JP2006028538A - Method for operating blast furnace using sintered ore excellent in high temperature reducibility - Google Patents

Method for operating blast furnace using sintered ore excellent in high temperature reducibility Download PDF

Info

Publication number
JP2006028538A
JP2006028538A JP2004204943A JP2004204943A JP2006028538A JP 2006028538 A JP2006028538 A JP 2006028538A JP 2004204943 A JP2004204943 A JP 2004204943A JP 2004204943 A JP2004204943 A JP 2004204943A JP 2006028538 A JP2006028538 A JP 2006028538A
Authority
JP
Japan
Prior art keywords
sintered ore
mass
blast furnace
ratio
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004204943A
Other languages
Japanese (ja)
Inventor
Masahiko Hoshi
雅彦 星
Masaru Matsumura
勝 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004204943A priority Critical patent/JP2006028538A/en
Publication of JP2006028538A publication Critical patent/JP2006028538A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace with which the ventilation in the furnace is improved by using sintered ore excellent in a high temperature reducibility and a large quantity of pulverized fine coals can be injected. <P>SOLUTION: In the method for operating the blast furnace, in which the injecting quantity of the pulverized fine coals is ≥150 kg/p-t, the sintered ore having 5-10 vol% porosity exceeding 50μm pore diameter and 5-15 vol% porosity at less than 5μm pore diameter in ≥70 mass% of iron oxide charging material charged from the furnace top, is used. As the above sintered ore, the sintered ore having 3.8-4.6 mass% content of SiO<SB>2</SB>component and 5-9 mass% content of FeO component, is desirable to use and further, the sintered ore which is sintered by using a sintering raw material blended at 25-80 mass% high crystallization water ore having ≥4 mass% ratio of the crystallization water content, is desirable to use. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高炉による銑鉄の製造方法に関し、さらに詳しくは、高温被還元性に優れた焼結鉱を使用する高炉の微粉炭多量吹込操業方法に関する。   The present invention relates to a method for producing pig iron using a blast furnace, and more particularly to a method for operating a large quantity of pulverized coal in a blast furnace using a sintered ore excellent in high temperature reducibility.

高炉は、コークスと鉄源装入物とを交互に層状に装入し、鉄源装入物を還元および溶融して銑鉄を製造する充填層形式の竪型反応装置である。ここで、鉄源装入物としては、通常は焼結鉱、ペレット、塊鉱石などの酸化鉄装入物が使用されるが、還元鉄、スクラップなどの金属鉄装入物が含まれる場合もある。   The blast furnace is a vertical reactor of a packed bed type in which coke and iron source charge are alternately charged in layers, and the iron source charge is reduced and melted to produce pig iron. Here, as the iron source charge, iron oxide charges such as sintered ore, pellets and lump ore are usually used, but metal iron charges such as reduced iron and scrap may also be included. is there.

通常、焼結鉱は、塩基度(CaO/SiO2)やSiO2含有率が目標値の範囲内となるように、複数銘柄の鉄鉱石(原料鉱石)と、石灰石、蛇紋岩、ドロマイトなどの副原料を配合し、コークスなどの凝結材を加えた配合原料をドラムミキサーやディスクペレタイザーなどで混合および造粒した後、焼結機により焼成することにより製造される。このようにして製造された焼結鉱は高炉に装入される。 Usually, the sintered ore is made up of multiple brands of iron ore (raw ore), limestone, serpentine, dolomite, etc., so that the basicity (CaO / SiO 2 ) and SiO 2 content are within the target values. It is manufactured by blending auxiliary materials, mixing a blended raw material with coagulant such as coke and granulating with a drum mixer or disk pelletizer, and then firing it with a sintering machine. The sintered ore thus produced is charged into a blast furnace.

特許文献1には、焼結鉱の気孔径分布を水銀ポロシメーターを用いて測定することにより300μm以下の開気孔の平均気孔径が0.05〜0.15μmの範囲になるように焼結操業の条件または焼結鉱中の成分を調整して製造した高温性状の良好な焼結鉱を用いて高炉などの竪型炉の操業を行う方法が開示されている。 しかし、ここで開示された操業方法においては、微細気孔を増加させる具体的な焼結鉱製造方法および鉄鉱石の配合方法については記載されていない。   In Patent Document 1, the pore size distribution of sintered ore is measured using a mercury porosimeter so that the average pore size of open pores of 300 μm or less is in the range of 0.05 to 0.15 μm. A method of operating a vertical furnace such as a blast furnace using a sintered ore having good high-temperature properties produced by adjusting conditions or components in the sintered ore is disclosed. However, the operation method disclosed here does not describe a specific method for producing sintered ore and a method for blending iron ore that increase the fine pores.

また、特許文献2には、鉄含有原料、副原料、炭材および水分を混合または造粒した後、焼結機により焼成する焼結鉱の製造方法において、1200℃以上に加熱した際に平均気孔径が10μm以下の微細気孔を0.035cc/g以上含有する鉄鉱石と1200℃以上に加熱した際に平均気孔径が10μm以下の微細気孔を0.025cc/g未満含有する鉄鉱石を配合して高温性状の優れた焼結鉱を製造する方法が開示されている。   Further, Patent Document 2 discloses an average when heated to 1200 ° C. or higher in a method for producing sintered ore obtained by mixing or granulating an iron-containing raw material, an auxiliary raw material, a carbonaceous material, and moisture, and then firing with a sintering machine. Contains iron ore containing 0.035 cc / g or more of fine pores with a pore size of 10 μm or less and iron ore containing less than 0.025 cc / g of fine pores with an average pore size of 10 μm or less when heated to 1200 ° C. or more. Thus, a method for producing a sintered ore with excellent high-temperature properties is disclosed.

しかし、この製造方法は、焼結原料として使用する鉄鉱石全てについて1200℃以上に加熱した際の平均気孔径が10μm以下の微細気孔体積を測定する必要があること、さらには、鉄鉱石は天然に産出されたものであり成分や粒度などの品質にバラツキが生じることが避けられず、焼結鉱品質管理の面から鉄鉱石が入荷する毎に微細気孔体積を測定する必要があることから、品質管理費用の増加が避けられないという問題がある。また、これらの文献には、本発明が解決しようとする焼結鉱に含有される微細気孔体積の範囲に関する記載はない。   However, in this production method, it is necessary to measure the fine pore volume with an average pore diameter of 10 μm or less when heated to 1200 ° C. or higher for all iron ores used as a sintering raw material. Because it is inevitable that the quality of the components and particle sizes will vary and it is necessary to measure the fine pore volume every time iron ore arrives from the aspect of quality control of sintered ore, There is a problem that an increase in quality control costs is inevitable. In addition, these documents do not describe the range of the fine pore volume contained in the sintered ore to be solved by the present invention.

高炉において出銑量1トン当たり100kg前後の微粉炭を熱風とともに羽口から炉内に吹き込む微粉炭吹き込み操業は、従来の品質の焼結鉱を使用することにより充分に安定操業が可能である。しかし、微粉炭吹込量が出銑量1トン当たり150kg(以下、「150kg/p−t」とも表示する)以上になると、高炉の炉内通気性の悪化、装入物の降下異常などの高炉操業を阻害する要因が増加し、安定操業に維持することが困難となる。   In the blast furnace, the pulverized coal blowing operation in which about 100 kg of pulverized coal per tonne of brewing is blown into the furnace from the tuyere with hot air can be performed sufficiently stably by using a conventional sintered ore. However, if the amount of pulverized coal injection exceeds 150 kg per ton of tapping (hereinafter also referred to as “150 kg / pt”), the blast furnace may deteriorate due to deterioration of the blast furnace air permeability and abnormal lowering of the charge. Factors that impede operations increase, making it difficult to maintain stable operations.

また、微粉炭多量吹込時には、羽口前レースウェイにおける微粉炭の燃焼性悪化によりチャー(石炭の未燃分)が発生し、微粉炭吹込量が150kg/p−t以上になるとチャーの発生量が著しく増加することが知られている。このチャーは、レースウェイから飛び出したFeO成分(ウスタイト)を含む液滴スラグ融液(FeO−CaO−SiO2−Al23−MgO系スラグ)と接触してスラグ融液に捕捉される。このとき、チャーに含まれる炭素分と液滴スラグ融液に含まれるFeO成分とが反応し、FeO成分は還元されてFeとなり、液滴スラグ融液中のFeO成分は減少し、生成したFeは液滴スラグ融液から分離して金属鉄となる。チャーと反応した液滴スラグ融液は、FeO成分の低下により融点が上昇し、一部固相を析出させて液滴スラグ融液の粘度を上昇させる。また、液滴スラグ融液に接触して捕捉されてもFeO成分と未反応のまま固相として液滴スラグ融液中に懸濁するチャーも存在し、これも液滴スラグ融液の粘度を上昇させる。 In addition, when a large amount of pulverized coal is injected, char (unburned coal) is generated due to the deterioration of pulverized coal combustibility in the front tuyere, and the amount of char generated when the amount of pulverized coal injection exceeds 150 kg / pt. Is known to increase significantly. This char comes into contact with the droplet slag melt (FeO—CaO—SiO 2 —Al 2 O 3 —MgO slag) containing the FeO component (wustite) jumping out from the raceway and is captured by the slag melt. At this time, the carbon contained in the char reacts with the FeO component contained in the droplet slag melt, the FeO component is reduced to Fe, the FeO component in the droplet slag melt decreases, and the produced FeO Is separated from the droplet slag melt to become metallic iron. The melting point of the droplet slag melt that has reacted with the char rises due to a decrease in the FeO component, and part of the solid phase is precipitated to increase the viscosity of the droplet slag melt. In addition, there is a char that is suspended in the droplet slag melt as a solid phase without reacting with the FeO component even if it is captured in contact with the droplet slag melt. Raise.

この液滴スラグ融液の粘度の上昇は、高炉の炉内通気性を悪化させる一因であるため、微粉炭吹込量が150kg/p−t以上の多量吹込操業では、液滴スラグ融液の粘度上昇を抑制する技術が必要となる。この粘度の改善に対しては、鉄源装入物の被還元性を改善して、液滴スラグ融液が滴下する際のFeO成分の量を予め低減し、チャーとの反応が生じても液滴スラグ融液の融点の上昇を防ぐ方法が提案されている。つまり、焼結鉱の塩基度(以下、「(CaO/SiO2)比」とも記す)の上昇によって1000℃以上の高温における焼結鉱の高温被還元性を改善し、高炉炉下部まで未還元のまま降下し残留するFeO成分の量を低減し、高炉の炉内通気性の悪化を抑制する方法である。 This increase in the viscosity of the droplet slag melt is one factor that deteriorates the air permeability of the blast furnace. Therefore, in a large-volume injection operation in which the amount of pulverized coal injection is 150 kg / pt or more, the droplet slag melt A technique for suppressing the increase in viscosity is required. For the improvement of the viscosity, the reducibility of the iron source charge is improved, the amount of FeO component when the droplet slag melt is dropped is reduced in advance, and the reaction with char occurs. A method for preventing the melting point of the droplet slag melt from increasing is proposed. In other words, by increasing the basicity of the sintered ore (hereinafter also referred to as “(CaO / SiO 2 ) ratio”), the high-temperature reducibility of the sintered ore at a high temperature of 1000 ° C. or higher is improved, and it is not reduced to the bottom of the blast furnace This is a method of reducing the amount of FeO component that falls and remains, and suppresses deterioration of the air permeability of the blast furnace.

しかし、高炉の炉底湯溜り部におけるトータルスラグ量および(CaO/SiO2)比には制限があり、トータルスラグ量は330kg/p−t以下、(CaO/SiO2)比は1.3以下に制約される。したがって、焼結鉱の(CaO/SiO2)比の上昇にともなう(FeO+CaO+SiO2+Al23+MgO)成分の含有率の高い焼結鉱は、被還元性が良好であってもトータルスラグ量に制約され、炉頂から装入される酸化鉄装入物源の70質量%以上を使用することはできない。また、焼結鉱の(CaO/SiO2)比の上昇にともない液滴スラグ融液の(CaO/SiO2)比も上昇するため、液滴スラグ融液の粘度が上昇し、高炉の炉内通気性を悪化させるという問題もある。 However, the total slag amount and the (CaO / SiO 2 ) ratio in the bottom water pool of the blast furnace are limited, the total slag amount is 330 kg / pt or less, and the (CaO / SiO 2 ) ratio is 1.3 or less. Constrained by Therefore, a sintered ore with a high content of (FeO + CaO + SiO 2 + Al 2 O 3 + MgO) with an increase in the (CaO / SiO 2 ) ratio of the sintered ore can achieve a total slag amount even if the reducibility is good. It is constrained that more than 70% by weight of the iron oxide charge source charged from the top of the furnace cannot be used. Also, as the (CaO / SiO 2 ) ratio of the sintered ore increases, the (CaO / SiO 2 ) ratio of the droplet slag melt also increases, so the viscosity of the droplet slag melt increases and the blast furnace interior There is also a problem of deteriorating air permeability.

ここで、高炉の炉内におけるFeO成分の還元反応には、COガスによる間接還元反応と固体炭素(C)による直接還元反応とがあり、間接還元反応が発熱反応(+13930kJ/mol)であるのに対し、直接還元反応は吸熱反応(−158490kJ/mol)である。 つまり、FeO成分の直接還元反応は、多量の熱エネルギーを必要とするため、この反応が高炉炉下部で集中して起きると、高炉内の熱的バランスを崩し、高炉操業が不可能となる炉冷事故につながる危険性がある。このため、微粉炭吹込量が150kg/p−t以上の高炉操業では、炉下部に未還元のまま降下し残留するFeO成分を予め低減しておく必要がある。   Here, the reduction reaction of the FeO component in the furnace of the blast furnace includes an indirect reduction reaction by CO gas and a direct reduction reaction by solid carbon (C), and the indirect reduction reaction is an exothermic reaction (+13930 kJ / mol). On the other hand, the direct reduction reaction is an endothermic reaction (−158490 kJ / mol). In other words, since the direct reduction reaction of the FeO component requires a large amount of heat energy, if this reaction occurs in a concentrated manner in the lower part of the blast furnace, the thermal balance in the blast furnace is lost, and the blast furnace operation becomes impossible. There is a risk of a cold accident. For this reason, in blast furnace operation where the amount of pulverized coal injection is 150 kg / pt or more, it is necessary to reduce in advance the FeO component that falls to the lower part of the furnace while remaining unreduced.

特開平11−43709号公報(特許請求の範囲、段落[0006]および[0013])JP 11-43709 A (claims, paragraphs [0006] and [0013])

特開2001−303142号公報(特許請求の範囲、段落[0010]〜[0014])JP 2001-303142 A (claims, paragraphs [0010] to [0014])

前述のとおり、従来技術においては、下記の(a)および(b)の問題が残る。すなわち、(a)微粉炭吹込量が150kg/p−t以上の高炉操業では、未燃焼チャーの発生量増加も相俟って、高炉炉下部での未還元FeO成分と炭素との吸熱をともなう直接還元反応が起きやすく、それにともなってスラグの流動性も悪化する。したがって、微粉炭吹込量の少ない操業時に比して、未還元FeO成分の残留量を低減する必要があり、そのためには、高温被還元性の一段と優れた焼結鉱を使用する必要がある。(b)焼結鉱の高温被還元性を改善し、高炉内での未還元FeO成分の残留量を減少させて高炉内通気性の悪化を抑制する方法が開示されているが、これを実現させるための微細気孔を増加させた焼結鉱の製造方法は明確でなく、また、その品質管理も容易ではない。   As described above, the following problems (a) and (b) remain in the prior art. That is, (a) in blast furnace operation where the amount of pulverized coal injection is 150 kg / pt or more, there is an increase in the amount of unburned char, and there is an endotherm of unreduced FeO component and carbon at the bottom of the blast furnace. Direct reduction reaction tends to occur, and the fluidity of slag deteriorates accordingly. Therefore, it is necessary to reduce the residual amount of the unreduced FeO component as compared with the time of operation with a small amount of pulverized coal injection. For this purpose, it is necessary to use a sintered ore that is more excellent in high temperature reducibility. (B) A method for improving the high temperature reducibility of sintered ore and reducing the residual amount of unreduced FeO component in the blast furnace to suppress the deterioration of air permeability in the blast furnace has been disclosed, but this is realized. The method for producing sintered ore with increased fine pores is not clear, and quality control is not easy.

本発明は、上記の問題を解決するためになされたものであり、その課題は、焼結鉱に含まれる気孔径が50μmを超える気孔割合と気孔径が5μm未満の気孔割合とを制御して製造される高温被還元性に優れた焼結鉱を使用することにより、高炉炉下部まで未還元のまま降下し残留するFeO成分を低減して、高炉の炉内通気性を改善する高炉操業方法を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and its problem is to control the ratio of pores having a pore diameter exceeding 50 μm and the ratio of pores having a pore diameter of less than 5 μm contained in the sintered ore. A blast furnace operating method that improves the air permeability of the blast furnace by reducing the remaining FeO component that remains unreduced to the lower part of the blast furnace furnace by using sintered ore with excellent high temperature reducibility Is to provide.

本発明者らは、上記した課題を解決するために、焼結鉱中の気孔径が50μmを超える気孔割合および気孔径が5μm未満の気孔割合が高温被還元性、熱間通気性および冷間強度におよぼす効果を調査するとともに、それらの焼結鉱を用いた高炉操業を行い、下記の(a)〜(f)の知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the inventors of the present invention have a porosity ratio in which the pore diameter in the sintered ore exceeds 50 μm and a pore ratio in which the pore diameter is less than 5 μm are high temperature reducible, hot air permeability and cold. While investigating the effect on strength, the blast furnace operation using those sintered ores was performed, and the following findings (a) to (f) were obtained to complete the present invention.

(a)高温被還元性に優れた焼結鉱を高炉の炉頂から装入される酸化鉄装入物の70質量%以上とすることにより、高炉下部で生成される滴下スラグ融液中のFeO成分の含有率を低減させることができ、炉下部における通気および通液性を改善することができる。   (A) By making the sintered ore excellent in high temperature reducibility 70 mass% or more of the iron oxide charge charged from the top of the blast furnace, in the dripping slag melt generated at the bottom of the blast furnace The content rate of a FeO component can be reduced and the ventilation | gas_flowing and liquid permeability in a furnace lower part can be improved.

(b)焼結鉱の、気孔径が50μmを超える気孔割合が5〜10体積%の範囲内であれば、熱間通気性が向上するので焼結鉱の生産性を確保でき、しかも、焼結鉱中FeO成分含有率を増加させることにより冷間強度も確保することができる。   (B) If the pore ratio of the sintered ore with a pore diameter exceeding 50 μm is in the range of 5 to 10% by volume, the hot air permeability is improved, so that the productivity of the sintered ore can be ensured, Cold strength can also be secured by increasing the FeO component content in the ore.

(c)焼結鉱の、気孔径が5μm未満の気孔割合が5〜15体積%の範囲内であれば、高温被還元性が改善され、しかも、焼結鉱中のSiO2成分含有率を増加させることにより冷間強度も確保することができる。 (C) If the porosity of the sintered ore with a pore diameter of less than 5 μm is in the range of 5 to 15% by volume, the high temperature reducibility is improved, and the SiO 2 component content in the sintered ore is improved. By increasing it, the cold strength can be secured.

(d)焼結鉱中のSiO2成分含有率が3.8〜4.6質量%の範囲内であれば、焼結鉱製造過程における融液生成量が確保されて冷間強度が維持され、かつ、珪酸塩スラグ形成量の増加が抑えられるので、高温被還元性が確保され、好ましい。 (D) If the SiO 2 component content in the sintered ore is in the range of 3.8 to 4.6% by mass, the amount of melt produced in the process of producing the sintered ore is secured and the cold strength is maintained. And since the increase in the amount of silicate slag formation is suppressed, high temperature reducibility is ensured and it is preferable.

(e)焼結鉱中のFeO成分(マグネタイト成分)含有率が5質量%以上であれば、焼結鉱製造過程で生成する融液量を確保して冷間強度を維持し、かつ、ヘマタイト系鉱物の増加を抑えて還元粉化性の悪化を防止できるので、好ましい。また、FeO成分含有率が9質量%以下であれば、焼結過程における融液の過剰な生成を防止することにより微細気孔量を確保して高温還元性を向上させることができるので、好ましい。   (E) If the FeO component (magnetite component) content in the sintered ore is 5% by mass or more, the amount of melt produced in the process of producing the sintered ore is secured to maintain the cold strength, and the hematite This is preferable because an increase in the mineral content can be suppressed and deterioration of the reduced powdering property can be prevented. Further, if the FeO component content is 9% by mass or less, it is preferable because it prevents the formation of excessive melt during the sintering process, thereby securing the amount of fine pores and improving the high temperature reducibility.

(f)高結晶水鉱石の配合率が25〜80質量%であれば、焼結鉱に含まれる微細気孔を確保して高温被還元性を向上させることができ、しかも、冷間強度を維持することができるので、好ましい。   (F) If the blending ratio of the high crystal water ore is 25 to 80% by mass, the fine pores contained in the sintered ore can be secured to improve the high temperature reducibility, and the cold strength is maintained. This is preferable.

本発明は、上記の知見に基いて完成されたものであり、その要旨は、下記の(1)〜(3)に示す高炉の操業方法にある。   This invention is completed based on said knowledge, The summary exists in the operating method of the blast furnace shown to following (1)-(3).

(1)出銑量1トン当たり150kg以上の微粉炭を熱風とともに羽口から炉内に吹き込む高炉操業方法であって、炉頂から装入される酸化鉄装入物の70質量%以上に、気孔径が50μmを超える気孔割合が5〜10体積%であり、かつ気孔径が5μm未満の気孔割合が5〜15体積%である焼結鉱を用いる高炉の操業方法(以下、「第1発明」とも称する)。   (1) A blast furnace operation method in which pulverized coal of 150 kg or more per ton of tuna is blown into the furnace together with hot air from the tuyere, to 70% by mass or more of the iron oxide charge charged from the top of the furnace, A method for operating a blast furnace using a sintered ore having a porosity of 5 to 10% by volume with a pore diameter exceeding 50 μm and a porosity of 5 to 15% by volume with a pore diameter of less than 5 μm (hereinafter referred to as “first invention”). ").

(2)前記焼結鉱として、SiO2成分の含有率が3.8〜4.6質量%であり、かつFeO成分の含有率が5〜9質量%である焼結鉱を用いる前記(1)に記載の高炉の操業方法(以下、「第2発明」とも称する)。 (2) The sintered ore having a SiO 2 component content of 3.8 to 4.6% by mass and a FeO component content of 5 to 9% by mass as the sintered ore (1) ) Operation method (hereinafter also referred to as “second invention”).

(3)前記焼結鉱として、結晶水含有率が4質量%以上の高結晶水鉱石を25〜80質量%配合した焼結原料を用いて焼成された焼結鉱を用いる前記(1)または(2)に記載の高炉の操業方法(以下、「第3発明」とも称する)。   (3) (1) or (1) above, wherein the sintered ore is fired using a sintered raw material containing 25 to 80% by mass of a high crystal water ore having a crystal water content of 4% by mass or more as the sintered ore. A method of operating a blast furnace according to (2) (hereinafter also referred to as “third invention”).

本発明において、焼結鉱中の「FeO成分」とは、マグネタイト成分(FeO・Fe23)を意味する。 In the present invention, the “FeO component” in the sintered ore means a magnetite component (FeO · Fe 2 O 3 ).

「気孔径」および「気孔割合」とは、それぞれ、焼結鉱中に含まれる気孔の直径、およびその直径を有する気孔が焼結鉱塊の体積に対して占める体積比率を百分率により表した値をいい、その詳細については、後述するとおりである。   “Porosity diameter” and “pore ratio” are the values of the pore diameter contained in the sintered ore and the volume ratio of the pores having the diameter to the volume of the sintered ore in percentage. The details are as described later.

また、「焼結原料」とは、原料鉱石および副原料をいう。   The “sintered raw material” refers to raw material ore and auxiliary raw materials.

本発明の方法によれば、高炉の炉頂から装入される酸化鉄装入物の70質量%以上に気孔径の分布を調整した高温被還元性に優れた焼結鉱を使用することにより、微粉炭吹込量の増加にともなう高炉内通気性の悪化を防止することができるので、高炉の安定操業を維持しつつ150kg/p−t以上の多量の微粉炭吹込を行うことが可能となり、高出銑比および低還元材比の微粉炭多量吹込操業を達成することができる。   According to the method of the present invention, by using a sintered ore excellent in high temperature reducibility in which the pore size distribution is adjusted to 70% by mass or more of the iron oxide charge charged from the top of the blast furnace. In addition, since it is possible to prevent deterioration of the air permeability in the blast furnace with an increase in the amount of pulverized coal injection, it becomes possible to perform a large amount of pulverized coal injection of 150 kg / pt or more while maintaining stable operation of the blast furnace, A large quantity of pulverized coal can be achieved with a high output ratio and a low reducing material ratio.

本発明は、出銑量1トン当たり150kg以上の微粉炭を熱風とともに羽口から炉内に吹き込む高炉操業方法であって、炉頂から装入される酸化鉄装入物の70質量%以上に、気孔径が50μmを超える気孔割合が5〜10体積%であり、かつ気孔径が5μm未満の気孔割合が5〜15体積%である焼結鉱を用いる高炉の操業方法である。以下に、本発明の範囲を前記のとおり限定した理由および好ましい範囲について説明する。   The present invention relates to a blast furnace operating method in which pulverized coal of 150 kg or more per ton of tuna is blown into a furnace together with hot air from a tuyere, and the amount of iron oxide charged from the top of the furnace is 70% by mass or more. The operation method of a blast furnace using a sintered ore having a pore ratio of 5 to 10% by volume with a pore diameter exceeding 50 μm and a pore ratio of 5 to 15% by volume with a pore diameter of less than 5 μm. The reason why the scope of the present invention is limited as described above and the preferred range will be described below.

(A)高温被還元性に優れた焼結鉱の装入割合:70質量%以上
本発明において、炉頂から装入される酸化鉄装入物中の高温被還元性に優れた焼結鉱の装入割合を70質量%以上としたのは、高炉炉下部の炉内通気性を改善するためである。
(A) Charge ratio of sintered ore excellent in high temperature reducibility: 70 mass% or more In the present invention, sintered ore excellent in high temperature reducibility in the iron oxide charge charged from the furnace top The reason why the charging ratio is set to 70% by mass or more is to improve the in-furnace air permeability at the bottom of the blast furnace.

図1は、炉頂から装入される酸化鉄装入物に占める高温被還元性に優れた焼結鉱の装入割合と、微粉炭吹込量および高炉炉下部通気抵抗との関係を示した図である。同図の関係から、気孔径が50μmを超える気孔割合が5〜10体積%であり、かつ、気孔径が5μm未満の気孔割合が5〜15体積%である高温被還元性に優れた焼結鉱の配合割合を酸化鉄装入物の70質量%以上とすることにより、高炉炉下部において溶融滴下するスラグ融液中のFeO成分の含有率を低減することができる。   FIG. 1 shows the relationship between the charging ratio of sintered ore excellent in high-temperature reducibility in the iron oxide charge charged from the top of the furnace, the amount of pulverized coal injection, and the lower blast furnace ventilation resistance. FIG. From the relationship shown in the figure, the sintering is excellent in high temperature reducibility in which the pore ratio is 5 to 10% by volume with a pore diameter exceeding 50 μm and the pore ratio is 5 to 15% by volume with a pore diameter of less than 5 μm. By making the blending ratio of the ore 70% by mass or more of the iron oxide charge, the content of the FeO component in the slag melt that is melted and dropped in the lower part of the blast furnace furnace can be reduced.

したがって、スラグ融液中のFeO成分が未燃チャーと反応することによるスラグの融点上昇にともなうスラグ粘度の上昇、および炉下部での直接還元反応に基づく吸熱による温度低下を防止し、炉下部における良好な通気性を確保できる。   Therefore, an increase in the slag viscosity due to an increase in the melting point of the slag due to the reaction of the FeO component in the slag melt with unburned char, and a temperature decrease due to endotherm based on a direct reduction reaction in the lower part of the furnace are prevented. Good air permeability can be secured.

(B)焼結鉱の気孔径が50μmを超える気孔割合:5〜10体積%
焼結鉱の気孔径が50μmを超える気孔割合を5〜10体積%の範囲としたのは、焼結鉱製造過程における焼結層の熱間通気性を確保し、かつ、焼結鉱の冷間強度を確保するためである。以下にその理由を詳細に説明する。
(B) Pore ratio in which the pore diameter of the sintered ore exceeds 50 μm: 5 to 10% by volume
The pore ratio in which the pore diameter of the sintered ore exceeds 50 μm is in the range of 5 to 10% by volume because the hot air permeability of the sintered layer in the sinter production process is ensured and the sintered ore is cooled. This is to ensure the strength between the layers. The reason will be described in detail below.

図2は、焼結鉱に含まれる気孔径が50μmを超える気孔割合と熱間通気性指数(JPU)との関係を、焼結鉱の種々のFeO成分含有率について示した図である。同図において、熱間通気性指数(JPU)は、焼結鉱製造過程における焼結層の通気性を表す指数であり、下記の(1)式により算出される値である。   FIG. 2 is a diagram showing the relationship between the pore ratio of the sintered ore having a pore diameter exceeding 50 μm and the hot air permeability index (JPU) for various FeO component contents of the sintered ore. In the figure, the hot air permeability index (JPU) is an index representing the air permeability of the sintered layer in the sinter production process, and is a value calculated by the following equation (1).

JPU=(9.807×h/△P)0.6×Q/A ・・・・(1)
ここで、hは焼結層の層厚(m)、△Pは排風機の吸引負圧(kPa)、Qは吸引風量(m3/min)、そしてAは有効吸引面積(m2)を表す。
JPU = (9.807 × h / ΔP) 0.6 × Q / A (1)
Here, h is the layer thickness (m) of the sintered layer, ΔP is the suction negative pressure (kPa) of the exhaust fan, Q is the suction air volume (m 3 / min), and A is the effective suction area (m 2 ). To express.

なお、上記の熱間通気性指数は、その値が大きいほど、焼結層におけるガスの通気性が良好であることを示す。   In addition, said hot air permeability index | exponent shows that the gas air permeability in a sintered layer is so favorable that the value is large.

また、同図および後出の図3〜図5において用いた焼結鉱に含まれる気孔径が50μmを超える気孔割合、および気孔径が5μm未満の気孔割合は、それぞれ、水銀圧入ポロシメーターを用いた気孔径分布の測定方法により下記のように求めた。   In addition, the porosimetry of pores having a pore diameter exceeding 50 μm and pore ratios having a pore diameter of less than 5 μm included in the sintered ore used in FIG. 3 and FIGS. It calculated | required as follows with the measuring method of pore diameter distribution.

すなわち、粒径15〜19mmの焼結鉱を採取し、その1粒を圧入密封容器に装入し、密封容器の中に水銀を満たした後、水銀を徐々に加圧してゆく。圧入圧力とその圧力における水銀の侵入可能な気孔径との関係を予め求めておき、ある圧入圧力で圧入された水銀の侵入量の測定値に基づいて、圧入圧力に対応する気孔径とその気孔体積とを求めた。このようにして求められた所定の気孔径を有する気孔体積を焼結鉱塊の体積で除して百分率(%)により表示し、所定の気孔径を有する気孔の気孔割合とした。この測定方法は、焼結鉱の気孔径分布測定方法として一般に用いられている方法である。本発明における調査では、各焼結鉱試料毎に8回の測定を行って気孔径分布を求めた。   That is, a sintered ore having a particle diameter of 15 to 19 mm is collected, one of the grains is placed in a press-fitted sealed container, and after the mercury is filled in the sealed container, the mercury is gradually pressurized. The relationship between the press-in pressure and the pore size at which mercury can enter at that pressure is determined in advance, and the pore size corresponding to the press-in pressure and the pores based on the measured value of the intrusion amount of mercury injected at a certain press-in pressure The volume was determined. The pore volume having the predetermined pore diameter determined in this way was divided by the volume of the sintered ore and displayed as a percentage (%) to obtain the pore ratio of the pores having the predetermined pore diameter. This measuring method is a method generally used as a pore diameter distribution measuring method of sintered ore. In the investigation in the present invention, the pore size distribution was obtained by performing eight measurements for each sintered ore sample.

図2の結果によれば、気孔径が50μmを超える気孔割合が増加するにつれて、また、焼結鉱中のFeO成分含有率の低下にともなって、熱間通気性指数は上昇し、焼結層の通気性は良好になる。したがって、気孔径が50μmを超える気孔は、焼結鉱製造過程における通気網の形成に不可欠であり、焼結層の熱間通気性を確保して生産性を向上させるためには、気孔径が50μmを超える気孔割合を5体積%以上とする必要のあることが判明した。   According to the results of FIG. 2, as the pore ratio exceeding 50 μm increases, the hot air permeability index increases as the FeO component content in the sintered ore decreases, and the sintered layer The air permeability becomes better. Accordingly, pores having a pore diameter exceeding 50 μm are indispensable for the formation of a ventilation network in the sinter production process, and in order to ensure the hot air permeability of the sintered layer and improve the productivity, the pore diameter is small. It was found that the pore ratio exceeding 50 μm needs to be 5% by volume or more.

図3は、焼結鉱に含まれる気孔径が50μmを超える気孔割合と冷間強度指数(TI)との関係を、焼結鉱の種々のFeO成分含有率について示した図である。同図において、冷間強度指数は、JIS M 8712に規定された焼結鉱の冷間における回転強度TI(+5mm)を用いて表示した。   FIG. 3 is a graph showing the relationship between the porosity ratio of pores contained in the sintered ore with a pore diameter exceeding 50 μm and the cold strength index (TI) for various FeO component contents of the sintered ore. In the figure, the cold strength index is expressed by using the cold rotational strength TI (+5 mm) of the sintered ore specified in JIS M 8712.

図3の結果によれば、気孔径が50μmを超える気孔割合が増加するにつれて、また、焼結鉱中のFeO成分含有率の低下にともなって、冷間強度指数は低下する。気孔径が50μmを超える気孔は、焼結鉱の冷間強度を低下させる要因の一つであり、気孔径が50μmを超える気孔割合が10体積%以下においては、焼結鉱のFeO成分含有率を5質量%以上とすることにより冷間強度を確保できるが、気孔径が50μmを超える気孔割合が10体積%を超えると、焼結鉱のFeO成分含有率を5質量%以上に増加させて焼結鉱製造過程で生成する焼結融液量を増加させても、冷間強度を確保することが困難となる。冷間強度の低い焼結鉱は、高炉炉内への装入時の衝撃および炉内での装入物の降下にともなう摩耗をはじめとする機械的応力により粒径が著しく低下するため、高炉の炉内通気性を悪化させる。したがって、気孔径が50μmを超える気孔割合は10体積%以下とする必要がある。   According to the result of FIG. 3, the cold strength index decreases as the pore ratio with a pore diameter exceeding 50 μm increases and as the FeO component content in the sintered ore decreases. The pores having a pore diameter exceeding 50 μm is one of the factors that reduce the cold strength of the sintered ore. When the pore ratio exceeding 50 μm is 10% by volume or less, the FeO component content of the sintered ore is 10% by volume or less. Although the cold strength can be ensured by setting the content to 5% by mass or more, if the pore ratio of the pore diameter exceeding 50 μm exceeds 10% by volume, the FeO component content of the sintered ore is increased to 5% by mass or more. Even if the amount of the sintered melt produced in the sinter production process is increased, it is difficult to ensure the cold strength. Sintered ore with low cold strength is significantly reduced in grain size due to mechanical stresses such as impact during charging into the blast furnace and wear caused by the fall of the charge in the furnace. Deteriorates the air permeability in the furnace. Therefore, the pore ratio with a pore diameter exceeding 50 μm needs to be 10% by volume or less.

上述のとおり、焼結鉱製造時の生産性を確保し、かつ、焼結鉱の冷間強度を確保する観点から、気孔径が50μmを超える気孔割合の適正範囲を5〜10体積%とした。   As described above, from the viewpoint of ensuring the productivity at the time of manufacturing the sintered ore and ensuring the cold strength of the sintered ore, the appropriate range of the pore ratio with a pore diameter exceeding 50 μm is set to 5 to 10% by volume. .

(C)焼結鉱の気孔径が5μm未満の気孔割合:5〜10体積%
焼結鉱の気孔径が5μm未満の気孔割合を5〜15体積%の範囲としたのは、高温被還元性を改善し、しかも、焼結鉱中のSiO2成分含有率を増加させることにより冷間強度も確保できるからである。以下にその理由を説明する。
(C) Porosity ratio of sintered ore having a pore diameter of less than 5 μm: 5 to 10% by volume
The reason why the porosity of the sintered ore having a pore diameter of less than 5 μm is in the range of 5 to 15% by volume is to improve the high temperature reducibility and increase the SiO 2 component content in the sintered ore. This is because the cold strength can be secured. The reason will be described below.

図4は、焼結鉱に含まれる気孔径が5μm未満の気孔割合と高温被還元性指数との関係を、焼結鉱の種々のSiO2成分含有率について示した図である。同図において、高温被還元性指数は、粒径19〜21mmの焼結鉱500gを内径75mmのステンレス製反応管内に装入し、CO:30%およびN2:70%の混合ガスを還元ガスとして15NL/分の流量で流し、1100℃にて6時間還元した後の到達還元率(還元酸素質量実績値/全還元酸素質量理論値×100%)を用いて示した。 FIG. 4 is a graph showing the relationship between the ratio of pores having a pore diameter of less than 5 μm contained in the sintered ore and the high-temperature reducible index for various SiO 2 component contents of the sintered ore. In the figure, the high temperature reducibility index is as follows. 500 g of sintered ore having a particle diameter of 19 to 21 mm is charged into a stainless steel reaction tube having an inner diameter of 75 mm, and a mixed gas of CO: 30% and N 2 : 70% is reduced gas The flow rate was 15 NL / min, and the reduction rate at 1100 ° C. for 6 hours was used to indicate the ultimate reduction rate (reduced oxygen mass actual value / total reduced oxygen mass theoretical value × 100%).

図4の結果によれば、気孔径が5μm未満の気孔割合が増加すると、焼結鉱の高温被還元性が改善され、高温被還元性指数は増加する。しかし、気孔径が5μm未満の気孔割合が5体積%未満では、焼結鉱のSiO2成分含有率を3.8質量%未満にまで過度に低下させなければ、高温被還元性指数90%以上を得るのに充分な改善効果が期待できない。なお、SiO2成分含有率を3.8質量%未満にまで過度に低下させると、後述のとおり、冷間強度(TI)の低下を防ぐことが難しくなり、好ましくない。ここで、高炉解体による炉内調査などの結果によれば、高温被還元性指数が86%以上、望ましくは90%であれば、高炉炉下部において未還元のまま残留するFeO成分(ウスタイト成分)は少なくなり、高炉下部におけるスラグ融液の粘度の上昇や融点の上昇も小さくなって、良好な炉内通気性を確保できる。 According to the result of FIG. 4, when the pore ratio with a pore diameter of less than 5 μm increases, the high temperature reducibility of the sintered ore is improved, and the high temperature reducibility index increases. However, if the pore ratio is less than 5% by volume with a pore diameter of less than 5 μm, the high temperature reducibility index is 90% or more unless the SiO 2 component content of the sintered ore is reduced excessively to less than 3.8% by mass. The improvement effect sufficient to obtain If the SiO 2 component content is excessively reduced to less than 3.8% by mass, it is difficult to prevent a decrease in cold strength (TI) as described later, which is not preferable. Here, according to the results of in-furnace investigation by blast furnace dismantling and the like, if the high temperature reducible index is 86% or more, preferably 90%, FeO component (wustite component) remaining unreduced in the lower portion of the blast furnace furnace The increase in the viscosity of the slag melt and the increase in the melting point at the lower part of the blast furnace are also reduced, and good air permeability in the furnace can be secured.

したがって、高炉炉下部まで未還元のまま残留するFeO成分を低減し、高炉下部の炉内通気性を改善するためには、焼結鉱の気孔径が5μm未満の気孔割合を5体積%以上とすることが必要である。   Therefore, in order to reduce the FeO component remaining unreduced to the lower part of the blast furnace and improve the in-furnace air permeability of the lower part of the blast furnace, the porosity of the sintered ore with a pore diameter of less than 5 μm is set to 5% by volume or more. It is necessary to.

図5は、焼結鉱に含まれる気孔径が5μm未満の気孔割合と冷間強度指数(TI)との関係を、焼結鉱の種々のSiO2成分含有率について示した図である。同図の結果によれば、気孔径が5μm未満の気孔割合が増加するにつれて、冷間強度は低下する。 FIG. 5 is a graph showing the relationship between the porosity ratio of pores with a pore diameter of less than 5 μm and cold strength index (TI) contained in the sintered ore for various SiO 2 component contents of the sintered ore. According to the results shown in the figure, the cold strength decreases as the pore ratio with a pore diameter of less than 5 μm increases.

気孔径が5μm未満の気孔は微細であるため、気孔径が50μmを超える気孔に比較して、冷間強度におよぼす気孔割合の影響は小さいが、5μm未満の気孔割合が過度に増加すると、冷間強度指数が低下し、高炉炉内への装入時および炉内における機械的応力により焼結鉱の粒径が低下し、高炉の炉内通気性が悪化する。したがって、焼結鉱の冷間強度を確保するためには、気孔径5μm未満の気孔割合を15体積%以下とする必要がある。   Since pores having a pore diameter of less than 5 μm are fine, the influence of the pore ratio on the cold strength is small compared to pores having a pore diameter of more than 50 μm, but if the pore ratio of less than 5 μm increases excessively, The interstitial strength index decreases, and the particle size of the sintered ore decreases due to mechanical stress in the blast furnace and when charged in the blast furnace, and the air permeability of the blast furnace deteriorates. Therefore, in order to ensure the cold strength of the sintered ore, the ratio of pores having a pore diameter of less than 5 μm needs to be 15% by volume or less.

上記の理由により、焼結鉱の高温被還元性の改善および冷間強度の確保の観点から、気孔径が5μm未満の気孔割合を5〜15体積%の範囲とした。   For the above reasons, from the viewpoint of improving the high temperature reducibility of the sintered ore and ensuring the cold strength, the pore ratio with a pore diameter of less than 5 μm is set in the range of 5 to 15% by volume.

(D)焼結鉱のSiO2成分含有率の好ましい範囲:3.8〜4.6質量%
焼結鉱のSiO2成分含有率が3.8質量%以上では、前記図5に示されるとおり、焼結鉱製造過程で生成する焼結融液量の減少による冷間強度指数(TI)の低下を防ぐことができる。したがって、高炉炉内への焼結鉱の装入時における衝撃、および炉内での機械的応力による焼結鉱の粒径低下が抑制され、高炉内通気性の悪化が防止されるので、好ましい。
(D) Preferred range of SiO 2 component content of sintered ore: 3.8 to 4.6% by mass
When the SiO 2 component content of the sintered ore is 3.8% by mass or more, as shown in FIG. 5, the cold strength index (TI) due to the decrease in the amount of sintered melt produced in the manufacturing process of the sintered ore is obtained. Decline can be prevented. Therefore, the impact during charging of the sintered ore into the blast furnace furnace and the decrease in the particle size of the sintered ore due to mechanical stress in the furnace are suppressed, and deterioration of air permeability in the blast furnace is prevented, which is preferable. .

また、SiO2成分含有率が4.6質量%以下であれば、前記図4に示されるとおり、難還元性である珪酸塩スラグの生成量の増加が抑制され、高温被還元性の悪化が防止される。したがって、高炉炉下部まで未還元のまま降下し残留するFeO成分の増加が抑制され、高炉下部における炉内通気性の悪化が防止されるので、好ましい。そこで、焼結鉱のSiO2成分含有率の好ましい範囲を3.8〜4.6質量%とした。 Also, if the SiO 2 component content of less 4.6 wt%, as shown in FIG. 4, the increase in the amount of silicate slag is irreducible is suppressed, deterioration of the high-temperature reducibility is Is prevented. Therefore, it is preferable because the increase in the remaining FeO component that remains unreduced down to the lower part of the blast furnace is suppressed, and deterioration of the air permeability in the furnace at the lower part of the blast furnace is prevented. Therefore, the preferable range of the SiO 2 component content of the sintered ore is set to 3.8 to 4.6% by mass.

(E)焼結鉱のFeO成分含有率の好ましい範囲:5〜9質量%
焼結鉱のFeO成分含有率が5質量%以上では、前記図3に示されるように、焼結鉱製造過程で生成する焼結融液量が確保され、冷間強度指数(TI)が高く維持されやすい。また、還元粉化性が劣るヘマタイト系鉱物組織の増加を防止し、JIS M 8720に規定される焼結鉱の還元粉化指数(RDI)の上昇(すなわち、悪化)を防ぐことができる。したがって、高炉炉内への装入時および炉内での機械的応力、さらには高炉炉内における還元粉化に基づく焼結鉱の粒径低下を抑制し、高炉の炉内通気性の悪化を防ぐことができるので、好ましい。
(E) Preferred range of FeO component content of sintered ore: 5-9% by mass
When the FeO component content of the sintered ore is 5% by mass or more, as shown in FIG. 3, the amount of sintered melt produced in the process of producing the sintered ore is secured, and the cold strength index (TI) is high. Easy to maintain. Further, it is possible to prevent an increase in the hematite-based mineral structure having inferior reduced powdering property and to prevent an increase (that is, deterioration) of the reduced powdering index (RDI) of the sintered ore defined in JIS M 8720. Therefore, the mechanical stress in the blast furnace furnace and the mechanical stress in the furnace, as well as the reduction in the grain size of the sintered ore due to reduced powdering in the blast furnace furnace, are suppressed, and the air permeability of the blast furnace is reduced. Since it can prevent, it is preferable.

また、焼結鉱のFeO成分含有率が9質量%以下では、前記図2に示されるように、焼結鉱製造過程で過剰な焼結融液が生成しないことから、微細気孔が充分に形成されて高温被還元性が確保されるので、高炉下部の炉内通気性が改善され、好ましい。そこで、焼結鉱のFeO成分含有率の好ましい範囲を5〜9質量%とした。
(F)結晶水含有率4質量%以上の高結晶水鉱石の好ましい配合率:25〜80質量%
焼結鉱の製造過程において、結晶水が分解・気化した後には気孔などが形成されるため、気孔径が5μm未満の微細気孔の生成のためには、高結晶水鉱石中の結晶水の含有率は4%以上であることが好ましい。焼結原料全体に占める高結晶水鉱石の配合率が25質量%以上の場合には、焼結鉱に含まれる微細気孔量を充分に確保することができることから、高温被還元性が確保される。したがって、高炉炉下部まで未還元のまま残留するFeO成分の増加を防止することができ、高炉下部における炉内通気性を確保することができるので、好ましい。
また、焼結原料全体に占める高結晶水鉱石の配合率が80質量%以下であれば、焼結鉱に含まれる気孔量が過剰となることはなく、冷間強度指数(TI)を維持することができる。したがって、高炉炉内への装入時の衝撃および炉内における機械的応力により焼結鉱の粒径が低下して炉内通気性が悪化することを抑制することができるので、好ましい。
Further, when the FeO component content of the sintered ore is 9% by mass or less, as shown in FIG. 2, an excessive sintered melt is not generated in the manufacturing process of the sintered ore, so that fine pores are sufficiently formed. Since high temperature reducibility is ensured, the air permeability in the lower part of the blast furnace is improved, which is preferable. Therefore, the preferable range of the FeO component content of the sintered ore is set to 5 to 9% by mass.
(F) Preferred blending ratio of high crystal water ore having a crystal water content of 4% by mass or more: 25 to 80% by mass
In the manufacturing process of sintered ore, pores and the like are formed after the crystal water is decomposed and vaporized. Therefore, in order to produce fine pores with a pore diameter of less than 5 μm, the content of crystal water in the high crystal water ore is included. The rate is preferably 4% or more. When the blending ratio of the high crystal water ore in the entire sintered raw material is 25% by mass or more, the amount of fine pores contained in the sintered ore can be sufficiently ensured, so that high temperature reducibility is ensured. . Therefore, an increase in the FeO component remaining unreduced up to the lower part of the blast furnace can be prevented, and air permeability in the furnace at the lower part of the blast furnace can be secured, which is preferable.
Moreover, if the blending ratio of the high crystal water ore in the entire sintered raw material is 80% by mass or less, the amount of pores contained in the sintered ore will not be excessive, and the cold strength index (TI) is maintained. be able to. Therefore, it is preferable because it is possible to suppress the deterioration of the air permeability in the furnace due to the particle size of the sintered ore being reduced due to the impact at the time of charging into the blast furnace furnace and the mechanical stress in the furnace.

そこで、焼結原料に占める結晶水含有率4質量%以上の高結晶水鉱石の好ましい配合率を25〜80質量%とした。   Therefore, the preferable blending ratio of the high crystal water ore having a crystal water content of 4% by mass or more in the sintering raw material is set to 25 to 80% by mass.

本発明の高炉の操業方法の効果を確認するため、以下に述べるとおり、焼結機の試験操業を行って焼結鉱を製造し、これを炉内容積2150m3の高炉に装入して高炉の試験操業を行い、その結果を評価した。 In order to confirm the effect of the operation method of the blast furnace of the present invention, as described below, a sintered ore is produced by performing a test operation of a sintering machine, and this is charged into a blast furnace having a furnace internal volume of 2150 m 3. The test operation was conducted and the results were evaluated.

焼結鉱の製造条件および焼結鉱性状、ならびに高炉操業条件および操業結果をまとめて表1に示した。   The production conditions and sinter properties of the sinter, the blast furnace operation conditions and the operation results are summarized in Table 1.

Figure 2006028538
Figure 2006028538

同表において、焼結鉱比率とは、高炉炉頂から装入される酸化鉄装入物の装入質量に対して試験焼結鉱の装入質量が占める比率を示す。また、還元材比とは、出銑量1トン当たりのコークス装入量(kg)および微粉炭などの補助燃料の吹き込み量(kg)の総和をいう。   In the same table, the ratio of sintered ore indicates the ratio of the charged mass of the test sintered ore to the charged mass of the iron oxide charged charged from the top of the blast furnace. The reducing material ratio is the sum of the amount of coke charged (kg) per ton of tapping and the amount of auxiliary fuel blown in (kg) such as pulverized coal.

試験番号1〜8は、本発明で規定する範囲を満足する本発明例についての試験であり、試験番号9〜11は、本発明で規定する条件の少なくとも1つ以上を満足しない比較例についての試験である。   Test Nos. 1 to 8 are tests for examples of the present invention that satisfy the range specified by the present invention, and Test Nos. 9 to 11 are for comparative examples that do not satisfy at least one of the conditions specified by the present invention. It is a test.

試験番号9は、焼結鉱中のSiO2成分含有率を5.4質量%、Al23成分含有率を1.6質量%、MgO含有率を1.0質量%、(CaO/SiO2)比を1.9、およびFeO成分含有率を10.0質量%とし、焼結鉱比率を70質量%、微粉炭吹込量を138kg/p−t、還元材比を513kg/p−tとして、出銑比1.84p−t/d/m3にて操業した。このときの焼結鉱の気孔径分布は、気孔径が50μmを超える気孔割合が4体積%であり、気孔径が5μm未満の気孔割合が10体積%であった。 Test No. 9 has a SiO 2 component content of 5.4% by mass, an Al 2 O 3 component content of 1.6% by mass, a MgO content of 1.0% by mass, (CaO / SiO 2 ) The ratio is 1.9, the FeO component content is 10.0% by mass, the sintered ore ratio is 70% by mass, the amount of pulverized coal injection is 138 kg / pt, and the reducing material ratio is 513 kg / pt. As a result, the operation was carried out at an output ratio of 1.84 p-t / d / m 3 . As for the pore size distribution of the sintered ore at this time, the proportion of pores having a pore diameter exceeding 50 μm was 4% by volume, and the proportion of pores having a pore diameter of less than 5 μm was 10% by volume.

試験番号9の高炉操業において使用した焼結鉱は、本発明例と比較して気孔径が50μmを超える気孔割合が低く、さらにSiO2成分含有率およびFeO含有率が高い。このため、冷間強度指数(TI)は良好であるものの、熱間通気性指数(JPU)は9であって適正範囲を下回り、また、高温被還元性指数も管理下限値を下回った。この焼結鉱を使用した高炉操業では、焼結鉱比率を70質量%としたにも拘わらず、高炉炉下部まで未還元のまま降下し残留するFeO成分の量を低減することができず、高炉の炉内通気性は悪い状態で推移した。その結果、微粉炭吹込量の上昇を指向したにも拘わらず、138kg/p−tまでしか上昇させることができず、還元材比および出銑比ともに良好ではなかった。 The sintered ore used in the blast furnace operation of Test No. 9 has a lower pore ratio with a pore diameter exceeding 50 μm as compared with the examples of the present invention, and further has a high SiO 2 component content and FeO content. For this reason, although the cold strength index (TI) was good, the hot air permeability index (JPU) was 9, which was below the appropriate range, and the high temperature reducibility index was also below the control lower limit. In blast furnace operation using this sinter, despite the sinter ratio being 70% by mass, the amount of FeO component that remains unreduced down to the bottom of the blast furnace furnace cannot be reduced, The air permeability of the blast furnace remained in a poor state. As a result, although it was directed to increase the pulverized coal injection amount, it could be increased only to 138 kg / pt, and the reducing material ratio and the output ratio were not good.

試験番号10は、焼結鉱中のSiO2成分含有率を5.4質量%、Al23成分含有率を1.8質量%、MgO含有率を1.1質量%、(CaO/SiO2)比を2.0、およびFeO成分含有率を9.8質量%とし、焼結鉱比率を70質量%、微粉炭吹込量を136kg/p−t、還元材比を524kg/p−tとして、出銑比1.84p−t/d/m3にて操業した。このときの焼結鉱の気孔径分布は、気孔径が50μmを超える気孔割合が5体積%であり、気孔径が5μm未満の気孔割合が4体積%であった。 Test No. 10 has an SiO 2 component content of 5.4% by mass, an Al 2 O 3 component content of 1.8% by mass, an MgO content of 1.1% by mass, (CaO / SiO 2 ) The ratio is 2.0, the FeO component content is 9.8% by mass, the sintered ore ratio is 70% by mass, the pulverized coal injection amount is 136 kg / pt, and the reducing material ratio is 524 kg / pt. As a result, the operation was carried out at an output ratio of 1.84 p-t / d / m 3 . The pore size distribution of the sintered ore at this time was 5% by volume of pores having a pore size exceeding 50 μm, and 4% by volume of pores having a pore size of less than 5 μm.

試験番号10の高炉操業において使用した焼結鉱は、本発明例と比較して気孔径が5μm未満の気孔割合が低く、さらにSiO2成分含有率およびFeO含有率が高い。この焼結鉱を使用した高炉操業では、焼結鉱比率を70質量%としたにも拘わらず、高炉炉下部まで未還元のまま降下し残留するFeO成分の量を低減することができず、高炉の炉内通気性は悪い状態で推移した。その結果、微粉炭吹込量の上昇を指向したが、136kg/p−tまでしか上昇させることができず、還元材比および出銑比ともに良好ではなかった。 The sintered ore used in the blast furnace operation of test number 10 has a lower pore ratio with a pore diameter of less than 5 μm, and a higher SiO 2 component content and FeO content than the examples of the present invention. In blast furnace operation using this sinter, despite the sinter ratio being 70% by mass, the amount of FeO component that remains unreduced down to the bottom of the blast furnace furnace cannot be reduced, The air permeability of the blast furnace remained in a poor state. As a result, the increase in the amount of pulverized coal injection was directed, but it could only be increased up to 136 kg / pt, and both the reducing material ratio and the output ratio were not good.

試験番号11は、焼結鉱に含まれる気孔径が50μmを超える気孔割合を5体積%、気孔径が5μm未満の気孔割合を5体積%、SiO2成分含有率を3.8質量%、Al23成分含有率を1.8質量%、MgO成分含有率を1.2質量%、(CaO/SiO2)比を2.1、およびFeO成分含有率を9.0質量%とし、焼結鉱比率を66質量%とした高炉操業例である。熱間通気性指数(JPU)および冷間強度指数(TI)を焼結操業の適正操業範囲内に管理した上で、高温被還元指数が90質量%の高温被還元性の良好な焼結鉱を製造できた。この焼結鉱を高炉に装入したが、焼結鉱比率が66質量%と低かったため、焼結鉱以外の酸化鉄装入物に由来して高炉炉下部まで未還元のまま降下し残留するFeO成分の増加を抑制することができず、炉内通気性の悪い操業となった。その結果、微粉炭吹込量の上昇を指向したにもかかわらず、140kg/p−tまでしか上昇させることができず、還元材比および出銑比ともに良好ではなかった。 Test No. 11 includes 5% by volume of pores having a pore diameter of more than 50 μm, 5% by volume of pores having a pore diameter of less than 5 μm, 3.8% by mass of SiO 2 component, The 2 O 3 component content is 1.8% by mass, the MgO component content is 1.2% by mass, the (CaO / SiO 2 ) ratio is 2.1, and the FeO component content is 9.0% by mass. This is an example of blast furnace operation with a mining ratio of 66% by mass. Sintered ore with good high temperature reducibility, with a high temperature reducibility index of 90% by mass, after controlling the hot air permeability index (JPU) and the cold strength index (TI) within the proper operation range of the sintering operation Could be manufactured. Although this sinter was charged into the blast furnace, the ratio of the sinter was as low as 66% by mass. Therefore, the sinter was derived from the iron oxide charge other than the sinter and descended to the lower part of the blast furnace without reduction. The increase in the FeO component could not be suppressed, and the operation was poor in furnace air permeability. As a result, although it was directed to increase the pulverized coal injection amount, it could only be increased up to 140 kg / pt, and the reducing material ratio and the output ratio were not good.

試験番号1は、焼結鉱に含まれる気孔径が50μmを超える気孔割合を5体積%、気孔径が5μm未満の気孔割合を10体積%、SiO2成分含有率を4.2質量%、Al23成分含有率を1.8質量%、MgO成分含有率を1.2質量%、(CaO/SiO2)比を2.0、およびFeO成分含有率を8.6質量%とし、焼結鉱比率を70質量%として高炉操業を行った例である。焼結鉱の熱間通気性指数(JPU)を焼結操業の適正操業範囲に管理し、冷間強度指数(TI)を高炉操業から定められる下限値以上に管理した上で、高温被還元指数を90質量%とすることができた。この焼結鉱を装入した高炉の炉内通気性は良好に推移し、微粉炭吹込量は156kg/p−tまで増加させることが可能となった結果、還元材比は500kg/p−t未満にまで低減することができた。 Test No. 1 is 5% by volume of pores having a pore diameter exceeding 50 μm, 10% by volume of pores having a pore diameter of less than 5 μm, 4.2% by mass of SiO 2 component, Al The 2 O 3 component content is 1.8% by mass, the MgO component content is 1.2% by mass, the (CaO / SiO 2 ) ratio is 2.0, and the FeO component content is 8.6% by mass. This is an example in which the blast furnace operation was performed with the ore ratio as 70% by mass. The hot breathability index (JPU) of the sinter is controlled within the proper operating range of the sintering operation, and the cold strength index (TI) is controlled above the lower limit determined from the blast furnace operation. Was 90 mass%. The furnace air permeability of the blast furnace charged with this sintered ore remained good, and the amount of pulverized coal injection could be increased to 156 kg / pt, resulting in a reducing material ratio of 500 kg / pt. It was possible to reduce to less than.

試験番号2は、焼結鉱に含まれる気孔径が50μmを超える気孔割合を10体積%、気孔径が5μm未満の気孔割合を10体積%、SiO2成分含有率を4.2質量%、Al23成分含有率を1.8質量%、MgO成分含有率を1.2質量%、(CaO/SiO2)比を2.0、およびFeO成分含有率を5.4質量%とし、焼結鉱比率を70質量%として高炉操業を行った例である。熱間通気性指数(JPU)および冷間強度指数(TI)を適正操業範囲内に管理できた上で、高温被還元指数を92質量%とすることができた。この焼結鉱を高炉に装入したところ、高炉の炉内通気性は良好に推移し、微粉炭吹込量も154kg/p−tの高い水準にすることが可能となった。その結果、高炉操業における還元材比を500kg/p−t未満にまで低減することができた。 Test No. 2 has 10% by volume of pores having a pore diameter of more than 50 μm, 10% by volume of pores having a pore diameter of less than 5 μm, 4.2% by mass of SiO 2 component, Al The 2 O 3 component content is 1.8% by mass, the MgO component content is 1.2% by mass, the (CaO / SiO 2 ) ratio is 2.0, and the FeO component content is 5.4% by mass. This is an example in which the blast furnace operation was performed with the ore ratio set to 70% by mass. While the hot air permeability index (JPU) and the cold strength index (TI) could be managed within the proper operating range, the high temperature reducible index could be 92% by mass. When this sinter was charged into a blast furnace, the air permeability of the blast furnace was excellent, and the amount of pulverized coal injection could be increased to a high level of 154 kg / pt. As a result, the reducing material ratio in blast furnace operation could be reduced to less than 500 kg / pt.

試験番号3は、焼結鉱に含まれる気孔径が50μmを超える気孔割合を7.5体積%、気孔径が5μm未満の気孔割合を5体積%、SiO2成分含有率を4.2質量%、Al23成分含有率を1.8質量%、MgO成分含有率を1.2質量%、(CaO/SiO2)比を2.0、およびFeO成分含有率を7.3質量%とし、焼結鉱比率を80質量%として高炉操業を行った例である。熱間通気性指数(JPU)および冷間強度指数(TI)を適正操業範囲内に管理できた上で、高温被還元指数を88質量%とすることができた。この焼結鉱を高炉に装入したところ、高炉の炉内通気性は良好に推移し、微粉炭吹込量も155kg/p−tの高い水準にすることが可能となった。その結果、高炉操業における還元材比を500kg/p−t未満にまで低減することができた。 Test No. 3 has a porosity of 7.5% by volume with a pore diameter exceeding 50 μm, 5% by volume with a pore diameter of less than 5 μm, and 4.2% by mass of SiO 2 component. The Al 2 O 3 component content is 1.8% by mass, the MgO component content is 1.2% by mass, the (CaO / SiO 2 ) ratio is 2.0, and the FeO component content is 7.3% by mass. This is an example in which blast furnace operation was performed with a sintered ore ratio of 80% by mass. While the hot air permeability index (JPU) and the cold strength index (TI) could be managed within the proper operation range, the high temperature reducible index could be 88% by mass. When this sinter was charged into a blast furnace, the air permeability of the blast furnace was good, and the amount of pulverized coal injection could be increased to a high level of 155 kg / pt. As a result, the reducing material ratio in blast furnace operation could be reduced to less than 500 kg / pt.

試験番号4は、焼結鉱に含まれる気孔径が50μmを超える気孔割合を7.5体積%、気孔径が5μm未満の気孔割合を15体積%、SiO2成分含有率を4.2質量%、Al23成分含有率を1.8質量%、MgO成分含有率を1.2質量%、(CaO/SiO2)比を2.0、およびFeO成分含有率を6.8質量%とし、焼結鉱比率を80質量%として高炉操業を行った例である。熱間通気性指数(JPU)および冷間強度指数(TI)を適正操業範囲内に管理できた上で、高温被還元指数を92質量%とすることができた。この焼結鉱を高炉に装入したところ、高炉の炉内通気性は良好に推移し、微粉炭吹込量も162kg/p−tの高い水準にすることが可能となった。その結果、高炉操業における還元材比を500kg/p−t未満にまで低減することができた。 Test No. 4 has a porosity of 7.5% by volume with a pore diameter exceeding 50 μm, 15% by volume with a pore diameter of less than 5 μm, and a SiO 2 component content of 4.2% by mass. The Al 2 O 3 component content is 1.8% by mass, the MgO component content is 1.2% by mass, the (CaO / SiO 2 ) ratio is 2.0, and the FeO component content is 6.8% by mass. This is an example in which blast furnace operation was performed with a sintered ore ratio of 80% by mass. While the hot air permeability index (JPU) and the cold strength index (TI) could be managed within the proper operating range, the high temperature reducible index could be 92% by mass. When this sinter was charged into a blast furnace, the air permeability of the blast furnace was good, and the amount of pulverized coal injection could be increased to a high level of 162 kg / pt. As a result, the reducing material ratio in blast furnace operation could be reduced to less than 500 kg / pt.

試験番号5は、焼結鉱に含まれる気孔径が50μmを超える気孔割合を7.5体積%、気孔径が5μm未満の気孔割合を12体積%、SiO2成分含有率を3.6質量%、Al23成分含有率を1.6質量%、MgO成分含有率を1.2質量%、(CaO/SiO2)比を2.1、およびFeO成分含有率を8.9質量%とし、焼結鉱比率を70質量%として高炉操業を行った例である。熱間通気性指数(JPU)および冷間強度指数(TI)を適正操業範囲内に管理できた上で、高温被還元指数を94質量%とすることができた。この焼結鉱を高炉に装入したところ、高炉の炉内通気性は良好に推移し、微粉炭吹込量も152kg/p−tの高い水準にすることが可能となった。その結果、高炉操業における還元材比は500kg/p−t程度の低い水準を確保することができた。 Test No. 5 is 7.5% by volume of pores having a pore diameter exceeding 50 μm, 12% by volume of pores having a pore diameter of less than 5 μm, and 3.6% by mass of SiO 2 component. , Al 2 O 3 component content of 1.6 wt%, the MgO component content of 1.2 mass%, the (CaO / SiO 2) ratio of 2.1, and a FeO component content and 8.9 wt% This is an example in which blast furnace operation was performed with a sintered ore ratio of 70 mass%. While the hot air permeability index (JPU) and the cold strength index (TI) could be managed within the proper operating range, the high temperature reducible index could be 94% by mass. When this sinter was charged into the blast furnace, the in-furnace air permeability of the blast furnace was excellent, and the amount of pulverized coal injection could be increased to a high level of 152 kg / pt. As a result, the reducing material ratio in blast furnace operation was able to secure a low level of about 500 kg / pt.

試験番号6は、焼結鉱に含まれる気孔径が50μmを超える気孔割合を7.5体積%、気孔径が5μm未満の気孔割合を12体積%、SiO2成分含有率を4.8質量%、Al23成分含有率を1.7質量%、MgO成分含有率を1.4質量%、(CaO/SiO2)比を2.0、およびFeO成分含有率を7.8質量%とし、焼結鉱比率を70質量%として高炉操業を行った例である。熱間通気性指数(JPU)および冷間強度指数(TI)を適正操業範囲内に管理できた上で、高温被還元指数を86質量%とすることができた。この焼結鉱を高炉に装入したところ、高炉の炉内通気性は良好に推移し、微粉炭吹込量も151kg/p−tの高い水準にすることが可能となった。その結果、高炉操業における還元材比は500kg/p−t程度の低い水準を確保することができた。 Test No. 6 has a porosity of 7.5% by volume with a pore diameter exceeding 50 μm, 12% by volume with a pore diameter of less than 5 μm, and a SiO 2 component content of 4.8% by mass. The Al 2 O 3 component content is 1.7% by mass, the MgO component content is 1.4% by mass, the (CaO / SiO 2 ) ratio is 2.0, and the FeO component content is 7.8% by mass. This is an example in which blast furnace operation was performed with a sintered ore ratio of 70 mass%. While the hot air permeability index (JPU) and the cold strength index (TI) could be managed within the proper operating range, the high temperature reducible index could be 86% by mass. When this sinter was charged into a blast furnace, the air permeability of the blast furnace was excellent, and the amount of pulverized coal injection could be increased to a high level of 151 kg / pt. As a result, the reducing material ratio in blast furnace operation was able to secure a low level of about 500 kg / pt.

試験番号7は、焼結鉱に含まれる気孔径が50μmを超える気孔割合を7.5体積%、気孔径が5μm未満の気孔割合を10体積%、SiO2成分含有率を4.2質量%、Al23成分含有率を1.9質量%、MgO成分含有率を0.9質量%、(CaO/SiO2)比を2.0、およびFeO成分含有率を10.0質量%とし、焼結鉱比率を70質量%として高炉操業を行った例である。熱間通気性指数(JPU)および冷間強度指数(TI)を適正操業範囲内に管理できた上で、高温被還元指数を89質量%とすることができた。この焼結鉱を高炉に装入したところ、高炉の炉内通気性は良好に推移し、微粉炭吹込量も153kg/p−tの高い水準にすることが可能となった。その結果、高炉操業における還元材比は500kg/p−t程度の低い水準を確保することができた。 Test No. 7 has a porosity of 7.5% by volume with a pore diameter exceeding 50 μm, 10% by volume with a pore diameter of less than 5 μm, and 4.2% by mass of SiO 2 component. The Al 2 O 3 component content is 1.9% by mass, the MgO component content is 0.9% by mass, the (CaO / SiO 2 ) ratio is 2.0, and the FeO component content is 10.0% by mass. This is an example in which blast furnace operation was performed with a sintered ore ratio of 70 mass%. While the hot air permeability index (JPU) and the cold strength index (TI) could be managed within the proper operating range, the high temperature reducible index could be 89% by mass. When this sinter was charged into a blast furnace, the air permeability of the blast furnace was excellent, and the amount of pulverized coal injection could be increased to a high level of 153 kg / pt. As a result, the reducing material ratio in blast furnace operation was able to secure a low level of about 500 kg / pt.

試験番号8は、焼結鉱に含まれる気孔径が50μmを超える気孔割合を7.5体積%、気孔径が5μm未満の気孔割合を10体積%、SiO2成分含有率を4.2質量%、Al23成分含有率を1.6質量%、MgO成分含有率を1.2質量%、(CaO/SiO2)比を2.0、およびFeO成分含有率を7.7質量%とし、焼結鉱比率を70質量%として高炉操業を行った例である。熱間通気性指数(JPU)および冷間強度指数(TI)を適正操業範囲内に管理できた上で、高温被還元指数を86質量%とすることができた。この焼結鉱を高炉に装入したところ、高炉の炉内通気性は良好に推移し、微粉炭吹込量も152kg/p−tの高い水準にすることが可能となった。その結果、高炉操業における還元材比は500kg/p−t程度の低い水準を確保することができた。 Test No. 8 has a porosity of 7.5% by volume with a pore diameter exceeding 50 μm, 10% by volume with a pore diameter of less than 5 μm, and 4.2% by mass of SiO 2 component. , Al 2 O 3 component content of 1.6 wt%, the MgO component content of 1.2 mass%, the (CaO / SiO 2) ratio of 2.0, and a FeO component content and 7.7 wt% This is an example in which blast furnace operation was performed with a sintered ore ratio of 70 mass%. While the hot air permeability index (JPU) and the cold strength index (TI) could be managed within the proper operating range, the high temperature reducible index could be 86% by mass. When this sinter was charged into the blast furnace, the in-furnace air permeability of the blast furnace was excellent, and the amount of pulverized coal injection could be increased to a high level of 152 kg / pt. As a result, the reducing material ratio in blast furnace operation was able to secure a low level of about 500 kg / pt.

以上の結果から、微粉炭吹込量が150kg/p−t以上の多量吹込操業にあっては、装入される酸化鉄装入物の70質量%以上に、気孔径が50μmを超える気孔割合を5〜10体積%含み、かつ、気孔径が5μm未満の気孔割合を5〜15体積%含む高温被還元性に優れた焼結鉱を用いることにより、高出銑比かつ低還元材比の高炉操業が可能となることが判明した。また、その際の焼結鉱成分組成は、焼結鉱中FeO成分含有率を5〜9質量%の範囲にするとともに、SiO2成分含有率を3.8〜4.6質量%の範囲とすることが好ましい。 From the above results, in a large quantity injection operation where the amount of pulverized coal injection is 150 kg / pt or more, the ratio of pores with a pore diameter exceeding 50 μm is added to 70% by mass or more of the iron oxide charge to be charged. By using a sintered ore containing 5 to 10% by volume and having a pore ratio of 5 to 15% by volume with a pore diameter of less than 5 μm, a blast furnace having a high iron ratio and a low reducing material ratio is used. It has been found that operation is possible. Also, sintered ore composition of that time, with the range of FeO component content in sintered ore of 5-9 wt%, and the range of the SiO 2 component content of 3.8 to 4.6 mass% It is preferable to do.

本発明の方法によれば、高炉の炉頂から装入される酸化鉄装入物の70質量%以上に気孔径の分布を調整した高温被還元性に優れた焼結鉱を使用することにより、微粉炭吹込量の増加にともなう高炉内通気性の悪化を防止することができるので、高炉の安定操業を維持しつつ150kg/p−t以上の多量の微粉炭吹込が可能となり、高出銑比および低還元材比の微粉炭多量吹込操業を達成できる。したがって、本発明の高炉操業方法は、コークス炉の負荷を低減しつつ、生産性および銑鉄コストの低減をめざす高炉の微粉炭多量吹込操業技術の分野において広範に適用できる。   According to the method of the present invention, by using a sintered ore excellent in high temperature reducibility in which the pore size distribution is adjusted to 70% by mass or more of the iron oxide charge charged from the top of the blast furnace. Since the deterioration of air permeability in the blast furnace due to the increase in the amount of pulverized coal injection can be prevented, a large amount of pulverized coal injection of 150 kg / pt or more can be achieved while maintaining stable operation of the blast furnace. A large amount of pulverized coal can be achieved. Therefore, the blast furnace operation method of the present invention can be widely applied in the field of blast furnace high-injection pulverized coal aiming to reduce productivity and pig iron cost while reducing the load on the coke oven.

炉頂から装入される酸化鉄装入物に占める高温被還元性に優れた焼結鉱の装入割合と、微粉炭吹込量および高炉炉下部の通気抵抗との関係を示した図である。It is the figure which showed the relationship between the charging ratio of the sintered ore excellent in the high temperature reducibility in the iron oxide charge with which it charges from a furnace top, the amount of pulverized coal injection, and the ventilation resistance of the lower part of a blast furnace . 焼結鉱に含まれる気孔径が50μmを超える気孔割合と熱間通気性指数(JPU)との関係を、焼結鉱の種々のFeO成分含有率について示した図である。It is the figure which showed the relationship between the porosity which the pore diameter contained in a sintered ore exceeds 50 micrometers, and a hot air permeability index (JPU) about the various FeO component content rate of a sintered ore. 焼結鉱に含まれる気孔径が50μmを超える気孔割合と冷間強度指数(TI)との関係を、焼結鉱の種々のFeO成分含有率について示した図である。It is the figure which showed the relationship between the pore ratio in which the pore diameter contained in a sintered ore exceeds 50 micrometers, and a cold strength index | exponent (TI) about the various FeO component content rate of a sintered ore. 焼結鉱に含まれる気孔径が5μm未満の気孔割合と高温被還元性指数との関係を、焼結鉱の種々のSiO2成分含有率について示した図である。The relationship between the pore diameter contained in sintered ore is the pore rate and the high-temperature reducibility index of less than 5 [mu] m, is a diagram showing the various SiO 2 component content of sinter. 焼結鉱に含まれる気孔径が5μm未満の気孔割合と冷間強度指数(TI)との関係を、焼結鉱の種々のSiO2成分含有率について示した図である。The relationship between the porosity ratio and the cold strength index of less than the pore diameter contained in sintered ore is 5 [mu] m (TI), a diagram showing the various SiO 2 component content of sinter.

Claims (3)

出銑量1トン当たり150kg以上の微粉炭を熱風とともに羽口から炉内に吹き込む高炉操業方法であって、炉頂から装入される酸化鉄装入物の70質量%以上に、気孔径が50μmを超える気孔割合が5〜10体積%であり、かつ気孔径が5μm未満の気孔割合が5〜15体積%である焼結鉱を用いることを特徴とする高炉の操業方法。   A blast furnace operating method in which pulverized coal of 150 kg or more per ton of tuna is blown into the furnace together with hot air from the tuyere, and the pore diameter is over 70% by mass of the iron oxide charge charged from the top of the furnace. A method for operating a blast furnace, comprising using a sintered ore having a pore ratio of more than 50 μm and a pore ratio of 5 to 15% by volume with a pore diameter of less than 5 μm. 前記焼結鉱として、SiO2成分の含有率が3.8〜4.6質量%であり、かつFeO成分の含有率が5〜9質量%である焼結鉱を用いることを特徴とする請求項1に記載の高炉の操業方法。 A sintered ore having a SiO 2 component content of 3.8 to 4.6% by mass and a FeO component content of 5 to 9% by mass is used as the sintered ore. Item 2. A method for operating a blast furnace according to Item 1. 前記焼結鉱として、結晶水含有率が4質量%以上の高結晶水鉱石を25〜80質量%配合した焼結原料を用いて焼成された焼結鉱を用いることを特徴とする請求項1または2に記載の高炉の操業方法。
2. The sintered ore used as the sintered ore is a sintered ore fired using a sintering raw material containing 25 to 80% by mass of high crystal water ore having a crystal water content of 4% by mass or more. Or the operating method of the blast furnace of 2 or 2.
JP2004204943A 2004-07-12 2004-07-12 Method for operating blast furnace using sintered ore excellent in high temperature reducibility Pending JP2006028538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204943A JP2006028538A (en) 2004-07-12 2004-07-12 Method for operating blast furnace using sintered ore excellent in high temperature reducibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204943A JP2006028538A (en) 2004-07-12 2004-07-12 Method for operating blast furnace using sintered ore excellent in high temperature reducibility

Publications (1)

Publication Number Publication Date
JP2006028538A true JP2006028538A (en) 2006-02-02

Family

ID=35895248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204943A Pending JP2006028538A (en) 2004-07-12 2004-07-12 Method for operating blast furnace using sintered ore excellent in high temperature reducibility

Country Status (1)

Country Link
JP (1) JP2006028538A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007171A (en) * 2008-06-30 2010-01-14 Jfe Steel Corp Method for producing molten iron using vertical-type melting furnace
JP2011038735A (en) * 2009-08-17 2011-02-24 Jfe Steel Corp Sintering machine
US20150176096A1 (en) * 2012-08-13 2015-06-25 Mitsubishi Heavy Industries, Ltd. Method for producing pig iron, and blast furnace to be used therefor
CN109913598A (en) * 2019-03-15 2019-06-21 河北津西钢铁集团股份有限公司 Blast furnace adds processing method, processing unit and the processing terminal of net coke
JP2020012141A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Sintered ore

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007171A (en) * 2008-06-30 2010-01-14 Jfe Steel Corp Method for producing molten iron using vertical-type melting furnace
JP2011038735A (en) * 2009-08-17 2011-02-24 Jfe Steel Corp Sintering machine
US20150176096A1 (en) * 2012-08-13 2015-06-25 Mitsubishi Heavy Industries, Ltd. Method for producing pig iron, and blast furnace to be used therefor
JP2020012141A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Sintered ore
JP7035869B2 (en) 2018-07-17 2022-03-15 日本製鉄株式会社 Sintered ore
CN109913598A (en) * 2019-03-15 2019-06-21 河北津西钢铁集团股份有限公司 Blast furnace adds processing method, processing unit and the processing terminal of net coke

Similar Documents

Publication Publication Date Title
RU2447164C2 (en) Method of producing pellets from recovered iron and method of producing cast iron
US8945274B2 (en) Method for operating blast furnace
JP4808819B2 (en) Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same
JP2009102746A (en) Method for producing pig iron
EP2202324A1 (en) Vertical furnace and method of operating the same
KR20120031080A (en) Carbon composite briquette for producing reduced iron and method for producing reduced iron employing the same
WO1996015277A1 (en) Method of operating blast furnace
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JPH0913107A (en) Operation of blast furnace
JP5012138B2 (en) Blast furnace operation method
JP4078285B2 (en) Blast furnace operation method
JP2020164886A (en) Operating method of blast furnace
JP2016130341A (en) Method of producing sintered ore raw material using magnetite ore
JP3863104B2 (en) Blast furnace operation method
JP3815234B2 (en) Operation method for mass injection of pulverized coal into blast furnace
JP5400600B2 (en) Blast furnace operation method
JP6123723B2 (en) Blast furnace operation method
EP4289977A1 (en) Pig iron production method
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JPH11286705A (en) Operation of blast furnace
JP4155225B2 (en) Blast furnace operation method
JP5626072B2 (en) Operation method of vertical melting furnace
JP2000290709A (en) Method for charging raw material into blast furnace
JP2022147836A (en) Blending design method for iron-containing raw material and operation method for blast furnace