JPH02200708A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH02200708A
JPH02200708A JP1770789A JP1770789A JPH02200708A JP H02200708 A JPH02200708 A JP H02200708A JP 1770789 A JP1770789 A JP 1770789A JP 1770789 A JP1770789 A JP 1770789A JP H02200708 A JPH02200708 A JP H02200708A
Authority
JP
Japan
Prior art keywords
furnace
coke
blast furnace
reactivity
sintered ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1770789A
Other languages
Japanese (ja)
Other versions
JP2720058B2 (en
Inventor
Kazuyoshi Yamaguchi
一良 山口
Masaaki Naito
誠章 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1017707A priority Critical patent/JP2720058B2/en
Publication of JPH02200708A publication Critical patent/JPH02200708A/en
Application granted granted Critical
Publication of JP2720058B2 publication Critical patent/JP2720058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the productivity of molten iron in a blast furnace by using high reactive coke and low reducing powdering sintered ore at the circumferential part in the blast furnace and low reactive coke and high reductive sintered ore at the center part in the blast furnace at the time of operating the blast furnace. CONSTITUTION:At the time of operating the blast furnace, as the coke and sintered ore in the raw material charged into the blast furnace from the furnace top part, the high reactive coke having >=30% JIS reactivity is charged at the circumferential part of the furnace except the center part of the furnace within 20% of the radius at the furnace opening part in the blast furnace and the low reactive coke having <=20% JIS reactivity is charged in the center part of the furnace and the reducing efficiency is improved in the range from the intermediate part to the circumferential part of the furnace and gas permeability and liquid permeability are secured at the center part of the furnace to stabilize the furnace operation. Further, in the range from the intermediate part to the circumferential part of the furnace, the low reducing powdering sintered ore is used and in the center part of the furnace, the high reducible sintered ore is used, and reducibility of the sintered ore in the furnace is uniformly improved, and the operative efficiency of the blast furnace is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、反応性を高めたコークスを炉頂から装入され
るコークスの一部として使用し、かつ反応性を低めたコ
ークスを、炉頂から装入されるコークスの一部として使
用4゛ることによって、生産性を向上させた高炉操業方
法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention uses coke with increased reactivity as part of the coke charged from the top of the furnace, and coke with reduced reactivity into the furnace. It relates to a blast furnace operating method that improves productivity by using the present invention as part of coke charged from the top.

(従来の技術) 通常の高炉にあっては、炉頂から鉄鉱石及びコークスを
層状に装入し、この鉄鉱石を炉内で予備還元した後、 曇しHL金属状態に還元・溶融して溶銑を製造している
(Prior art) In a normal blast furnace, iron ore and coke are charged in layers from the top of the furnace, and after preliminary reduction in the furnace, the iron ore is reduced and melted into a cloudy HL metal state. It manufactures hot metal.

このとき、鉄鉱石の還元効率を高めるため、特公昭51
43169号公報にあっては、鉄鉱石と小塊コークスを
予め混合しておき、この混合物と通常のコークスとを層
状に装入することが開示されている。
At this time, in order to increase the reduction efficiency of iron ore,
Publication No. 43169 discloses that iron ore and small coke are mixed in advance, and that this mixture and normal coke are charged in layers.

この上うi:予めコークスと混合した鉄鉱石を使用する
ことにより、炉内における通気性が改涛され、その還元
性が向−トする。
Moreover, by using iron ore mixed with coke in advance, the permeability in the furnace is improved and its reducing property is improved.

また、高炉の炉芯部は溶融したスラグメタルが円滑に降
ドしなければならず、通気、通液性を良好に保つために
高温を維持する必要があるが、そのためには、大塊コー
クスを炉中心部に装入し、炉下部に降下してきても粒度
があまり小さくならないようにすることが行われており
、特公昭6330964号公報に開示されている。
In addition, molten slag metal must fall smoothly in the core of the blast furnace, and it is necessary to maintain a high temperature in order to maintain good ventilation and liquid permeability. Japanese Patent Publication No. 6330964 discloses a method in which particles are charged into the center of the furnace so that the particle size does not become too small even when they fall to the lower part of the furnace.

(発明が解決しようとする課題) ところが、鉄鉱石に混入されるコークスとして小塊コー
クスを使用するとき、小塊コークスは、通常冶金用コー
クスと同じ性状であるから、粒度の小さい分だけCOt
との反応がより活発であり、かつ、鉄鉱石と混合されて
いるため、鉄鉱石のCO還元で生成したCOlがコーク
スのすぐ近くにあり反応が速いという有利さだけで、後
述する熱保存帯温度の低下を伴わないため、その還元効
率の向上式には限界があった。
(Problem to be Solved by the Invention) However, when small coke is used as coke mixed into iron ore, small coke has the same properties as metallurgical coke, and therefore COt is reduced by the smaller particle size.
Because the reaction with coke is more active and because it is mixed with iron ore, the COl produced by the reduction of iron ore is in the immediate vicinity of coke and the reaction is fast. Since it does not involve a decrease in temperature, there is a limit to the formula for improving reduction efficiency.

また炉中心部に装入される大塊コークスも、通常冶金用
コークスと同じ性状であるから、粒度の大きい分だけC
O,との反応がより少なく、反応による劣化に起因4−
る粒度低1;が少ないという有利さだけで、後述する熱
保存帯温度の」−昇を伴わないため、その粒度低下抑制
には限界があった。
Also, the large lump coke charged into the center of the furnace has the same properties as ordinary metallurgical coke, so the larger particle size
4- due to less reaction with O, and deterioration due to reaction.
However, there is a limit to the suppression of particle size reduction because it does not involve an increase in the temperature of the thermal storage zone, which will be described later.

そこで、本発明にあっては、高炉に装入されるコークス
として炉中間部から炉周辺部にかけて反応性の高いもの
を使用することにより、熱保存帯温度を低下させて鉄鉱
イjの還元反応を促進させ、かつ炉中心部には反応性の
低いものを使用し、熱保存帯温rを、に昇させてコーク
スの反応による劣化に起因する粒度低下を抑制すること
に、Lす、高い生産性で溶銑を製造4゛る4−1とを目
的とする。
Therefore, in the present invention, by using coke that is highly reactive from the middle part of the furnace to the peripheral part of the furnace to be charged into the blast furnace, the temperature of the thermal storage zone is lowered and the reduction reaction of iron ore Ij is carried out. In order to promote this process, use a material with low reactivity in the center of the furnace, and raise the heat storage zone temperature r to suppress particle size reduction caused by deterioration due to coke reaction. The objective is 4-1 to produce hot metal with productivity.

(課題を解決4゛るための手段及び作用)本発明の高炉
操業法は、その[1的を達成するために、高炉の炉中間
部より炉周辺部にJIS反応性が30%以1−の高反応
性コークスを装入し、炉中心部にJIS反応性が20%
以下の低反応性コークスを装入し、炉中間部より炉周辺
部におIJる還元効率を向りさ仕、炉中心部における炉
芯の通気lil液性を確保i。4、安定的に高炉を運転
することを特徴とする。
(Means and effects for solving the problem) The blast furnace operating method of the present invention is designed to achieve the first objective by increasing the JIS reactivity from the middle part of the blast furnace to the peripheral part of the blast furnace by 30% or more. Highly reactive coke is charged, and the JIS reactivity is 20% in the center of the furnace.
The following low-reactivity coke is charged to direct the reduction efficiency from the middle part of the furnace to the peripheral part of the furnace, and to ensure ventilation of the furnace core in the center of the furnace. 4. It is characterized by stable operation of the blast furnace.

さらに本発明は炉中間部より炉周辺部に高反応性=1−
クスとともに低還元粉化性焼結鉱を装入し、炉中心部に
低反応性コークスととらに高被還元性焼結鉱を装入する
ことを特徴とする。
Furthermore, the present invention has a high reactivity = 1-
It is characterized by charging low-reducibility pulverizable sintered ore together with coke, and charging low-reactivity coke and highly reducible sintered ore in the center of the furnace.

まず高反応性コークスについて述べる。First, let's talk about highly reactive coke.

本発明で使用する高反応性コークスは1.ll5K21
51−1977の反応性試験方法で測定したときのJI
S反応性が3・0%以−1−であることが必要である6
30%という数値限定は、特願昭62193457号に
示すように、実炉試験結果より20%まではほとんどそ
の効果が見られないことによる。
The highly reactive coke used in the present invention is 1. ll5K21
JI when measured by the reactivity test method of 51-1977
It is necessary that the S reactivity is 3.0% or more -1-6
The numerical limitation of 30% is based on the fact that, as shown in Japanese Patent Application No. 62193457, the effect is hardly seen up to 20% from actual furnace test results.

この高反応性コークスは、通常炉頂の炉中間部から炉周
辺部にかけて装入されるコークスの一部と置換し、鉄鉱
石および/または通常コークスとあらかじめ混合して炉
中間部から炉周辺部に装入する。二のときの高反応性コ
ークスの粒度は、151以1ことすることが好ましい。
This highly reactive coke replaces a part of the coke that is normally charged from the middle part of the furnace to the periphery of the furnace, and is premixed with iron ore and/or normal coke. Charge to. The particle size of the highly reactive coke in the case of 2 is preferably 151 or more.

この粒度が15□以下となるとき、コークスの単位、!
1it1に対する表面積が増加し、反応に寄与する割合
が大きくなる。
When this particle size is 15□ or less, the unit of coke,!
The surface area relative to 1it1 increases, and the proportion contributing to the reaction increases.

これに対し、粒度が15mmを越えるとき、コークス内
部がガス化反応に有効利用される割合が少なくなる。
On the other hand, when the particle size exceeds 15 mm, the proportion of the inside of the coke that is effectively utilized for the gasification reaction decreases.

また、通常炉瑣の炉中間部から炉周辺部にかIJで装入
されるコークスの全Qと置換し、鉄鉱石と層状に装入す
ることもできる。このときの高反応性コークスの粒度は
通常コークスと同程度とする。
In addition, it is also possible to replace all of the coke that is normally charged from the middle to the periphery of the furnace by IJ, and to charge it in a layer with iron ore. The particle size of the highly reactive coke at this time is approximately the same as that of normal coke.

高反応性となったときに劣化しない強度を保−)ことが
好ましい。
It is preferable to maintain strength that does not deteriorate even when the reactivity becomes high.

ここで炉中心部とは炉[1部半径の20%以内の部分を
示し、炉口部半径が5mであれば半径lrn以内を炉中
心部と称する。この炉中心部を除いた外側が炉中間部か
ら炉周辺部というごとになる。
Here, the furnace center refers to the part within 20% of the radius of the furnace [1 part], and if the furnace mouth radius is 5 m, the area within the radius lrn is called the furnace center. The outside of the furnace excluding the central part is called the middle part of the furnace and the peripheral part of the furnace.

この高反応性コークスは、たとえば次のようにして調整
される。その1つは、冶金用コークス製造に適さない、
反応性の高い微非粘結炭、−投炭を原料炭に一部配合す
ることである。また、反応を促進する触媒としての役割
をもつ石灰石、鉄鉱石、アルカリ類を少量、原料炭に配
合することも行われている。
This highly reactive coke is prepared, for example, as follows. One is that it is not suitable for metallurgical coke production.
The method is to partially blend highly reactive slightly non-caking coal, or coal, into raw coal. In addition, small amounts of limestone, iron ore, and alkalis, which act as catalysts to promote reactions, are also added to coking coal.

この炉中間部から炉周辺部に装入される高反応性コーク
スは、反応性が高いことから、炉内のCO,がコークス
表面に接触してGoとなる界面反応が円滑に行われる。
Since the highly reactive coke charged from the middle part of the furnace to the peripheral part of the furnace has high reactivity, an interfacial reaction in which CO in the furnace comes into contact with the surface of the coke and becomes Go takes place smoothly.

また、その結果として炉内に生じたCOガスが鉄鉱石を
還元して低級酸化物又は金属状態に還元する反応も促進
される。
Moreover, the reaction in which the CO gas generated in the furnace as a result reduces the iron ore to a lower oxide or metal state is also promoted.

e+cOt−2CO のコークスのガス化反応は吸熱反応であるから高炉ンヤ
フト部における熱保存帯の温度を低ドさせることができ
る。
Since the coke gasification reaction of e+cOt-2CO is an endothermic reaction, the temperature of the heat storage zone in the shaft of the blast furnace can be lowered.

たとえば、従来法によるとき、1000℃程度の熱保存
帯が生成しその値がほとんど変化しないのに対して、高
反応性コークスを使用することによって、熱保存帯の温
度を900〜950℃に低下させることか11能となる
。その結果、還元甲衡到達点に余裕ができるため還元が
より進行すること、及びより低温でコークスのガス化が
進行するノこめ従来より多くのCOガス量が生成するこ
とにより、シャフト効率、間接還元率、COガス利用率
が向1−シ、間接還元は発熱反応であるためコークス比
を低下させることができる。
For example, when using the conventional method, a heat reserve zone of around 1000℃ is generated and its value hardly changes, but by using highly reactive coke, the temperature of the heat reserve zone is reduced to 900-950℃. It will be 11th ability. As a result, there is more room for reduction to reach the reduction equilibrium point, so reduction progresses further, and coke gasification progresses at a lower temperature, which generates a larger amount of CO gas than before. The reduction rate and the CO gas utilization rate are the same, and since indirect reduction is an exothermic reaction, the coke ratio can be lowered.

高反応性コークスを使用することにより、還元効率は向
上するが低温における還元が促進されるたt1焼結鉱の
還元粉化が助長され、粉の発生晴が増加することにより
通気性を悪化させる可能性がある。よって、炉中間部か
ら炉周辺部に装入される高反応性コークスとともに、低
還元粉化性焼結鉱を装入ケれば粉の発生は抑えられ通気
性は良好に保たれ、高反応性コークスの効果が最大限に
発揮される。
The use of highly reactive coke improves reduction efficiency, but promotes reduction at low temperatures, promotes reduction powdering of T1 sintered ore, and worsens air permeability due to increased dust generation. there is a possibility. Therefore, if low-reduction pulverizable sinter is charged together with highly reactive coke, which is charged from the middle of the furnace to the periphery of the furnace, the generation of powder can be suppressed, good air permeability can be maintained, and high reactivity can be achieved. The effects of sex coke are maximized.

次に低反応性コークスについて述べる。Next, we will discuss low-reactivity coke.

本発明で使用する低反応性コークスはJISK2151
1、977の反応性試験方法で測定したときのJIS反
応性が20%以Fであることが必“次である。20%と
いう数値限定は実炉使用試験結果より20%以−1−で
はほとんどその効果がみられないことによる。
The low reactivity coke used in the present invention is JISK2151
It is essential that the JIS reactivity is 20% or more when measured using the reactivity test method of 1,977. This is because almost no effect is observed.

この低反応性コークスは、たとえば反応性の低い原料炭
を一部配合したり、原料炭に外力を加えて充填密度を高
くして製造する。
This low-reactivity coke is produced, for example, by partially blending low-reactivity raw coal or by applying an external force to raw coal to increase its packing density.

この炉中心部に装入される低反応性コークスは反応性が
低いことから、炉内のco、がコークス表面に接触し“
CCOとなる界面反応があまり生じない。よって C−+−CO*→2CO のコークスのガス化反応が吸熱反応であることから、高
炉シャフト叩、における熱保存温度がF昇する。従来法
では1000℃程度の熱保存帯が低反応性コークスを使
用4°ることによ−)で1100〜1150℃に」ニジ
蓼させるひとがiiJ能となる。
The low-reactivity coke charged into the center of the furnace has low reactivity, so the coke inside the furnace comes into contact with the surface of the coke.
Interfacial reactions that result in CCO do not occur much. Therefore, since the coke gasification reaction of C-+-CO*→2CO is an endothermic reaction, the heat storage temperature in the blast furnace shaft beating increases by F. In the conventional method, a heat storage zone of about 1000°C can be raised to 1100 to 1150°C by using low-reactivity coke.

一般にコークスのガス化反応が活発だと表面付近の反応
した部分が劣化し、炉内における摩耗等の衝撃を受けて
粉が発生し粒度が低下するが、低反応性コークスを使用
することにより、粒度の低下が大きく抑制される。
Generally, when the gasification reaction of coke is active, the reacted area near the surface deteriorates, and when subjected to shocks such as wear in the furnace, powder is generated and the particle size decreases, but by using low-reactivity coke, Decrease in particle size is greatly suppressed.

この結果、この低反応性コークスが炉下部に降下し、炉
芯に入っても、その粒度が大きいため、炉芯部の通気、
通液性が良好で安定したスラグ、メタルが炉底に流出し
ていく。低反応性コークスを使用することにより、粉の
発生屑が少なく大塊が炉芯部に降下するが、ガス化反応
が抑制されるため鉄鉱石の還元性は低下する。よって炉
中心部に装入される低反応性コークスとともに高被還元
性焼結鉱を装入すれば、炉中心部における還元効率は維
持される。
As a result, even if this low-reactivity coke falls to the bottom of the furnace and enters the furnace core, its particle size is large, so the ventilation of the furnace core is reduced.
Stable slag and metal with good liquid permeability flow out to the bottom of the furnace. By using low-reactivity coke, less powder debris is generated and large lumps fall into the furnace core, but the gasification reaction is suppressed and the reducibility of iron ore is reduced. Therefore, if highly reducible sintered ore is charged together with the low reactivity coke charged into the furnace center, the reduction efficiency in the furnace center can be maintained.

(実施例) 以下、実施例により本発明の特徴を員体的ζご説明する
(Example) Hereinafter, the features of the present invention will be explained in detail with reference to Examples.

第1表に高反応性コークスを使用した高炉操業を、従来
法と比較I1、て示す。
Table 1 shows a comparison of blast furnace operation using highly reactive coke with the conventional method.

対象高炉は内容積3000rn”の中型高炉であり、従
来法では炉頂からO/C=3.2の割合で鉄鉱石と通常
コークスを装入し、羽[]前フレーム温度を2270℃
(熱風温度1100℃、添加湿分35 g/Nm″□、
微粉炭吹込みなし)に維持しなから溶銑を製造していた
ctreUデ1)。
The target blast furnace is a medium-sized blast furnace with an internal volume of 3000 rn'', and in the conventional method, iron ore and normal coke are charged from the top of the furnace at a ratio of O/C = 3.2, and the flame temperature before the vane is set at 2270°C.
(Hot air temperature 1100℃, added moisture 35 g/Nm''□,
The company was manufacturing hot metal without pulverized coal injection (1).

実施例1には、通常コークスの15%をJIS反応性3
5%、粒度15m5の高反応性コークスに置換し、該高
反応性コークスを鉄鉱石し混合して炉中間部から炉周辺
部にかけて装入した。そしてさらに、通常コークスの5
%をJIS反応性18%、粒度50a+sの低反応性コ
ークスに置換し、該低反応性コークスを炉中心部に普通
焼結鉱と交互に装入した。炉中間部から炉周辺部で熱保
存帯温塵は950℃に低下し、炉中心部では、1100
℃にL昇した。炉中間部から炉周辺部でのガス利用率は
1.5%向−トし、炉中心部では1.5%減少したが、
炉中心部の断面積が狭いこともあって全体的には、1.
1%向干、した。
In Example 1, 15% of the normal coke was JIS reactivity 3.
The coke was replaced with highly reactive coke having a particle size of 5% and a particle size of 15 m5, and the highly reactive coke was mixed with iron ore and charged from the middle part of the furnace to the peripheral part of the furnace. Furthermore, 5 of normal coke
% was replaced with low-reactivity coke having a JIS reactivity of 18% and a particle size of 50a+s, and the low-reactivity coke was charged into the center of the furnace alternately with ordinary sintered ore. Temperature dust in the heat storage zone decreases to 950℃ from the middle of the furnace to the periphery, and in the center of the furnace it decreases to 1100℃.
The temperature rose to ℃. The gas utilization rate from the middle of the furnace to the periphery increased by 1.5%, and decreased by 1.5% at the center of the furnace.
Due to the narrow cross-sectional area of the furnace center, the overall results are as follows: 1.
1% drying.

また、炉芯部の通気通液性を示す指標として、炉底部レ
ンガ温度が18℃」二昇している。この結果高炉全体の
通気性も向上しく送風圧力が低下し)ガス利用率向りに
よるコークス比低下も達成された。
Additionally, as an indicator of the ventilation and liquid permeability of the furnace core, the temperature of the bricks at the bottom of the furnace increased by 18°C. As a result, the permeability of the entire blast furnace was improved, the blowing pressure was reduced, and the coke ratio was also reduced due to the gas utilization rate.

実施例2には通常コークスの15%をJtS反応性35
%、粒度(5msの高反応性コークスに置換し、該高反
応性コークスを1/2ずっ鉄鉱石と通常コークスに混合
して炉中間部から炉周辺部に装入した。そして炉中間部
から炉周辺部に装入される鉄鉱石中の焼結鉱として還元
粉化率の5%低いものを用いた。また通常コークスの5
%をJIS反応性18%、粒度50m5の低反応性コー
クスに置換し、該低反応性コークスと被還元性を8%向
l二させた焼結鉱を交互に炉中心部に装入した。炉中間
部から炉周辺部にかけてのガス利用率が向上し、かつ炉
中心部のガス利用率が向トしたので、全体としてのガス
利用率は1.4%向1−シた。そして高炉の全体の通気
性(送風圧力)も向上しており、ガス利用率向上により
コークス比も低ドした。
In Example 2, 15% of the coke was normally mixed with JtS reactivity 35
%, particle size (5 ms), and the highly reactive coke was mixed with 1/2 iron ore and normal coke and charged from the middle part of the furnace to the peripheral part of the furnace.Then, from the middle part of the furnace As the sintered ore in the iron ore charged around the furnace, we used sintered ore with a reduction powdering rate of 5% lower.
% was replaced with low-reactivity coke having a JIS reactivity of 18% and a particle size of 50 m5, and the low-reactivity coke and sintered ore having a reducibility of 8% were alternately charged into the center of the furnace. The gas utilization rate from the middle of the furnace to the periphery of the furnace improved, and the gas utilization rate at the center of the furnace decreased, so the overall gas utilization rate decreased to 1.4%. The overall permeability (blow pressure) of the blast furnace has also improved, and the coke ratio has been lowered due to improved gas utilization.

実施例3には、通常コークスの95%をJIS反応性3
0%、粒度45amの高反応性コークスに置換し、該高
反応性コークスを全量炉中間部から炉周辺部に還元粉化
率の5%低い焼結鉱と交互に装入した。また通常コーク
スの残り5%をJIS反応性20%、粒度501の低反
応性コークスに置換し、該低反応性コークスと被還元性
を8%向−1′、させた焼結鉱を交互に炉中心部に装入
した。炉中間部から炉周辺部にかけてのガス利用率、炉
中心部のガス利用率、全体のガス利用率が向上し、高炉
の全体の通気性(送風圧力)も向」二しており、コーク
ス比も低下している。
In Example 3, 95% of the normal coke was JIS reactivity 3.
0% and highly reactive coke with a particle size of 45 am, and the entire amount of the highly reactive coke was charged from the middle of the furnace to the periphery of the furnace alternately with sintered ore having a 5% lower reduction powdering rate. In addition, the remaining 5% of the normal coke was replaced with low-reactivity coke with a JIS reactivity of 20% and a particle size of 501, and the low-reactivity coke and sintered ore with a reducibility of 8% -1' were alternately used. It was charged into the center of the furnace. The gas utilization rate from the middle of the furnace to the periphery of the furnace, the gas utilization rate at the center of the furnace, and the overall gas utilization rate have improved, and the overall permeability (blow pressure) of the blast furnace has also improved, resulting in a lower coke ratio. is also declining.

た、燕保存帯の温度を低下させることができるため1.
シャフト効率を上げることも可能となる。
In addition, the temperature of the swallow storage zone can be lowered; 1.
It is also possible to increase shaft efficiency.

さらに炉中心部に低反応性コークスを使用することζこ
より、コークスのガス化反応をすくなくし、反応による
劣化に起因するコークス粒度低下を抑制できるため、炉
芯部でのコークス粒度が大きく、炉芯部の通気、通液性
が確保され、安定したスラグ、メタル流出が達成される
Furthermore, by using low-reactivity coke in the furnace center, the coke gasification reaction can be reduced and the reduction in coke particle size caused by reaction-induced deterioration can be suppressed, so the coke particle size in the furnace core is large and Ventilation and liquid permeability of the core are ensured, and stable slag and metal outflow is achieved.

このようにして、本発明によるとき、高炉操業の生産性
を向上させること、ができる。
In this way, according to the present invention, it is possible to improve the productivity of blast furnace operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、コークスのJ’ I S反応性と、ガス化反
応劣化後のコークス粒度との関係を示す図である。 出 願 人 新日本製鐵株式会社 なお、焼結鉱の還元粉化指数は、サンプル(15〜20
sv、500g)を還元ガス(CO30%−N、70%
、15 Nl/5in)により550℃で30分間還元
し、その後回転試験腎で900回転(30rpmX30
 分子li) 後(1)  3 msノj!tfftn
合(%) ヲOQ で示される。 また、鉄鉱石の還元率は、JIS法で測定される900
℃、180分後の還元率で表示している。 第1図は、コークスのJIS反応性とガス化反応を受は
劣化したあと摩耗等の衝撃ζこより粉を発生したあとの
粒度の関係を示す、オフライン実験結果である。JIS
反応性が20%以下だとコークス粒度が大きくなること
がわかる。 (発明の効果) 以上に説明したように、本発明においては、炉中間部か
ら炉周辺部にかけて高反応性コークスを使用することに
より、ガス利用効率を高めて少ないコークス比で高炉操
業を行うことができる。ま第1図 5  20  25   ’50 コーフルクJIS々ki’A−(1’
FIG. 1 is a diagram showing the relationship between the J' IS reactivity of coke and the particle size of coke after deterioration by gasification reaction. Applicant: Nippon Steel Corporation Note that the reduction pulverization index of sintered ore is
sv, 500g) to reducing gas (CO30%-N, 70%
.
Molecule li) After (1) 3 ms no j! tfftn
The total (%) is expressed as OQ. In addition, the reduction rate of iron ore is 900 as measured by the JIS method.
℃, reduction rate after 180 minutes is displayed. FIG. 1 shows the results of an off-line experiment showing the relationship between the JIS reactivity of coke and the particle size after the coke has deteriorated due to gasification reaction and has been subjected to impact such as abrasion to generate powder. JIS
It can be seen that when the reactivity is 20% or less, the coke particle size becomes large. (Effect of the invention) As explained above, in the present invention, by using highly reactive coke from the middle part of the furnace to the peripheral part of the furnace, it is possible to improve gas utilization efficiency and perform blast furnace operation with a small coke ratio. Can be done. Figure 1 5 20 25 '50 Kohluk JIS Ki'A-

Claims (2)

【特許請求の範囲】[Claims] (1)高炉の炉中間部より炉周辺部にJIS反応性が3
0%以上の高反応性コークスを装入し、炉中心部にJI
S反応性が20%以下の低反応性コークスを装入するこ
とを特徴とする高炉操業法。
(1) JIS reactivity of 3 from the middle part to the periphery of the blast furnace
Highly reactive coke of 0% or more is charged and JI is placed in the center of the furnace.
A blast furnace operating method characterized by charging low reactivity coke with an S reactivity of 20% or less.
(2)高炉の炉中間部より炉周辺部に高反応性コークス
とともに低還元粉化性焼結鉱を装入し、炉中心部に低反
応性コークスとともに高被還元性焼結鉱を装入すること
を特徴とする高炉操業法。
(2) Charge low-reducibility pulverizable sintered ore together with highly reactive coke from the middle of the blast furnace to the periphery of the furnace, and charge highly reducible sintered ore together with low-reactivity coke into the center of the furnace. A blast furnace operating method characterized by:
JP1017707A 1989-01-30 1989-01-30 Blast furnace operation method Expired - Fee Related JP2720058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017707A JP2720058B2 (en) 1989-01-30 1989-01-30 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017707A JP2720058B2 (en) 1989-01-30 1989-01-30 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH02200708A true JPH02200708A (en) 1990-08-09
JP2720058B2 JP2720058B2 (en) 1998-02-25

Family

ID=11951241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017707A Expired - Fee Related JP2720058B2 (en) 1989-01-30 1989-01-30 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2720058B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056985A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Method for operating blast furnace
JP2011252200A (en) * 2010-06-02 2011-12-15 Jfe Steel Corp Method for operating blast furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127413A (en) * 1985-11-28 1987-06-09 Nippon Kokan Kk <Nkk> Raw material charging method for blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127413A (en) * 1985-11-28 1987-06-09 Nippon Kokan Kk <Nkk> Raw material charging method for blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056985A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Method for operating blast furnace
JP2011252200A (en) * 2010-06-02 2011-12-15 Jfe Steel Corp Method for operating blast furnace

Also Published As

Publication number Publication date
JP2720058B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
RU2447164C2 (en) Method of producing pellets from recovered iron and method of producing cast iron
JP4191681B2 (en) Hot metal production apparatus with improved operation of fluidized reduction furnace and hot metal production method
US4248624A (en) Use of prereduced ore in a blast furnace
EP2458020B1 (en) Carbon composite briquette for producing reduced iron and method for producing reduced iron employing the same
JPH02200708A (en) Method for operating blast furnace
JPH0776366B2 (en) Blast furnace operation method
JP2731829B2 (en) Blast furnace operation method
JPH02200710A (en) Method for operating blast furnace
JP2733566B2 (en) Blast furnace operation method
JP6763227B2 (en) Manufacturing method of reduced iron and manufacturing method of molten steel
JP3829516B2 (en) Blast furnace operation method
JP2769835B2 (en) Blast furnace operation method
JP6070131B2 (en) Method for producing reduced iron
JP2000169916A (en) High quality sintered ore and production thereof
JPH02200711A (en) Method for operating blast furnace
JP2010095759A (en) Method of operating blast furnace while using ferro-coke
JP4598256B2 (en) Blast furnace operation method
JPH02200712A (en) Method for operating blast furnace
JP4585075B2 (en) Blast furnace operation method using metallic iron-based raw materials
JP2000290709A (en) Method for charging raw material into blast furnace
JPH06100909A (en) Operation of blast furnace
JP2022505386A (en) Carbon dioxide emission reduction type molten iron manufacturing equipment and its manufacturing method
JP5626072B2 (en) Operation method of vertical melting furnace
JPH0788522B2 (en) Blast furnace operation method
JPH02200707A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees