JP5626072B2 - Operation method of vertical melting furnace - Google Patents

Operation method of vertical melting furnace Download PDF

Info

Publication number
JP5626072B2
JP5626072B2 JP2011075411A JP2011075411A JP5626072B2 JP 5626072 B2 JP5626072 B2 JP 5626072B2 JP 2011075411 A JP2011075411 A JP 2011075411A JP 2011075411 A JP2011075411 A JP 2011075411A JP 5626072 B2 JP5626072 B2 JP 5626072B2
Authority
JP
Japan
Prior art keywords
iron
furnace
dust
iron source
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011075411A
Other languages
Japanese (ja)
Other versions
JP2012207290A (en
Inventor
篠竹 昭彦
昭彦 篠竹
内藤 誠章
誠章 内藤
保彦 尾松
保彦 尾松
淳 坪田
淳 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011075411A priority Critical patent/JP5626072B2/en
Publication of JP2012207290A publication Critical patent/JP2012207290A/en
Application granted granted Critical
Publication of JP5626072B2 publication Critical patent/JP5626072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

本発明は、鉄廃棄物等の鉄源を溶解、又は、溶解及び還元して銑鉄を製造する竪型溶解炉の操業方法に関する。   The present invention relates to a method for operating a vertical melting furnace for producing pig iron by melting or dissolving and reducing an iron source such as iron waste.

従来から、竪型溶解炉を用いて、鉄鉱石に比べ金属化率が高く、還元を必要としない、鉄屑、鋳物屑、銑鉄等の鉄源を溶解し、銑鉄を製造している。近年、一貫製鉄所内においては、そこで発生するダストの処理を目的として、竪型溶解炉が用いられ始めている。   Conventionally, using a vertical melting furnace, iron sources such as iron scrap, foundry scrap, pig iron and the like, which have a higher metallization rate than iron ore and do not require reduction, are manufactured. In recent years, vertical melting furnaces have begun to be used in integrated steelworks for the purpose of treating dust generated there.

単純にコークス、鉄屑及び上記製鉄ダストを混合して竪型溶解炉に投入するのでは、その使用量に限界がある。例えば、非特許文献1では、送風温度を450℃とした熱風キュポラを用いているが、含炭ペレットの使用量は5重量%にとどまっている。   Simply mixing coke, iron scrap and the above steelmaking dust and putting them in a vertical melting furnace has a limit in the amount of use. For example, in Non-Patent Document 1, a hot air cupola with an air blowing temperature of 450 ° C. is used, but the amount of carbon-containing pellets used is only 5% by weight.

従来、製鉄ダスト等の金属化率が低く、還元が必要な鉄源を多量に使用する際の技術課題は、炉内の熱的なバランスの難しさにあると考えられていた。即ち、製鉄ダストは酸化鉄を多く含み、鉄屑に比べ金属化率が低いので、製鉄ダストを含む鉄源を使用する場合、溶解竪型炉には、(a)金属化率の高い鉄源を溶解する機能に加え、(b)酸化物を多く含み、金属化率の低い鉄源を還元する機能も同時に求められる。   Conventionally, it has been considered that a technical problem when using a large amount of an iron source that has a low metallization rate such as iron-making dust and needs to be reduced is the difficulty of thermal balance in the furnace. In other words, ironmaking dust contains a lot of iron oxide, and its metallization rate is lower than iron scrap, so when using an iron source containing ironmaking dust, (a) an iron source with a high metalization rate is used in the melting vertical furnace. In addition to the function of dissolving (b), (b) a function of reducing an iron source containing a large amount of oxide and having a low metalization rate is also required.

炉内で、溶解と還元を同時に進行させるには、溶解に必要な熱量を確保するとともに、還元に必要な還元ガス(CO)を確保する必要がある。しかし、送風中の酸素(O2)と炉頂装入コークス(C)の燃焼反応(C+O2→CO2)は発熱反応であり、生成したCO2とコークス(C)のソルーションロス反応(CO2+C→2CO)は吸熱反応であるから、炉内で還元ガス(CO)を多量に生成させると、鉄源を溶解する熱量が不足することになる。 In order to allow melting and reduction to proceed simultaneously in the furnace, it is necessary to secure the amount of heat necessary for melting and to secure the reducing gas (CO) necessary for the reduction. However, the combustion reaction of oxygen in the air blowing (O 2) and the furnace top charging coke (C) (C + O 2 → CO 2) is an exothermic reaction, solution loss reaction (CO of CO 2 produced and coke (C) Since (2 + C → 2CO) is an endothermic reaction, if a large amount of reducing gas (CO) is generated in the furnace, the amount of heat for dissolving the iron source will be insufficient.

既に、このような炉内の熱バランスを改善する手段が提案されている。特許文献1に記載の手段は、炉体そのものの断熱性を高めて熱損失を削減することで、熱補償を行うものである。また、特許文献2及び3には、原料の充填方法に着目して、それぞれ、鉄源/固体燃料の重量比等を装入チャージ毎に変更する方法、及び、金属化率が低い鉄源を固体燃料と混合して周辺に装入する方法が開示されている。   A means for improving the heat balance in the furnace has already been proposed. The means described in Patent Document 1 performs heat compensation by increasing the heat insulation of the furnace body itself and reducing heat loss. Further, in Patent Documents 2 and 3, focusing on the raw material filling method, a method of changing the weight ratio of the iron source / solid fuel and the like for each charging charge, and an iron source with a low metallization rate, respectively. A method of mixing with a solid fuel and charging it to the periphery is disclosed.

特開2009−79289号公報JP 2009-79289 A 特開平09−203584号公報JP 09-203584 A 特開平10−036906号公報Japanese Patent Application Laid-Open No. 10-036906

Gokselら:Transactions of the American Foundryme's Society, Vol.85, AFSDes Plaines,111,(1977),p327-332.Goksel et al .: Transactions of the American Foundryme's Society, Vol.85, AFSDes Plaines, 111, (1977), p327-332.

実際に、特許文献1〜3の方法を用いた竪型溶解炉の操業において、含炭化した製鉄ダストペレットの多量使用を試みたところ、その10%までの使用は可能であったが、それ以上では、炉内の通気性が悪化して操業の安定な継続が困難であった。   Actually, in the operation of the vertical melting furnace using the methods of Patent Documents 1 to 3, when a large amount of carbonized iron-made dust pellets was used, up to 10% was possible, but more However, the air permeability in the furnace deteriorated and it was difficult to keep the operation stable.

即ち、製鉄ダスト類(金属化率の低い鉄源)は、粒径が小さいので、金属化率の高い鉄源に、製鉄ダスト類をそのまま大量に混合すると、炉内の通気性を阻害する。それ故、炉内の通気性の確保の点からも、金属化率の低い鉄源の混合率には限界があることが判明した。   That is, since iron-making dusts (iron sources with a low metallization rate) have a small particle size, if a large amount of iron-making dusts are mixed with an iron source with a high metallization rate as it is, the air permeability in the furnace is inhibited. Therefore, it has been found that there is a limit to the mixing rate of the iron source having a low metallization rate from the viewpoint of ensuring air permeability in the furnace.

このように、金属化率が低い鉄源を多量に使用する際には、熱的な課題だけでなく、新たに、炉内の通気性の問題も同時に解決する必要がある。そこで、本発明は、製鉄所内で大量に発生する製鉄ダストを、従来の使用限界量を超えて有効に利用することを目的として、前記課題を解決する竪型溶解炉の操業方法を提供する。   Thus, when using a large amount of an iron source with a low metallization rate, it is necessary to solve not only a thermal problem but also a problem of air permeability in the furnace at the same time. Then, this invention provides the operating method of the vertical melting furnace which solves the said subject for the purpose of using effectively the iron-making dust which generate | occur | produces in large quantities in a steelworks exceeding the conventional use limit amount.

本発明者らは、竪型溶解炉の種々の条件の操業を通して、前記通気阻害の要因が製鉄ダストペレットの粉化にあることを突き止めた。そして、それを防止する方策を鋭意研究した。その結果、製鉄ダストペレットの要件として、所要の炭材量、粒度、及び、強度を満足させたものを、鉄屑と混合すると、炉内通気性を阻害することなく、使用比率を、最大30%程度まで高めることができることが判明した。   The inventors of the present invention have found through the operation of various conditions of the vertical melting furnace that the cause of the aeration inhibition is pulverization of the iron-making dust pellets. And we studied earnestly to prevent it. As a result, as a requirement of the iron-making dust pellets, when the required amount of carbon material, particle size, and strength are mixed with iron scrap, the use ratio can be increased up to 30 without inhibiting the furnace air permeability. It was found that it can be increased to about%.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)高炉用コークスを燃料とし、金属化率の高い鉄源とともに製鉄ダスト塊成化物を鉄源として使用して銑鉄を製造する、竪型溶解炉の操業方法において、
(x)上記製鉄ダスト塊成化物が、炭材含有量5〜12質量%、冷間強度30kg/cm2以上、直径8〜30mmであり、かつ、
(y)該製鉄ダスト塊成化物の使用比率が全鉄源に対して5〜25%とする
ことを特徴とする竪型溶解炉の操業方法。
(1) In a method for operating a vertical melting furnace, using coke for blast furnace as fuel, and producing pig iron using iron agglomerates as an iron source together with an iron source having a high metallization rate,
(x) the iron dust agglomerate has a carbonaceous material content of 5 to 12% by mass, a cold strength of 30 kg / cm 2 or more, a diameter of 8 to 30 mm, and
(y) A method for operating a vertical melting furnace, wherein the use ratio of the iron-made dust agglomerates is 5 to 25% with respect to the total iron source.

(2)予めコークスと製鉄ダスト塊成化物を混合し、この混合物と金属化率の高い鉄源を交互に溶解炉に装入することを特徴とする、前記(1)に記載の竪型溶解炉の操業方法。
(2) Coke and iron dust agglomerates are mixed in advance, and this mixture and an iron source having a high metallization rate are alternately charged into a melting furnace, and the vertical melting as described in (1 ) above How to operate the furnace.

本発明によれば、金属化率の低い鉄源、例えば、製鉄所で大量に発生する製鉄ダストを、竪型溶解炉の鉄源として、従来の使用限界量を超えて有効に利用することができる。   According to the present invention, an iron source having a low metallization rate, for example, iron-making dust generated in large quantities at a steel mill, can be effectively used as an iron source for a vertical melting furnace, exceeding the conventional limit of use. it can.

製鉄ダストの粒径と強度が種々変化させた竪型溶解炉の操業において、炉内圧力限界に達して操業継続が不可能となった時の粒径と強度の範囲を示す図である。It is a figure which shows the range of a particle size and intensity | strength when operation in a vertical melting furnace in which the particle size and intensity | strength of iron-making dust were changed variously reached the furnace pressure limit and it became impossible to continue operation. 金属化率の低い鉄源の混合率を調整するための鉄源の装入、堆積構造を示す図である。It is a figure which shows the charging and deposition structure of the iron source for adjusting the mixing rate of the iron source with a low metallization rate. 金属化率の低い鉄源の混合率を調整するための鉄源の別の装入、堆積構造を示す図である。It is a figure which shows another charging and deposition structure of the iron source for adjusting the mixing rate of the iron source with a low metalization rate.

本発明について詳細に説明する。なお、本発明において、製鉄ダストとは、高炉ダスト、焼結ダスト、転炉ダストなどの製鉄所で発生する、酸化鉄主体のダスト類、その他、酸化鉄を含む粉塵であって、金属化率の低い鉄源をいう。金属化率の高い鉄源とは、鉄屑(スクラップ)、鋳物屑、銑鉄等の含有する鉄の90%以上が金属状態である原料をいう。   The present invention will be described in detail. In the present invention, ironmaking dust is iron oxide-based dusts generated in steelworks such as blast furnace dust, sintered dust, converter dust, and other dusts containing iron oxide, and the metallization rate. A low iron source. An iron source having a high metallization rate refers to a raw material in which 90% or more of iron contained such as iron scrap (scrap), casting scrap, pig iron and the like is in a metal state.

竪型溶解炉の操業において、金属化率の高い鉄源は、主たる鉄源であるが、近年、これに、製鉄ダストを混合して操業することが行われている。製鉄ダストは、通常ペレット状に造粒したものを用いる。使用に際しては、コークス、金属化率の高い鉄源とともに所定の比率で混合し、竪型炉内に投入される。   In the operation of the vertical melting furnace, the iron source with a high metallization rate is the main iron source, but in recent years, it has been practiced to mix it with iron-making dust. Steelmaking dust is usually granulated into pellets. At the time of use, it is mixed at a predetermined ratio together with coke and an iron source having a high metallization rate and put into a vertical furnace.

製鉄ダスト塊成化物を鉄源として有効に利用しようとして、混合率を高めていくと、炉内通気性が悪化し、羽口からの送風圧力が次第に上昇していき、最終的には送風圧圧力の設備的上限に達して、それ以上混合比率を高めることができなくなるという新たな課題に遭遇した。   When trying to effectively use iron dust agglomerates as an iron source, increasing the mixing rate deteriorates the air permeability in the furnace, and the air pressure from the tuyere gradually increases. A new challenge was encountered in that the equipment upper limit of pressure was reached and the mixing ratio could no longer be increased.

(第1の発明)
本発明者らは、この通気抵抗の増加が、製鉄ダスト塊成化物の強度・粒度要件と密接に関係し、その改善によって、製鉄ダスト塊成化物の使用比率を格段にさせることができることを突き止めた。第1の発明は、この製鉄ダスト塊成化物の強度・粒度要件を具体的に規定することを骨子とする。
(First invention)
The present inventors have found that this increase in ventilation resistance is closely related to the strength and particle size requirements of iron dust agglomerates, and the improvement can make the use ratio of iron dust agglomerates markedly improved. It was. The gist of the first invention is to specifically define the strength and particle size requirements of this iron-making dust agglomerate.

製鉄ダスト塊成化物の炭材含有量を5質量%以上、12質量%以下とした。本要件は、直接的に塊成化物の強度に関するものではなく、製鉄ダストのような金属化率の低い原料を溶解炉でスクラップとともに溶解する際に、還元を十分進行させるための要件である。   The carbonaceous material content of the iron-made dust agglomerates was set to 5% by mass or more and 12% by mass or less. This requirement does not directly relate to the strength of the agglomerate, but is a requirement for sufficiently proceeding reduction when a raw material with a low metallization rate such as iron-making dust is melted together with scrap in a melting furnace.

即ち、5質量%未満の場合は投入された製鉄ダスト塊成化物が十分に還元されることなくスラグのまま排出される。また、製鉄ダストを還元するには、12質量%を超えて含有させる必要はない。過大な炭材の配合は塊成化物の強度の低下を招くだけである。   That is, when the amount is less than 5% by mass, the charged iron-making dust agglomerate is discharged as slag without being sufficiently reduced. Moreover, in order to reduce | restore iron-making dust, it is not necessary to make it contain exceeding 12 mass%. Excessive carbon blending only leads to a reduction in the strength of the agglomerate.

製鉄ダスト塊成化物の冷間強度を30kg/cm2以上、直径を8mm以上、30mm以下の範囲と規定した。強度及び粒度の下限規定は、後述の実施例で示す操業実績から帰結された要件である。この範囲であれば、25%までのダスト塊成化物の使用が可能であった。   The cold strength of the iron-made dust agglomerates was defined as a range of 30 kg / cm 2 or more and a diameter of 8 mm or more and 30 mm or less. The lower limit of the strength and the particle size is a requirement resulting from the operation results shown in the examples described later. Within this range, it was possible to use up to 25% dust agglomerates.

一方、この要件を満たさない製鉄ダスト塊成化物では、5%程度の従来並みの配合率での操業を余儀なくされた。粒度の上限規定は、還元の進行の制約に伴うもので、これを超えるとダストの還元が十分に進行しない。また、粒度の下限は、通気性の観点から規定される。   On the other hand, an iron agglomerate that does not satisfy this requirement has been forced to operate at a blending rate of about 5%, which is the same as in the past. The upper limit of the particle size is associated with restrictions on the progress of reduction, and if this is exceeded, the reduction of dust does not proceed sufficiently. Moreover, the minimum of a particle size is prescribed | regulated from a breathable viewpoint.

製鉄ダストの混合率を5質量%以上、25質量%以下とした。混合率が5質量%未満であると、製鉄所で大量に発生する製鉄ダスト類を効率よく処理するという本発明の課題を解決できない。また、25質量%を超えると、前記のように、本発明をもってしても、送風圧力の上昇で操業が困難となった。即ち、本発明の適用限界を意味する。   The mixing ratio of the iron-making dust was 5% by mass or more and 25% by mass or less. When the mixing ratio is less than 5% by mass, the problem of the present invention that efficiently treats iron-making dusts generated in large quantities at steelworks cannot be solved. Moreover, when it exceeded 25 mass%, even if it had this invention as mentioned above, operation became difficult by the raise of ventilation pressure. That is, it means the application limit of the present invention.

製鉄ダスト塊成化物を配合した場合には、円滑な竪型炉の操業を継続するために、その配合量に応じて、コークス配合量及び送風量を調整する必要がある。具体的な方法については、既に、特許文献3(特開平10−36906公報)に公開しているとおりである。   When iron dust agglomerates are blended, it is necessary to adjust the amount of coke and the amount of blown air according to the blending amount in order to continue the operation of the vertical furnace. The specific method is as already disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 10-36906).

(第2の発明)
スクラップの溶解のみを用とするキュポラでは、原料は投入に際して、コークスとスクラップは事前に標量・混合する設備構成となっているのが一般的である。従って、そのような竪型溶解炉で、さらに、ダスト類を使用する場合、コークス、スクラップ及びダスト塊成化物は事前に標量・混合されたのち、溶解炉内へ投入されることになる。
(Second invention)
In cupolas that only use scrap melting, it is common to have a facility configuration in which coke and scrap are weighed and mixed in advance when the raw materials are charged. Therefore, when dusts are used in such a vertical melting furnace, coke, scrap and dust agglomerates are weighed and mixed in advance and then put into the melting furnace.

これに対して、予めコークスと製鉄ダスト塊成化物を混合し、図2に示すように、この混合物と金属化率の高い鉄源を交互に溶解炉装入する方が好ましい。これは、形状の異なる原料を混合して充填する場合に比較して、別々に充填する方が、充填層の気孔率が増加して、炉内の通気性が向上するためである。   On the other hand, it is preferable to mix coke and iron dust agglomerates in advance and alternately charge the mixture and an iron source having a high metallization rate as shown in FIG. This is because the porosity of the packed bed is increased and the air permeability in the furnace is improved when the raw materials having different shapes are mixed and filled separately.

また、製鉄ダスト塊成化物とコークスを予め混合するのは、製鉄ダストの還元を容易ならしめるためである。   In addition, the iron dust agglomerate and coke are mixed in advance in order to facilitate reduction of the iron dust.

具体的には、以下のように実施される。図2に示すように、竪型溶解炉は、出銑口3を備える炉底部2、下部炉壁14に、下段羽口10及び上段羽口11を備える炉本体1、ガス吸引口5を備えるガス吸引部4、収容した鉄源で炉頂を封止する炉頂部6、及び、鉄源8を炉内に装入する装入口7から構成されている。   Specifically, it is carried out as follows. As shown in FIG. 2, the vertical melting furnace is provided with a furnace main body 1 having a lower tuyere 10 and an upper tuyere 11, and a gas suction port 5 on a furnace bottom portion 2 having a tap outlet 3 and a lower furnace wall 14. The gas suction unit 4 is composed of a furnace top 6 that seals the furnace top with a housed iron source, and an inlet 7 that charges the iron source 8 into the furnace.

炉本体1の下部には、コークスベッド9が構築されていて、通常、上段羽口11が、コークスベッド9の表面直上の高さ位置に設けられ、下段羽口10が、コークスベッド9内の高さ位置に設けられる。装入口7から、スクラップ等の金属化率の高い鉄源8aと、造粒した金属化率の低い鉄源と固体燃料の混合物8bを交互に装入すると、炉内において、上記混合物と金属化率の高い鉄源が交互に層状に堆積する層状堆積構造が実現する。   A coke bed 9 is constructed at the lower part of the furnace body 1. Usually, an upper tuyere 11 is provided at a height position directly above the surface of the coke bed 9, and a lower tuyere 10 is provided in the coke bed 9. Provided at the height position. When the iron source 8a having a high metallization rate such as scrap and the mixture 8b of granulated iron source and solid fuel are alternately charged from the charging port 7, the mixture and the metallization are brought into the furnace. A layered structure in which high-rate iron sources are alternately deposited in layers is realized.

炉内には、下段羽口10から、室温又は600℃以下の空気を送り込み、主として、固体燃料(コークス)を燃焼させ、この燃焼熱で、鉄源を溶解する。上段羽口11からは、冷風又は100℃以下の空気を送り込み、ソルーションロス反応で生じた炉内熱量の低下を補って、金属化率の高い鉄源の溶解に必要な熱量を確保するとともに、金属化率の低い鉄源の還元に必要な還元ガスを確保する。   Inside the furnace, air at room temperature or 600 ° C. or less is fed from the lower tuyere 10 to mainly burn solid fuel (coke), and the iron source is dissolved by this combustion heat. From the upper tuyere 11, cool air or air of 100 ° C. or less is sent to compensate for the decrease in the amount of heat in the furnace caused by the solution loss reaction, ensuring the amount of heat necessary for melting the iron source having a high metallization rate, Reducing gas necessary for reduction of iron source with low metalization rate is secured.

(第3の発明)
さらに、造粒した金属化率の低い鉄源と固体燃料の混合物と、金属化率の高い鉄源を交互に装入して、炉内に層状堆積構造を形成する場合、上記混合物を、周期的に、炉周に、中心部より多く装入、堆積させてもよい。その堆積状況を図3に示す。
(Third invention)
Further, when a granulated iron source and solid fuel mixture and a high metalization iron source are alternately charged to form a layered structure in the furnace, the mixture is In particular, the furnace may be charged and deposited more in the furnace periphery than in the center. The state of deposition is shown in FIG.

造粒した金属化率の低い鉄源と固体燃料の混合物8b’が、炉周に装入され、堆積している。こうすることによって、さらに、低金属化率鉄源の還元を促進し、炉操業を安定化することができる。   The granulated iron source and solid fuel mixture 8b 'having a low metallization rate is charged and deposited in the furnace periphery. By carrying out like this, reduction | restoration of a low metalization rate iron source can be further accelerated | stimulated, and furnace operation can be stabilized.

(第4の発明)
竪型溶解炉の操業においては、低金属化率鉄源混合率を高めると、還元ガス(CO)が多量に必要となる。ソルーションロス反応(CO2+C→2CO)(吸熱反応)で、還元ガス(CO)が多量に生成すると、鉄源を溶解する熱量が不足することになる。第1の発明では、これをコークス比率等で調整するとしたが、コークス使用量の増加は、製造コストの面で好ましくないこともある。
(Fourth invention)
In the operation of a vertical melting furnace, a high amount of reducing gas (CO) is required if the low metallization rate iron source mixing rate is increased. If a large amount of reducing gas (CO) is generated in the solution loss reaction (CO 2 + C → 2CO) (endothermic reaction), the amount of heat for dissolving the iron source becomes insufficient. In the first invention, this is adjusted by the coke ratio or the like, but an increase in the amount of coke used may not be preferable in terms of manufacturing cost.

そこで、これに対しては、羽口を上下2段(以下「2段羽口」ということがある。)に備えた竪型溶解炉を用いることで対処できる。即ち、上段羽口から、酸素含有ガス(空気)を吹き込み、生成したCOの一部を燃焼させることで、ソリューションロス反応による吸熱分を補うことができるためである。   Therefore, this can be dealt with by using a vertical melting furnace provided with two tuyeres at the upper and lower stages (hereinafter sometimes referred to as “two-stage tuyere”). That is, it is because an endothermic component due to the solution loss reaction can be compensated by blowing an oxygen-containing gas (air) from the upper tuyere and burning a part of the generated CO.

以下の実施例は、表1に示す仕様の竪型溶解炉を用いて行ったものである。原料として使用した製鉄ダストペレットの配合を表2に示す。スクラップは、H2−H4屑をシュレッダー処理したもの、及び、厚板屑を使用し、コークスは、平均粒径50mmの高炉用コークスを用いた。   The following examples were conducted using a vertical melting furnace having the specifications shown in Table 1. Table 2 shows the composition of iron-making dust pellets used as raw materials. As scrap, shredded H2-H4 scrap and thick plate scrap were used, and coke used was blast furnace coke having an average particle diameter of 50 mm.

Figure 0005626072
Figure 0005626072

Figure 0005626072
Figure 0005626072

(実施例1)
セメント配合量や養生期間が異なり、強度が異なる前記ダストペレットダストを、所定の粒度範囲となるように篩分けることによって調製した種々の強度と粒度を有するペレット試料を使用して操業試験を行った。その結果を図1に示す。
Example 1
The operation test was performed using pellet samples having various strengths and particle sizes prepared by sieving the dust pellets with different cement blending amounts and curing periods and different strengths so as to be in a predetermined particle size range. . The result is shown in FIG.

図中○印は、ダスト配合比率を25%まで高めても通気の問題なく操業できたケース、×印は、ダスト配合比率25%未満で炉内通気の悪化により操業に支障が発生したケースを示す。   In the figure, a circle indicates a case in which the dust mixing ratio can be increased to 25%, and the operation can be performed without any problem of ventilation, and a mark X indicates a case where the dust mixing ratio is less than 25% and the operation is hindered due to deterioration of the ventilation in the furnace. Show.

図1に示すように、強度>30kg/cm2、下限粒度>8mmであれば、金属化率の低い鉄源を、金属化率の高い鉄源に、25質量%程度まで混合しても、銑鉄を、安定的に継続して製造することができる。 As shown in FIG. 1, if the strength> 30 kg / cm 2 and the lower limit particle size> 8 mm, an iron source with a low metallization rate is mixed with an iron source with a high metallization rate up to about 25% by mass, Pig iron can be manufactured stably and continuously.

(実施例2)
粒径10〜30mmの製鉄ダストペレットとコークスとを予め混合した。この混合物と、スクラップ(鉄屑、鋳物屑、銑鉄)を、仕様を表1に示す竪型溶解炉に、表3に示す装入条件で装入し、装入鉄源を溶解、還元した。操業結果を、表3に併せて示す。
(Example 2)
Steelmaking dust pellets having a particle size of 10 to 30 mm and coke were mixed in advance. This mixture and scrap (iron scrap, casting scrap, pig iron) were charged into a vertical melting furnace whose specifications are shown in Table 1 under the charging conditions shown in Table 3, and the charged iron source was dissolved and reduced. The operation results are also shown in Table 3.

ダストペレットを20%混合した場合、装入前にスクラップと混合したケース(比較例)では、送風量25000Nm3/hで管理上限付近の炉内圧(通気限界)となり、出銑量は36t/hであったが、ダストペレットをスクラップと交互に装入した場合(発明例1)は、通気限界内で送風量を26000Nm3/hまで上げることができ、出銑量は38t/hに増加した。 In the case of mixing 20% dust pellets with the scrap before charging (comparative example), the air pressure is 25000 Nm 3 / h, the furnace pressure is near the upper limit of control (ventilation limit), and the output is 36 t / h. However, when dust pellets were alternately charged with scrap (Invention Example 1), the air flow rate could be increased to 26000 Nm 3 / h within the ventilation limit, and the output amount increased to 38 t / h. .

さらに、ダストペレットを周辺部に装入できる装置を用いて周期的に炉周方向に装入し、周辺部に多く堆積するように装入した場合(発明例2)、さらに通気が改善されて、通気限界内で送風量を27000Nm3/hまで上げることができ、出銑量は40t/hに増加した。 Furthermore, when dust pellets are periodically charged in the periphery of the furnace using a device that can be charged in the periphery, and charged so as to accumulate a large amount in the periphery (Invention Example 2), ventilation is further improved. The air flow rate could be increased up to 27000 Nm 3 / h within the ventilation limit, and the output amount increased to 40 t / h.

Figure 0005626072
Figure 0005626072

前述したように、本発明によれば、金属化率の低い鉄源、例えば、製鉄所で発生する大量の製鉄ダスト類を、竪型溶解炉の鉄源として、従来の使用限界量を超えて有効に利用することができる。したがって、本発明は、銑鉄製造産業において利用可能性が大きいものである。   As described above, according to the present invention, an iron source having a low metallization rate, for example, a large amount of iron-making dust generated at a steel mill is used as an iron source for a vertical melting furnace, exceeding the conventional limit of use. It can be used effectively. Therefore, the present invention has great applicability in the pig iron manufacturing industry.

1 炉本体
2 炉底部
3 出銑口
4 ガス吸引部
5 ガス吸引口
6 炉頂部
7 装入口
8 鉄源
8a 金属化率の高い鉄源
8b、8b’ 造粒した金属化率の低い鉄源と固体燃料の混合物
9 コークスベッド
10 下段羽口
11 上段羽口
12 溶銑
13 湯溜部
14 炉壁
DESCRIPTION OF SYMBOLS 1 Furnace body 2 Furnace bottom part 3 Outlet 4 Gas suction part 5 Gas suction part 6 Furnace top part 7 Inlet 8 Iron source 8a Iron source with high metallization rate 8b, 8b ' Solid fuel mixture 9 Coke bed 10 Lower tuyere 11 Upper tuyere 12 Hot metal 13 Hot water reservoir 14 Furnace wall

Claims (2)

高炉用コークスを燃料とし、金属化率の高い鉄源とともに製鉄ダスト塊成化物を鉄源として使用して銑鉄を製造する、竪型溶解炉の操業方法において、
(x)上記製鉄ダスト塊成化物が、炭材含有量5〜12質量%、冷間強度30kg/cm2以上、直径8〜30mmであり、かつ、
(y)該製鉄ダスト塊成化物の使用比率が全鉄源に対して5〜25%とする
ことを特徴とする竪型溶解炉の操業方法。
In the operation method of a vertical melting furnace, using coke for blast furnace as fuel and producing pig iron using iron dust agglomerates as an iron source together with an iron source having a high metallization rate,
(x) the iron dust agglomerate has a carbonaceous material content of 5 to 12% by mass, a cold strength of 30 kg / cm 2 or more, a diameter of 8 to 30 mm, and
(y) A method for operating a vertical melting furnace, wherein the use ratio of the iron-made dust agglomerates is 5 to 25% with respect to the total iron source.
予めコークスと製鉄ダスト塊成化物を混合し、この混合物と金属化率の高い鉄源を交互に溶解炉に装入することを特徴とする、請求項1に記載の竪型溶解炉の操業方法。 The method for operating a vertical melting furnace according to claim 1, wherein coke and iron dust agglomerates are mixed in advance, and the mixture and an iron source having a high metallization rate are alternately charged into the melting furnace. .
JP2011075411A 2011-03-30 2011-03-30 Operation method of vertical melting furnace Active JP5626072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011075411A JP5626072B2 (en) 2011-03-30 2011-03-30 Operation method of vertical melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011075411A JP5626072B2 (en) 2011-03-30 2011-03-30 Operation method of vertical melting furnace

Publications (2)

Publication Number Publication Date
JP2012207290A JP2012207290A (en) 2012-10-25
JP5626072B2 true JP5626072B2 (en) 2014-11-19

Family

ID=47187278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011075411A Active JP5626072B2 (en) 2011-03-30 2011-03-30 Operation method of vertical melting furnace

Country Status (1)

Country Link
JP (1) JP5626072B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3814046B2 (en) * 1996-04-17 2006-08-23 新日本製鐵株式会社 How to operate a vertical furnace
JP2004052052A (en) * 2002-07-22 2004-02-19 Tetsugen Corp Agglomeration process of steel dust
JP4350153B2 (en) * 2007-09-07 2009-10-21 新日本製鐵株式会社 Vertical furnace and its operating method
JP5181878B2 (en) * 2008-07-02 2013-04-10 Jfeスチール株式会社 Hot metal production method
JP5131058B2 (en) * 2008-07-02 2013-01-30 Jfeスチール株式会社 Iron-containing dust agglomerate and hot metal production method

Also Published As

Publication number Publication date
JP2012207290A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
RU2447164C2 (en) Method of producing pellets from recovered iron and method of producing cast iron
JP5064330B2 (en) Method for producing reduced iron and pig iron
JP2011058091A (en) Blast-furnace operation method using ferrocoke
EP2210959B1 (en) Process for producing molten iron
JP2009102746A (en) Method for producing pig iron
WO2009123115A1 (en) Process for production of reduced iron
WO2011099070A1 (en) Process for production of reduced iron, and process for production of pig iron
JP4350153B2 (en) Vertical furnace and its operating method
JP4116874B2 (en) Liquid iron manufacturing method
JP4326581B2 (en) How to operate a vertical furnace
JP3863052B2 (en) Blast furnace raw material charging method
JP5626072B2 (en) Operation method of vertical melting furnace
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
JP5082678B2 (en) Hot metal production method using vertical scrap melting furnace
JP3718604B2 (en) Blast furnace raw material charging method
JP5693768B2 (en) Blast furnace operating method and hot metal manufacturing method
JP5862514B2 (en) Scrap melting vertical furnace operation method
JP2000169916A (en) High quality sintered ore and production thereof
WO2024202853A1 (en) Method for producing molten pig iron
JP5369848B2 (en) Operation method of vertical melting furnace
JP5910182B2 (en) Hot metal manufacturing method using vertical melting furnace
JP2011179090A (en) Method for producing granulated iron
JP4598256B2 (en) Blast furnace operation method
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JP2008240109A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R151 Written notification of patent or utility model registration

Ref document number: 5626072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350