、フェロコークスを焼結鉱、塊鉱石、ペレット等から構成される鉄原料(主原料)と混合した「主原料+フェロコークス」層と、通常のコークス層とを高炉内に交互に装入して操業を行なう。本発明で用いるフェロコークスは、石炭と鉄鉱石とを主成分とする原料を成型して製造した成型物を加熱して、成型物中の石炭を乾留して製造されたものである。なお、石炭と鉄鉱石とを主成分とするとは、フェロコークスの原料が主として石炭と鉄鉱石であることを意味するものであり、石炭と鉄鉱石とを70mass%以上含有する原料を用いてフェロコークスを製造するものであるが、通常は石炭と鉄鉱石とを80mass%以上含有する原料を使用する。石炭と鉄鉱石の他に成型のためのバインダー等を使用することができる。   In the present invention, "main raw material + ferro coke" layers obtained by mixing ferro-coke with iron raw materials (main raw materials) composed of sintered ore, lump ore, pellets, etc., and ordinary coke layers are alternately placed in the blast furnace. The operation is carried out by charging. Ferro-coke used in the present invention is manufactured by heating a molded product produced by molding a raw material mainly composed of coal and iron ore, and dry-distilling the coal in the molded product. The main component of coal and iron ore means that the raw material of ferro-coke is mainly coal and iron ore. Ferro-coke is made of a raw material containing 70 mass% or more of coal and iron ore. Although coke is produced, a raw material containing 80 mass% or more of coal and iron ore is usually used. In addition to coal and iron ore, a binder for molding can be used.

背景技術で述べたように、高炉の炉芯部におけるコークス粉率の増加が、通気性悪化の要因である。炉芯を構成するコークスは、炉中心の狭い領域に装入されたコークスから構成されることが知られている。実炉を模擬した模型実験によれば、炉口部の無次元半径0〜0.12の範囲に装入された粒子が炉芯を構成することが確認されている。従って、フェロコークスを主原料と混合して使用する際に、上記無次元半径範囲以外の領域にフェロコークスが存在するのであれば、反応で劣化したフェロコークス、またはフェロコークスから発生した粉の炉芯への流入を避けることができ、炉芯内の粉の蓄積を回避することができると考えられる。したがって、フェロコークスの半径方向での炉内装入位置を、無次元半径で0.12〜1.0の範囲内とする。0.12〜1.0の範囲内とするとは、少なくとも無次元半径0〜0.12の範囲にフェロコークスを存在させないことを意味するものであり、必ずしも無次元半径で0.12〜1.0の範囲内の全てにフェロコークスが存在しなければならないという意味ではない。フェロコークスを炉口部の無次元半径0〜0.12の範囲に存在させない手段としては、(a)通常コークスの堆積形状を調整する方法、(b)主原料へのフェロコークス混合状態を調整する方法を用いることができる。   As described in the background art, an increase in the coke powder rate in the core part of the blast furnace is a factor of deterioration in air permeability. It is known that coke constituting the furnace core is composed of coke charged in a narrow region at the center of the furnace. According to a model experiment simulating an actual furnace, it has been confirmed that particles charged in a range of a dimensionless radius 0 to 0.12 of the furnace port constitute a furnace core. Therefore, when ferro-coke is mixed with the main raw material and ferro-coke exists in a region other than the dimensionless radius range, the ferro-coke deteriorated by the reaction, or the furnace of the powder generated from the ferro-coke It is thought that inflow to the core can be avoided and accumulation of powder in the furnace core can be avoided. Therefore, the furnace interior entry position in the radial direction of the ferro-coke is set within a range of 0.12 to 1.0 in a dimensionless radius. “Within the range of 0.12 to 1.0” means that ferro-coke does not exist at least in the range of the dimensionless radius 0 to 0.12. It does not mean that ferro-coke must be present in everything within the range of zero. Means for preventing ferro-coke from being present in the range of dimensionless radius 0 to 0.12 of the furnace port are: (a) a method for adjusting the normal coke deposit shape, and (b) adjusting the ferro-coke mixing state with the main raw material. Can be used.

(a)通常コークスの堆積形状を調整する方法について。
「主原料+フェロコークス」とは別に装入する、通常コークスの堆積形状を調整して、高炉の半径方向位置で、無次元半径0〜0.12の範囲に「主原料+フェロコークス」の混合層を存在させない方法である。図1に示すように、高炉内に主原料とフェロコークスの混合層1と、通常コークス層2とを装入する際に、無次元半径0〜0.12の範囲に厚く通常コークス層2を形成する。図1において、左側が炉中心であり、右側が炉壁5である。このような堆積状態とするためには、中心にコークスを装入するための専用のシュートを用いるか、原料装入用の回転シュートがほぼ垂直となる位置でコークスを装入する。
(A) About the method of adjusting the accumulation shape of normal coke.
The main coke + ferro-coke is charged separately from the main coke + ferro-coke. This is a method in which no mixed layer is present. As shown in FIG. 1, when the mixed layer 1 of the main raw material and ferro-coke and the normal coke layer 2 are charged in the blast furnace, the normal coke layer 2 is thickened in the range of dimensionless radius 0 to 0.12. Form. In FIG. 1, the left side is the furnace center, and the right side is the furnace wall 5. In order to achieve such a deposition state, a dedicated chute for charging coke is used at the center, or the coke is charged at a position where the rotating chute for charging the raw material is almost vertical.

(b)主原料へのフェロコークス混合状態を調整する方法について。
主原料へのフェロコークス混合状態を調整して、無次元半径0〜0.12の範囲に「主原料+フェロコークス」の混合層を存在させない方法である。図2に示すように、通常コークス層2は通常通りに装入し、無次元半径0〜0.12の範囲には主原料のみの主原料層3を形成し、残りの半径位置に「主原料+フェロコークス」の混合層を形成する。このような堆積状態とするためには、「主原料+フェロコークス」の混合物の装入に先立って中心近傍に主原料のみを別バッチで装入するか、中心近傍に装入物が堆積するタイミングでは炉頂バンカーから「主原料+フェロコークス」の混合物が排出しないように、炉頂バンカーへ主原料およびフェロコークスを装入する順序を調整する方法を採用すればよい。
(B) About the method of adjusting the ferro-coke mixing state to the main raw material.
In this method, the mixed state of ferro-coke with the main raw material is adjusted so that the mixed layer of “main raw material + ferro-coke” does not exist in the range of the dimensionless radius of 0 to 0.12. As shown in FIG. 2, the normal coke layer 2 is charged as usual, the main raw material layer 3 of only the main raw material is formed in the range of dimensionless radius 0 to 0.12, and “main main layer” is formed in the remaining radial positions. A mixed layer of “raw material + ferrocoke” is formed. In order to achieve such a deposition state, only the main raw material is charged in a separate batch near the center prior to charging the mixture of “main raw material + ferrocoke”, or the charged material is deposited near the center. For the timing, a method of adjusting the order of charging the main raw material and ferro-coke into the furnace top bunker may be adopted so that the mixture of “main raw material + ferrocoke” is not discharged from the furnace top bunker.

図3は、「主原料+フェロコークス」の混合層1を、通常コークス層2の上に装入した例であるが、無次元半径0〜0.12の炉中心部にフェロコークスが存在するため、フェロコークスの主原料に対する混合量が多いと、フェロコークスから発生した粉が炉芯部に移動し通気性が悪化する。   FIG. 3 is an example in which the mixed layer 1 of “main raw material + ferrocoke” is charged on the normal coke layer 2, and ferrocoke exists in the center of the furnace having a dimensionless radius of 0 to 0.12. For this reason, if the amount of ferro-coke mixed with the main raw material is large, the powder generated from ferro-coke moves to the furnace core and air permeability deteriorates.

本発明では、無次元半径0〜0.12以内の炉中心部にフェロコークスを存在させないことが重要であり、その他の領域においてはフェロコークスと主原料の混合状態は任意である。ただし、還元性向上という観点からはフェロコークスは主原料と均一に混合することが望ましい。例えば、図4に示すように炉壁5付近の領域にフェロコークスのみの層4を形成した場合、図3の場合と比較して、フェロコークス層4のフェロコークスは主原料の還元性改善に寄与しないため、フェロコークスの持つ還元材比低減効果が充分に発現されない。従って、無次元半径0〜0.12以内の炉中心部にフェロコークスを存在させず、かつ、それ以外の半径位置では主原料とフェロコークスとが均一に混合されていることが望ましい。   In the present invention, it is important that ferro-coke does not exist in the center of the furnace having a dimensionless radius of 0 to 0.12, and the mixed state of ferro-coke and the main raw material is arbitrary in other regions. However, from the viewpoint of improving reducibility, it is desirable that ferrocoke is uniformly mixed with the main raw material. For example, when the ferro-coke-only layer 4 is formed in the region near the furnace wall 5 as shown in FIG. 4, the ferro-coke of the ferro-coke layer 4 improves the reducibility of the main raw material compared to the case of FIG. Since it does not contribute, the reducing material ratio reducing effect of ferro-coke is not sufficiently exhibited. Therefore, it is desirable that ferro-coke does not exist in the center of the furnace having a dimensionless radius of 0 to 0.12, and the main raw material and ferro-coke are uniformly mixed at other radial positions.

内容積5000m3の高炉において、コークス比370kg/t、微粉炭比130kg/tの操業条件をベースとし(操業No.1)、質量比で鉄:コークス=0.4:0.6で製造したフェロコークスを使用した操業(操業No.2〜4)を行なった。操業No.1は、塊鉱石および焼結鉱からなる主原料と、コークスとを交互に炉内に装入する通常の操業形態であり、フェロコークスを使用する操業では、フェロコークスは主原料と混合して使用した。表1に操業条件、および下部通気抵抗指数、出銑比の変化を示す。 In a blast furnace with an internal volume of 5000 m 3 , the production was performed at a mass ratio of iron: coke = 0.4: 0.6, based on operation conditions of a coke ratio of 370 kg / t and a pulverized coal ratio of 130 kg / t (operation No. 1). Operation using ferro-coke (operation No. 2 to 4) was performed. Operation No. 1 is a normal operation mode in which a main raw material composed of lump ore and sintered ore and coke are alternately charged into the furnace. In an operation using ferro-coke, ferro-coke is mixed with the main raw material. used. Table 1 shows changes in operating conditions, lower ventilation resistance index, and output ratio.

Figure 2008056985
Figure 2008056985

操業No.2〜4の操業は以下のようにして行なった。操業No.2として、図3に示すように、通常のコークス層2と「主原料+フェロコークス」の混合層1とを交互に装入した。炉中心部にフェロコークスが存在する状態での操業である。フェロコークス使用により還元材比は低減したが、通気抵抗が上昇したために送風量を低下させる操業を行なったところ、出銑量が低下した(比較例)。   Operation No. Operations 2 to 4 were performed as follows. Operation No. 2, as shown in FIG. 3, a normal coke layer 2 and a mixed layer 1 of “main raw material + ferrocoke” were alternately charged. The operation is in a state where ferro-coke exists in the center of the furnace. Although the ratio of reducing material was reduced by using ferro-coke, when the operation was performed to reduce the blowing rate due to the increase in ventilation resistance, the amount of slag decreased (comparative example).

これに対し、操業No.3では、通常コークスを図1に示すように中心部に厚く装入し、無次元半径0.12以内にフェロコークスと主原料の混合層1が存在しないような操業を実施したところ、通気変動が抑制され、操業が安定した(本発明例)。   On the other hand, operation No. In No. 3, normal coke was thickly charged at the center as shown in FIG. 1, and the operation was performed so that the mixed layer 1 of ferro-coke and main raw material did not exist within a dimensionless radius of 0.12. Was suppressed, and the operation was stable (example of the present invention).

また、主原料へのフェロコークス混合状態を調整し、図2に示すように炉中心部を主原料のみの層3として、無次元半径0.12以内にフェロコークスと主原料の混合層が存在しないような操業を実施したところ、通気変動が抑制され、操業が安定した(本発明例)。   In addition, the ferro-coke mixing state with the main raw material is adjusted, and as shown in FIG. 2, the center portion of the furnace is the main raw material layer 3 and a mixed layer of ferro-coke and main raw material exists within a dimensionless radius of 0.12. When the operation was not performed, the air flow fluctuation was suppressed and the operation was stabilized (example of the present invention).

本発明の装入物分布の一実施形態を示す概略図(中心部に主原料無し)。Schematic which shows one Embodiment of the charge distribution of this invention (there is no main raw material in center part). 本発明の装入物分布の一実施形態を示す概略図(中心部に主原料有り)。Schematic which shows one Embodiment of the charge distribution of this invention (there is a main raw material in a center part). 装入物分布の一例を示す概略図(比較例)。Schematic which shows an example of a charge distribution (comparative example). 装入物分布の一例を示す概略図(好ましくない例)。Schematic (example which is not preferable) which shows an example of a charge distribution.

符号の説明Explanation of symbols

1 主原料とフェロコークスの混合層
2 通常コークス層
3 主原料層
4 フェロコークス層
5 炉壁
1 Main raw material and ferro-coke mixed layer 2 Normal coke layer 3 Main raw material layer 4 Ferro-coke layer 5 Furnace wall

Claims (1)

石炭と鉄鉱石とを主成分とする原料を成型して乾留して製造したフェロコークスと、鉄原料とを混合して炉頂から装入する高炉操業において、前記フェロコークスの半径方向での炉内装入位置を、無次元半径で0.12〜1.0の範囲内とすることを特徴とする高炉操業方法。   In a blast furnace operation in which a ferro-coke produced by molding and carbonizing a raw material mainly composed of coal and iron ore and an iron raw material are mixed and charged from the top of the furnace, a furnace in the radial direction of the ferro-coke A blast furnace operating method characterized in that the interior entry position is within a range of 0.12 to 1.0 in a dimensionless radius.
JP2006234799A 2006-08-31 2006-08-31 Blast furnace operation method Active JP4899726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006234799A JP4899726B2 (en) 2006-08-31 2006-08-31 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006234799A JP4899726B2 (en) 2006-08-31 2006-08-31 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2008056985A true JP2008056985A (en) 2008-03-13
JP4899726B2 JP4899726B2 (en) 2012-03-21

Family

ID=39240081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006234799A Active JP4899726B2 (en) 2006-08-31 2006-08-31 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4899726B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052798A1 (en) * 2009-10-29 2011-05-05 Jfeスチール株式会社 Method for operating blast furnace
JP2011162845A (en) * 2010-02-10 2011-08-25 Jfe Steel Corp Method for operating blast furnace with the use of ferrocoke
JP2012172167A (en) * 2011-02-18 2012-09-10 Jfe Steel Corp Method for operating blast furnace using ferrocoke
WO2013183170A1 (en) * 2012-06-06 2013-12-12 Jfeスチール株式会社 Blast furnace operation method using ferrocoke
JP2014205895A (en) * 2013-04-15 2014-10-30 新日鐵住金株式会社 Blast furnace operation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210207A (en) * 1987-02-25 1988-08-31 Nkk Corp Method for operating blast furnace
JPH02200708A (en) * 1989-01-30 1990-08-09 Nippon Steel Corp Method for operating blast furnace
JPH02228408A (en) * 1989-02-28 1990-09-11 Kobe Steel Ltd Method for operating blast furnace
JPH06220511A (en) * 1993-01-26 1994-08-09 Nippon Steel Corp Method for charging formed coke into blast furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210207A (en) * 1987-02-25 1988-08-31 Nkk Corp Method for operating blast furnace
JPH02200708A (en) * 1989-01-30 1990-08-09 Nippon Steel Corp Method for operating blast furnace
JPH02228408A (en) * 1989-02-28 1990-09-11 Kobe Steel Ltd Method for operating blast furnace
JPH06220511A (en) * 1993-01-26 1994-08-09 Nippon Steel Corp Method for charging formed coke into blast furnace

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052798A1 (en) * 2009-10-29 2011-05-05 Jfeスチール株式会社 Method for operating blast furnace
JP2011149090A (en) * 2009-10-29 2011-08-04 Jfe Steel Corp Method for operating blast furnace using ferro coke
JP2011162845A (en) * 2010-02-10 2011-08-25 Jfe Steel Corp Method for operating blast furnace with the use of ferrocoke
JP2012172167A (en) * 2011-02-18 2012-09-10 Jfe Steel Corp Method for operating blast furnace using ferrocoke
WO2013183170A1 (en) * 2012-06-06 2013-12-12 Jfeスチール株式会社 Blast furnace operation method using ferrocoke
CN104334748A (en) * 2012-06-06 2015-02-04 杰富意钢铁株式会社 Blast furnace operation method using ferrocoke
AU2012382225B2 (en) * 2012-06-06 2016-01-28 Jfe Steel Corporation Method for operating blast furnace using carbon iron composite
KR101611121B1 (en) * 2012-06-06 2016-04-08 제이에프이 스틸 가부시키가이샤 Method for operating blast furnace using carbon iron composite
CN104334748B (en) * 2012-06-06 2016-10-26 杰富意钢铁株式会社 Use the method for operating blast furnace of iron coke
JP2014205895A (en) * 2013-04-15 2014-10-30 新日鐵住金株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
JP4899726B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4807103B2 (en) Blast furnace operation method
JP5546675B1 (en) Blast furnace operating method and hot metal manufacturing method
JP4899726B2 (en) Blast furnace operation method
JP2008111172A (en) Method for operating blast furnace
JP5299446B2 (en) Blast furnace operation method using ferro-coke
JP4998692B2 (en) Blast furnace operation method when using ferro-coke
JPH08134516A (en) Operation of blast furnace
JP2009079287A (en) Method for operating vertical furnace
JP6260751B2 (en) Raw material charging method to blast furnace
JP3879408B2 (en) Method for producing sintered ore and sintered ore
JP5426997B2 (en) Blast furnace operation method
JP6198649B2 (en) Raw material charging method for blast furnace
JP2012188744A (en) Method for operating blast furnace
JP2006206982A (en) Method of operating blast furnace
JP5862514B2 (en) Scrap melting vertical furnace operation method
JP5867428B2 (en) Hot metal manufacturing method using vertical melting furnace
JP5910182B2 (en) Hot metal manufacturing method using vertical melting furnace
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JP4923872B2 (en) Blast furnace operation method
JP4706583B2 (en) How to charge the bellless blast furnace
JP3531464B2 (en) Method for producing sintered ore with low SiO2 content
JP5693768B2 (en) Blast furnace operating method and hot metal manufacturing method
JP5626072B2 (en) Operation method of vertical melting furnace
JP5867427B2 (en) Hot metal manufacturing method using vertical melting furnace
JP2005298923A (en) High ore/reducing material ratio operation method in blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4899726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250