JP5012138B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP5012138B2
JP5012138B2 JP2007085118A JP2007085118A JP5012138B2 JP 5012138 B2 JP5012138 B2 JP 5012138B2 JP 2007085118 A JP2007085118 A JP 2007085118A JP 2007085118 A JP2007085118 A JP 2007085118A JP 5012138 B2 JP5012138 B2 JP 5012138B2
Authority
JP
Japan
Prior art keywords
furnace
ore
blast furnace
amount
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007085118A
Other languages
Japanese (ja)
Other versions
JP2008240109A (en
Inventor
厚彦 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007085118A priority Critical patent/JP5012138B2/en
Publication of JP2008240109A publication Critical patent/JP2008240109A/en
Application granted granted Critical
Publication of JP5012138B2 publication Critical patent/JP5012138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炉における微粉炭多量吹込み操業時の炉内通気性および溶銑成分の改善に関し、具体的には高炉通気抵抗の上昇を抑制し、炉頂ガス温度を低下させて、炉頂設備の熱負荷を低減するとともに、溶銑中Si含有率およびS含有率の低減を実現する高炉操業方法に関する。   The present invention relates to improvement of furnace air permeability and hot metal components during blast furnace mass injection operation, and specifically suppresses an increase in blast furnace ventilation resistance, lowers the furnace gas temperature, The present invention relates to a blast furnace operation method that reduces the heat load of the hot metal and realizes reduction of the Si content and the S content in the hot metal.

従来、高炉用装入物としては、鉄源である鉱石類装入物および還元材であるコークスが、それぞれ炉頂部から炉内に装入されている。鉱石類装入物は、概ね焼結鉱、塊鉱石およびペレットに大別される。塊鉱石は、高炉に直接装入可能な粒径を有しており、焼結鉱およびペレットは、粉鉱石を造粒、焼成により塊成化して高炉へ装入可能な粒径に加工処理するものであり、総称して塊成鉱とも称される。これらの鉱石類装入物は、各高炉の操業条件に応じて選択されるが、一般的に、焼結鉱は、求められる性状を満たすように原料鉱石の配合や副原料の調整などの処理が施され、品質を比較的一定に保つことができることなどから、主要な鉄源装入物として使用されている。   Conventionally, as the blast furnace charge, an ore charge as an iron source and coke as a reducing material are charged into the furnace from the top of the furnace, respectively. Ore charges are roughly classified into sintered ores, massive ores and pellets. The lump ore has a particle size that can be charged directly into the blast furnace, and the sintered ore and agglomerate the powdered ore by agglomeration and calcination to process it into a particle size that can be charged into the blast furnace. It is generally called agglomerate. These ore charges are selected according to the operating conditions of each blast furnace, but in general, sintered ore is processed such as blending raw ores and adjusting secondary raw materials so as to satisfy the required properties. Is used as the main iron source charge because the quality can be kept relatively constant.

一方、還元材については、除々にコークスに代えて、石炭を粉砕し低コストである微粉炭が、高炉下部の羽口部から吹き込まれて使用されるようになり、近年では、微粉炭使用量の大幅な増加にともなって、コークス使用量は順次減少している。このような微粉炭吹込み操業においては、一部のコークスに代えて高炉羽口部より吹き込まれた微粉炭が高炉内で燃焼し、高い発熱量が得られるため、多量の高温還元ガスを生成して高炉の炉熱を高めることができ、鉱石類装入物の効率的な還元反応を進めることができる。   On the other hand, for reducing materials, instead of coke, pulverized coal, which is pulverized by low-cost coal, is blown from the tuyeres at the bottom of the blast furnace and used in recent years. As the number of coke increased significantly, the amount of coke used decreased gradually. In such pulverized coal injection operation, pulverized coal injected from the blast furnace tuyere instead of some coke burns in the blast furnace, and a high calorific value is obtained, so a large amount of high temperature reducing gas is generated. Thus, the furnace heat of the blast furnace can be increased, and an efficient reduction reaction of the ore charges can be advanced.

また、上記の微粉炭吹込み操業において、多量の微粉炭を吹き込んだ場合には、高炉の塊状帯における加熱還元効率の指標である熱流比(ガスの熱容量に対する固体の熱容量の比)が低下し、加熱還元余裕が生じるため、炉内において融着帯(鉱石類装入物が軟化溶融し始めてから滴下完了するまでの領域)の高さ位置が上昇する。融着帯の高さ位置が上昇すると、高炉上部から排出される炉頂ガス温度は上昇するため、炉頂設備への熱負荷の増大により、設備が破損するおそれがある。   In addition, when a large amount of pulverized coal is injected in the above pulverized coal injection operation, the heat flow ratio (ratio of the heat capacity of the solid to the heat capacity of the gas), which is an index of the heat reduction efficiency in the blast furnace block, decreases. Since the heating reduction margin is generated, the height position of the cohesive zone (the region from the start of softening and melting of the ore charge until the completion of dripping) increases in the furnace. When the height position of the cohesive zone rises, the furnace top gas temperature discharged from the upper part of the blast furnace rises, and there is a risk that the equipment may be damaged due to an increase in the heat load on the furnace top equipment.

また、微粉炭使用量の増加にともない溶銑中Si含有率は上昇する。この理由は、下記の(1)式および(2)式により表される溶銑中へのSiの移行反応が生じるからである。すなわち、羽口先レースウェイにおいて、(1)式により表されるとおり、微粉炭中のSiO2が赤熱したコークス(C)によって還元されてSiOガスが発生し、このSiOガスと滴下溶銑とが接触して、溶銑中のCとの間で(2)式で示される反応を起こし、SiOが還元されて、Siとして溶銑中に移行する。融着帯の高さ位置が上昇すると、滴下距離が長くなり、液体溶銑粒子とSiOガスとの接触頻度が増加するので、(2)式の発生頻度が増加し、溶銑中Si含有率は上昇傾向となるからである。 Moreover, the Si content in hot metal increases with an increase in the amount of pulverized coal used. The reason for this is that a transfer reaction of Si into the hot metal represented by the following formulas (1) and (2) occurs. That is, at the tuyere tip raceway, as expressed by the equation (1), SiO 2 in the pulverized coal is reduced by the red hot coke (C) to generate SiO gas, and the SiO gas and the molten iron are in contact with each other. Then, the reaction represented by the formula (2) is caused with C in the hot metal, and SiO is reduced and transferred to the hot metal as Si. When the height position of the cohesive zone rises, the dripping distance becomes longer and the contact frequency between the liquid hot metal particles and the SiO gas increases, so the frequency of occurrence of equation (2) increases and the Si content in the hot metal increases. Because it becomes a tendency.

SiO2+C=SiO(g)+CO(g) ・・・(1)
SiO(g)+C=Si+CO(g) ・・・(2)
溶銑中Si含有率の上昇は、高炉内でSiO2を還元するために多量の熱量が消費されていることを示し、還元材比(溶銑1トン(t)当たりの還元材の使用量(kg))の上昇、つまり操業コストの悪化を招く。また、溶銑中Si含有率の上昇は、溶銑予備処理工程において脱珪剤および脱燐剤の使用量の増加をきたし、溶銑処理コストの増加を招くことから、溶銑中Si含有率は低い方が好ましい。上記の理由から、微粉炭多量吹込み操業では、炉頂設備保護のために炉頂ガス温度の上昇を防止するとともに、溶銑中Si含有率を低下させることが重要な課題である。
SiO 2 + C = SiO (g) + CO (g) (1)
SiO (g) + C = Si + CO (g) (2)
The increase in the Si content in the hot metal indicates that a large amount of heat is consumed to reduce SiO 2 in the blast furnace, and the reducing material ratio (the amount of reducing material used per ton (t) of hot metal (kg )) Rises, that is, the operating cost deteriorates. In addition, the increase in the Si content in the hot metal leads to an increase in the amount of the desiliconizing agent and the dephosphorizing agent used in the hot metal pretreatment process, leading to an increase in the hot metal treatment cost. preferable. For the above reasons, in the operation of blowing a large amount of pulverized coal, it is important to prevent the rise of the furnace top gas temperature and to reduce the Si content in the hot metal in order to protect the furnace top equipment.

従来、前記の問題に対処した技術として、炉頂温度の上昇を抑制する観点からは、特許文献1および特許文献2に記載の方法が公知であり、また、溶銑中Si含有率の低減の観点からは、特許文献3、特許文献4および特許文献5に記載の方法が公知である。   Conventionally, as a technique for dealing with the above problems, from the viewpoint of suppressing an increase in the furnace top temperature, the methods described in Patent Document 1 and Patent Document 2 are known, and the viewpoint of reducing the Si content in hot metal Are known from the methods described in Patent Document 3, Patent Document 4 and Patent Document 5.

特許文献1には、微粉炭多量吹込み操業時において高結晶水鉱石を装入することにより、結晶水の分解反応を利用して炉頂温度を低下させる方法が開示されている。しかし、一般に高結晶水鉱石は、結晶水が分解して多くの気孔を発生するため、高温強度が弱く、高炉内において多量の粉を発生し、炉内通気性を悪化させる。また、近年、鉄鉱石の品質が劣化して鉱石中のSiO2含有率が高くなっている。そのような状況下においてSiO2含有率の高い高結晶水鉄鉱石の装入量を増加すると、炉内スラグ量が増加して高炉の通気性を悪化させるだけでなく、スラグの生成熱および顕熱による必要熱量の上昇により、還元材比が増大し、操業コストの上昇を招く。 Patent Document 1 discloses a method of lowering the furnace top temperature by utilizing a decomposition reaction of crystal water by charging a high crystal water ore during a large amount of pulverized coal injection operation. However, in general, the high crystal water ore generates many pores when the crystal water is decomposed, so that the high temperature strength is weak, a large amount of powder is generated in the blast furnace, and the air permeability in the furnace is deteriorated. In recent years, the quality of iron ore has deteriorated and the SiO 2 content in the ore has increased. Under such circumstances, increasing the charging amount of the high crystalline hydrous ore having a high SiO 2 content not only increases the amount of slag in the furnace and deteriorates the air permeability of the blast furnace, but also increases the heat of slag formation and Due to the increase in the amount of heat required due to heat, the reducing material ratio increases, leading to an increase in operating costs.

特許文献2には、高炉炉頂ガス温度を指標としてドロマイトなどの副原料の装入量を制御し、スラグ塩基度、MgO濃度をおよび溶銑中のS含有率を制御する方法が開示されている。この方法には、ドロマイトなどの副原料を装入することによりスラグ塩基度が変動するという問題がある。なお、スラグ塩基度とはスラグ成分中のCaO質量%SiO2質量%で除した数値であり、高炉スラグの融点、粘性、脱硫能力などに影響する。 Patent Document 2 discloses a method of controlling the amount of auxiliary raw materials such as dolomite by using the blast furnace top gas temperature as an index, and controlling the slag basicity, the MgO concentration, and the S content in the hot metal. . This method has a problem that the slag basicity is changed by charging an auxiliary material such as dolomite. The slag basicity is a numerical value divided by CaO mass% SiO 2 mass% in the slag component, and affects the melting point, viscosity, desulfurization ability, etc. of the blast furnace slag.

そのためスラグ塩基度は、高炉操業の安定性や溶銑処理コストも含めた総合的視点から設計されている。塩基度が変動すると高炉内において装入物の溶融開始温度が変化するため、炉内において最も大きな圧力損失を生じる融着帯の厚さが増加し、炉況が不安定となる。また、溶銑成分が変動することにより、溶銑予備処理工程において処理コストの増加をもたらす場合もある。   Therefore, slag basicity is designed from a comprehensive viewpoint including the stability of blast furnace operation and the cost of hot metal treatment. When the basicity fluctuates, the melting start temperature of the charged material changes in the blast furnace, so that the thickness of the fusion zone that causes the largest pressure loss in the furnace increases, and the furnace condition becomes unstable. In addition, the hot metal component may fluctuate, resulting in an increase in processing cost in the hot metal pretreatment process.

したがって、スラグ塩基度は、各高炉操業において設計値を維持し極力変動させないことが好ましい。ドロマイトなどを装入する際に塩基度を一定に維持しようとすると、ドロマイトの装入に合わせて蛇紋岩や珪石などのSiO2源副原料を装入する必要があるため、高炉内におけるスラグ量が増加し、高炉の通気性が悪化する。また、高炉塩基度を焼結鉱の塩基度調整により実施する場合には、焼結鉱中のCaO含有率を低減する必要があるため、焼結鉱の歩留りが悪化し、焼結鉱の生産性の低下や焼結鉱品質の悪化などが起こり焼結操業のコストが上昇する。 Therefore, it is preferable that the slag basicity keeps the design value in each blast furnace operation and does not vary as much as possible. If the basicity is to be kept constant when charging dolomite, etc., the amount of slag in the blast furnace is required because SiO 2 source auxiliary materials such as serpentine and quartzite must be charged in accordance with the dolomite charging. Increases and the air permeability of the blast furnace deteriorates. In addition, when the blast furnace basicity is adjusted by adjusting the basicity of the sintered ore, it is necessary to reduce the CaO content in the sintered ore. As a result, the cost of the sintering operation increases.

特許文献3に記載の発明は、炉周辺部のコークス層にドロマイト、蛇紋岩、石灰石などの副原料を混入させることにより、溶銑中SiおよびS含有率を低減させることのできる方法である。この方法においても、前記の発明と同様に、塩基度の調整によりスラグ量が増加する傾向があり、高炉炉況に悪影響を及ぼす。   The invention described in Patent Document 3 is a method that can reduce the Si and S content in hot metal by mixing auxiliary materials such as dolomite, serpentine, and limestone in the coke layer around the furnace. Also in this method, the amount of slag tends to increase by adjusting the basicity as in the case of the above-described invention, which adversely affects the blast furnace condition.

また、溶銑中Si含有率を低減させる方法として、特許文献4には、塩基度の異なる複数種類の鉱石を炉内半径方向の異なる位置に装入し、炉内半径方向の装入物の塩基度分布を羽口レベルにおける半径方向炉内温度分布に対応させて制御し、溶銑中Si含有率を制御する高炉操業方法が開示されている。しかし、この方法では、高炉半径方向に全体に造滓剤を装入するため、炉芯コークス中に造滓剤が残存して、炉芯の通気性を悪化させるとともに、造滓剤がレースウェイ以外の領域にも供給されることから、造滓剤の添加効率が低下する。   In addition, as a method for reducing the Si content in hot metal, Patent Document 4 discloses that a plurality of types of ores having different basicities are charged at different positions in the furnace radial direction, and the base of the charge in the furnace radial direction is used. A blast furnace operating method is disclosed in which the temperature distribution is controlled in correspondence with the radial furnace temperature distribution at the tuyere level to control the Si content in the hot metal. However, in this method, since the slagging agent is charged in the entire blast furnace radial direction, the slagging agent remains in the core coke, thereby deteriorating the breathability of the furnace core, and the slagging agent is added to the raceway. Since it is also supplied to other areas, the addition efficiency of the slagging agent is reduced.

そして、特許文献5に開示された方法は、微粉炭とともにFeO、CaOおよびMgOのうち1種以上からなる造滓剤フラックスを羽口から吹き込み、温度を低下させることにより、発生するSiOガス量を抑制して溶銑中Si含有率を低減させる方法である。この方法は、羽口前温度を低下させる方法であるため、炉内の冷え込みなどの大事故につながる危険性を有している。また、炉芯の不活性化を防止するため、同時にSiO2なども投入する必要があることから、高炉内のスラグ量が増加し、炉内の通気性が悪化して炉況不調に陥りやすい。 And the method disclosed by patent document 5 blows in a stalking agent flux which consists of 1 or more types among FeO, CaO, and MgO with pulverized coal from a tuyere, and reduces the amount of generated SiO gas. This is a method of reducing the Si content in the hot metal by suppressing it. Since this method is a method of reducing the temperature before the tuyere, there is a risk of leading to a major accident such as cooling in the furnace. In addition, in order to prevent inactivation of the furnace core, it is necessary to simultaneously add SiO 2 or the like, so that the amount of slag in the blast furnace increases, the air permeability in the furnace deteriorates, and the furnace condition tends to deteriorate. .

特開2001−140007号公報(特許請求の範囲、段落[0009]および[0010])JP 2001-140007 (Claims, paragraphs [0009] and [0010]) 特開昭61−261407号公報(特許請求の範囲および2頁左上欄5〜15行)Japanese Patent Laid-Open No. 61-261407 (Claims and upper left column, lines 5 to 15 on page 2) 特開平5−311217号公報(特許請求の範囲および段落[0013]〜[0015])JP-A-5-311217 (Claims and paragraphs [0013] to [0015]) 特開昭58−061204号公報(特許請求の範囲および2頁左上欄14〜19行)JP-A-58-0661204 (Claims and upper left column, pages 14 to 19 on page 2) 特開2003−183711号公報(特許請求の範囲および段落[0015]〜[0018])JP 2003-183711 A (claims and paragraphs [0015] to [0018])

前記の従来技術には、下記の問題があった。すなわち、溶銑中Si含有率を低下させるために副原料として、ドロマイト、蛇紋岩などのCaOまたはSiO2成分を多く含む原料やマグネサイトのように熱分解によりCO2ガスを発生する炭酸塩系の原料を使用していたことに問題があった。CaOやSiO2成分を含有する副原料を使用した場合には、高炉スラグの塩基度が変動するので、塩基度を再調整するために、さらに副原料を投入する必要がある。その結果、高炉スラグ量が増加し、高炉の通気性が悪化して高炉の炉況が不安定となるからである。 The above prior art has the following problems. That is, as a secondary raw material for reducing the Si content in the hot metal, raw materials containing a large amount of CaO or SiO 2 components such as dolomite and serpentine, and carbonate-based materials that generate CO 2 gas by thermal decomposition like magnesite There was a problem with using raw materials. When an auxiliary material containing a CaO or SiO 2 component is used, the basicity of the blast furnace slag varies. Therefore, in order to readjust the basicity, it is necessary to add an additional raw material. As a result, the amount of blast furnace slag increases, the air permeability of the blast furnace deteriorates, and the furnace condition of the blast furnace becomes unstable.

また、マグネサイトなどの炭酸塩は、熱分解によりCO2ガスを発生する。高炉上部においては下記の(3)式および(4)式により示されるとおり、主としてCOガスにより鉄鉱石の間接還元反応が進む。そのため、熱分解によりCO2ガスが発生するとガスの還元能力が低下し、鉄鉱石の還元反応を遅滞させる。還元反応が遅滞すると、未還元鉱石が羽口前まで降下し、羽口前において下記(5)式により示される直接還元反応を生じる。この反応は著しい吸熱反応であるため、直接還元反応量が増加すると羽口前における温度が低下して溶銑滓の流動性が低下し、羽口と溶銑滓との接触頻度が増加することにより、羽口破損を引き起こすおそれがある。 Carbonate such as magnesite generates CO 2 gas by thermal decomposition. In the upper part of the blast furnace, as indicated by the following formulas (3) and (4), the indirect reduction reaction of iron ore proceeds mainly by CO gas. Therefore, when CO 2 gas is generated by thermal decomposition, the reducing ability of the gas is reduced, and the reduction reaction of iron ore is delayed. When the reduction reaction is delayed, the unreduced ore descends to the front of the tuyere and causes a direct reduction reaction represented by the following formula (5) before the tuyere. Since this reaction is a significant endothermic reaction, when the amount of direct reduction increases, the temperature in front of the tuyere decreases and the fluidity of the hot metal decreases, and the contact frequency between the tuyere and the hot metal increases, May cause tuyere damage.

3Fe23+CO → 2Fe34+CO2 ・・・(3)
Fe34+CO → 3FeO+CO2 ・・・(4)
FeO+C → Fe+CO ・・・(5)
上記のように、従来技術は副原料の選別が十分でなかったため、その結果、高炉のスラグ量を増加させたり、副原料の熱分解にともなってCO2ガスを発生し、還元速度の遅れによる高炉操業のトラブルを招きやすいものであった。
本発明は、上記の問題を解決するためになされたものであり、その課題は、高炉の微粉炭多量吹込み操業において、スラグ塩基度の変動を生じさせず、かつスラグ量の大幅な増加をともなわずに、炉頂温度の上昇を抑制し、溶銑中SiおよびS含有率を低減できる高炉の操業方法を提供することにある。また、本発明は、上記の結果として、高炉の通気性悪化を抑制しつつ、炉頂設備の保護および溶銑処理コストの改善を可能とする高炉の操業方法を提供することも課題としている。
3Fe 2 O 3 + CO → 2Fe 3 O 4 + CO 2 (3)
Fe 3 O 4 + CO → 3FeO + CO 2 (4)
FeO + C → Fe + CO (5)
As described above, the prior art has not been sufficient for the selection of the auxiliary material. As a result, the amount of slag in the blast furnace is increased, or CO 2 gas is generated due to the thermal decomposition of the auxiliary material, resulting in a reduction in the reduction rate. It was easy to cause troubles in blast furnace operation.
The present invention has been made in order to solve the above-mentioned problems, and the problem is that a large amount of slag is generated without causing fluctuations in slag basicity in a blast furnace high-injection operation of pulverized coal. In spite of this, it is intended to provide a method for operating a blast furnace that can suppress the rise in the furnace top temperature and reduce the Si and S content in the hot metal. Another object of the present invention is to provide a method for operating a blast furnace that can protect the furnace top equipment and improve the hot metal treatment cost while suppressing deterioration of the air permeability of the blast furnace as a result of the above.

本発明者は、上記の課題を解決するために、高炉の通気性悪化を抑制しつつ炉頂温度を低下させ、かつ溶銑中Si含有率およびS含有率を低減できる操業方法を研究し、下記の(a)および(b)に示される知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventor studied an operation method capable of reducing the furnace top temperature while suppressing the deterioration of the air permeability of the blast furnace and reducing the Si content and the S content in the hot metal. The present invention was completed by obtaining the knowledge shown in (a) and (b).

(a)高炉の通気性悪化を抑制しつつ炉頂温度を低下させ、かつ溶銑中Si含有率およびS含有率を低減するためには、水酸化マグネシウム鉱石を炉頂部から装入する方法が有効であり、その理由は下記のとおりである。   (A) The method of charging magnesium hydroxide ore from the top of the furnace is effective to lower the furnace top temperature while suppressing the deterioration of air permeability of the blast furnace and to reduce the Si content and S content in the hot metal. The reason is as follows.

1)水酸化マグネシウム鉱石は、一般にブルーサイトと呼ばれ、主要鉱物がMg(OH)2であり、MgO含有率が50質量%以上であって、高炉に装入してもスラグ塩基度を変動させることがないため、塩基度調整のために、さらに副原料を装入する必要がない。 1) Magnesium hydroxide ore is generally called brucite, the main mineral is Mg (OH) 2 , MgO content is 50% by mass or more, and the slag basicity fluctuates even when charged in a blast furnace Therefore, it is not necessary to charge additional auxiliary materials for adjusting the basicity.

2)水酸化マグネシウム鉱石は、熱分解過程でCO2ガスを発生しないため、炉内還元反応に影響を与えずに、炉頂温度を低下させ、溶銑中Si含有率およびS含有率を低下させる点で、他の副原量よりも優れている。 2) Magnesium hydroxide ore does not generate CO 2 gas during the thermal decomposition process, so it does not affect the reduction reaction in the furnace, lowers the furnace top temperature, and lowers the Si content and S content in the hot metal. In that respect, it is superior to other by-products.

表1に、高炉で使用される主要副原料の炉内における分解反応式および吸熱反応量を示す。   Table 1 shows the decomposition reaction formula and endothermic reaction amount in the furnace of the main auxiliary materials used in the blast furnace.

Figure 0005012138
Figure 0005012138

同表から、ブルーサイトは単位質量当たりの吸熱反応量が大きいため、他の副原料に比して少ない装入量で炉頂温度を低下させることができることがわかる。また、水酸化マグネシウム鉱石は熱分解反応時においてCO2ガスを発生しないので、高炉上部において間接還元反応の妨げとなりにくい。 From the same table, it can be seen that brucite has a large endothermic reaction amount per unit mass, so that the furnace top temperature can be lowered with a smaller charging amount than other auxiliary materials. In addition, since magnesium hydroxide ore does not generate CO 2 gas during the thermal decomposition reaction, it is unlikely to hinder the indirect reduction reaction in the upper part of the blast furnace.

(b)水酸化マグネシウム鉱石の高炉内装入位置は、炉中心から炉半径の0.4〜1倍の位置に装入するのが好ましい。その理由は、装入位置が炉半径の0.4倍未満では、炉芯コークス中に未溶融の副原料が残存し、炉芯の通気性および通液性が悪化すること、および、レースウェイ近傍を中心に炉壁側に多く発生するSiOガスやSガスの発生を抑制する効果が低下し、溶銑中SiおよびS含有率の低減効果が減少するからである。   (B) It is preferable to insert the magnesium hydroxide ore into the blast furnace interior at a position 0.4 to 1 times the furnace radius from the center of the furnace. The reason for this is that if the charging position is less than 0.4 times the furnace radius, unmelted auxiliary materials remain in the furnace core coke, the furnace core air permeability and liquid permeability deteriorate, and the raceway. This is because the effect of suppressing the generation of SiO gas and S gas that are frequently generated on the furnace wall side around the vicinity is reduced, and the effect of reducing the Si and S content in the hot metal is reduced.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記の(1)〜(3)に示す高炉の操業方法にある。   This invention is completed based on said knowledge, The summary exists in the operating method of the blast furnace shown to following (1)-(3).

(1)微粉炭吹込み量が溶銑1トン(t)当たり100kg(以下、「100kg/t−溶銑」とも記す)以上であり、鉱石類装入物中の塊鉱石比率が30質量%以下の高炉操業において、5〜30kg/t−溶銑の水酸化マグネシウム鉱石を高炉炉頂部から炉内に装入することを特徴とする高炉操業方法。   (1) The amount of pulverized coal injection is 100 kg or more per 1 ton (t) of hot metal (hereinafter also referred to as “100 kg / t-hot metal”), and the mass of ore in the ore charge is 30% by mass or less. In blast furnace operation, 5-30 kg / t-molten magnesium hydroxide ore is charged into the furnace from the top of the blast furnace furnace.

(2)前記水酸化マグネシウム鉱石が塊状鉱石であって、装入物のストックレベルにおいて炉中心から水酸化マグネシウム鉱石の装入位置までの炉内半径方向距離をrとし、炉中心から炉壁までの距離をRとしたとき、前記水酸化マグネシウム鉱石を、その装入位置が、下記(1)式で表される関係を満足するように炉内に装入することを特徴とする前記(1)に記載の高炉操業方法。   (2) The magnesium hydroxide ore is a massive ore, and r is the radial distance in the furnace from the furnace center to the magnesium hydroxide ore charging position at the charge stock level, from the furnace center to the furnace wall. When the distance of R is R, the magnesium hydroxide ore is charged into the furnace so that the charging position satisfies the relationship represented by the following formula (1): ) Blast furnace operation method.

0.4≦r/R≦1 ・・・・(1)
(3)SiO2含有率が4.5質量%以上の塊鉱石と前記水酸化マグネシウム鉱石とを高炉炉頂部から炉内に混合装入することを特徴とする前記(1)または(2)に記載の高炉操業方法。
0.4 ≦ r / R ≦ 1 (1)
(3) the the SiO 2 content to the said magnesium hydroxide ore with 4.5 mass% or more lump ore, wherein the mixing Sonyusu Turkey into the furnace from the blast furnace top (1) or (2 ) Blast furnace operation method.

本発明において、「鉱石類装入物」とは、焼結鉱、塊鉱石、ペレット、ブリケットなどの鉄源装入物(主原料)を意味する。   In the present invention, the “ore ore charge” means an iron source charge (main raw material) such as sintered ore, massive ore, pellets, briquettes and the like.

また、「塊鉱石」または「塊状鉱石」とは、粒度構成において、粒径が5mm以下の部分が占める比率が20質量%以下であり、かつ、平均粒径が10mm以上の鉱石を意味する。   In addition, the term “block ore” or “block ore” means an ore in which the ratio of the portion having a particle size of 5 mm or less is 20% by mass or less and the average particle size is 10 mm or more.

本発明によれば、高炉スラグ塩基度の変動を生じさせず、かつスラグ量の大幅な増加をともなわずに、微粉炭多量吹込み操業時に問題となる炉頂温度の上昇を抑制し、溶銑中SiおよびS含有率を低減することができる。さらに、本発明によれば、上記の結果として、高炉の通気性悪化を抑制しつつ、炉頂設備の保護および溶銑処理コストの改善を実現できる。   According to the present invention, the rise in the furnace top temperature, which is a problem during a large amount of pulverized coal injection, is suppressed without causing fluctuations in the basicity of the blast furnace slag and without significantly increasing the amount of slag. Si and S content can be reduced. Furthermore, according to the present invention, as a result of the above, it is possible to realize the protection of the furnace top equipment and the improvement of the hot metal treatment cost while suppressing the deterioration of the air permeability of the blast furnace.

本発明は、前記のとおり、微粉炭吹込み量が100(kg/t−溶銑)以上であり、鉱石類装入物中の塊鉱石比率が30質量%以下の高炉操業において、5〜30(kg/t−溶銑)の水酸化マグネシウム鉱石を高炉炉頂部から炉内に装入することを特徴とする高炉操業方法である。以下に、本発明を前記のように規定した理由および好ましい態様について説明する。   As described above, in the blast furnace operation in which the pulverized coal injection amount is 100 (kg / t-molten metal) or more and the lump ore ratio in the ore charge is 30% by mass or less, A blast furnace operating method characterized in that a magnesium hydroxide ore of (kg / t-molten metal) is charged into the furnace from the top of the blast furnace furnace. The reason why the present invention is defined as described above and preferred embodiments will be described below.

1.水酸化マグネシウム鉱石の装入
図1は、炉内容積が2150m3の高炉(以下も同様)において微粉炭吹込み量が130kg/t−溶銑、出銑比が1.9t/d/m3前後、焼結鉱比率が80質量%および塊鉱石比率が20質量%の条件で操業を行った際の、高炉スラグ量と炉内圧損の変化との関係を示す図である。同図の縦軸の炉内圧損の変化は、高炉羽口における送風圧力と炉頂におけるガス圧力との差についての、基準操業時における値からの変化量を示し、炉内充填層の通気性の変化を表す。つまり、高炉スラグ量が275(kg/t−溶銑)のときの炉内圧損を基準として、高炉スラグ量と炉内圧損の変化との関係を示したものである。したがって、炉内圧損変化の上昇は、基準操業時に対する高炉通気性の悪化(すなわち、高炉内通気抵抗の上昇)を意味する。
1. Fig. 1 shows a blast furnace with a furnace volume of 2150 m 3 (the same applies below). The amount of pulverized coal injection is 130 kg / t-hot metal, and the feed ratio is around 1.9 t / d / m 3. It is a figure which shows the relationship between the amount of blast furnace slag, and the change of pressure loss in a furnace at the time of operating on conditions with a sintered ore ratio of 80 mass% and a lump ore ratio of 20 mass%. The change in the pressure loss in the furnace on the vertical axis in the figure shows the amount of change from the value at the time of standard operation for the difference between the blowing pressure at the blast furnace tuyeres and the gas pressure at the top of the furnace, and the permeability of the packed bed in the furnace Represents changes. That is, the relationship between the blast furnace slag amount and the change in the furnace pressure loss is shown on the basis of the furnace pressure loss when the blast furnace slag amount is 275 (kg / t-molten metal). Therefore, an increase in the pressure loss change in the furnace means deterioration of the blast furnace air permeability with respect to the reference operation (that is, an increase in the blast furnace air resistance).

同図に示されたとおり、高炉スラグ量が増加すると炉内溶融物の量が増加し、ガスの流路が狭められて通気性が悪化する。また、出銑と出銑との間に炉内に蓄積されるスラグ量も増加するため、炉内充填物が出銑と出銑との間に溶銑および溶滓から受ける浮力が増大して、炉内充填物の空隙率が低下し、これに起因してガス流れの変動が生じ、通気性が悪化する。   As shown in the figure, when the amount of blast furnace slag increases, the amount of melt in the furnace increases, the gas flow path is narrowed, and air permeability deteriorates. In addition, since the amount of slag accumulated in the furnace between the tapping and the tapping increases, the buoyancy that the filling in the furnace receives from the tapping and tapping between the tapping and tapping increases. The porosity of the furnace filling decreases, resulting in fluctuations in gas flow and deterioration of air permeability.

図2は、原料成分を考慮した配合計算により得られた、副原料の装入量と高炉スラグ量の変化との関係を示す図である。同図の関係は、高炉スラグの塩基度が一定になるように各副原料を装入した場合の高炉スラグ量の変化を比較して示したものである。ドロマイトまたは蛇紋岩を装入する場合には、スラグ塩基度を調整するためにさらに他の副原料を装入する必要がある。その結果、総スラグ量が増加する。これに対して、水酸化マグネシウム鉱石は装入に当たり、スラグ塩基度を調整する必要がないことから、スラグ量の増加が少ない。   FIG. 2 is a diagram showing the relationship between the amount of auxiliary material charged and the change in the amount of blast furnace slag, obtained by blending calculation considering raw material components. The relationship in the figure shows a comparison of changes in the amount of blast furnace slag when each auxiliary material is charged so that the basicity of the blast furnace slag is constant. When dolomite or serpentine is charged, it is necessary to add other auxiliary materials to adjust the slag basicity. As a result, the total slag amount increases. On the other hand, since the magnesium hydroxide ore does not need to adjust the slag basicity when charging, the increase in the amount of slag is small.

図3は、前記図1において示した操業条件と同様の操業条件において、副原料の装入量と高炉炉頂ガス温度の変化量との関係を、反応熱などを考慮して計算した結果を示す図である。各副原料ともに、その熱分解により、高炉炉頂ガス温度は低下するが、水酸化マグネシウム鉱石が含有する結晶水の熱分解により、高炉炉頂温度を低下させる効果は、ドロマイトや蛇紋岩による効果よりも大きい。   FIG. 3 shows the result of calculating the relationship between the charging amount of the auxiliary raw material and the amount of change in the blast furnace top gas temperature in consideration of the heat of reaction under the same operating conditions as shown in FIG. FIG. The temperature of the blast furnace top gas decreases due to the thermal decomposition of each auxiliary material, but the effect of lowering the blast furnace top temperature due to the thermal decomposition of the crystal water contained in the magnesium hydroxide ore is the effect of dolomite and serpentine Bigger than.

2.水酸化マグネシウム鉱石装入量、微粉炭吹込み量および焼結鉱比率の適正範囲
水酸化マグネシウム鉱石の炉内装入量は、5〜30(kg/t−溶銑)の範囲とするのが適切である。
2. Appropriate range of magnesium hydroxide ore charge, pulverized coal injection amount and ratio of sintered ore It is appropriate that the magnesium hydroxide ore content in the furnace is 5-30 (kg / t-hot metal). is there.

図4は、前記図1において示した操業条件と同様の条件で操業した際の、水酸化マグネシウム鉱石の装入量とスラグ中MgO含有率および炉内圧損の変化との関係の関係を示す図である。スラグ中MgO含有率は、水酸化マグネシウム鉱石の装入量の増加にともなってほぼ直線的に増加する。水酸化マグネシウム鉱石の装入量が30(kg/t−溶銑)以内の範囲では、水酸化マグネシウム鉱石を装入するにつれて、スラグ量の増加により炉内圧損変化量がやや上昇する(すなわち、炉内通気性がやや悪化する)が、その上昇量は小さい。また、水酸化マグネシウム鉱石の装入効果を得るには、前記の図3、ならびに後述する図5および図6に示される関係から、5kg/t以上装入する必要がある。
これに対して、水酸化マグネシウム鉱石の装入量が30(kg/t−溶銑)を超えて多くなると、炉内圧損変化量の上昇が顕著となる(すなわち、炉内通気性の悪化が顕著となる)。これは、スラグ中MgO成分の増加によりスラグの融点が上昇し、炉内残留スラグ量の増加によって高炉内の通気性および通液性が悪化することによる。本発明者の行った試験によれば、スラグ中MgO含有率が10質量%以下であれば炉内残留スラグによる悪影響は比較的少ない。
FIG. 4 is a graph showing the relationship between the amount of magnesium hydroxide ore charged, the MgO content in the slag, and the change in furnace pressure loss when operating under the same operating conditions as shown in FIG. It is. The MgO content in the slag increases almost linearly as the amount of magnesium hydroxide ore is increased. In the range where the amount of magnesium hydroxide ore charged is within 30 (kg / t-molten metal), the amount of change in pressure loss in the furnace slightly increases due to the increase in the amount of slag as the magnesium hydroxide ore is charged (that is, the furnace The air permeability is slightly deteriorated), but the increase is small. Moreover, in order to obtain the charging effect of magnesium hydroxide ore, it is necessary to charge 5 kg / t or more from the relationship shown in FIG. 3 and FIGS. 5 and 6 described later.
On the other hand, when the amount of magnesium hydroxide ore is increased beyond 30 (kg / t-molten metal), the increase in the pressure loss change in the furnace becomes remarkable (that is, the deterioration of the air permeability in the furnace is remarkable). Becomes). This is because the melting point of the slag rises due to the increase in the MgO component in the slag, and the air permeability and liquid permeability in the blast furnace deteriorate due to the increase in the amount of residual slag in the furnace. According to the test conducted by the present inventor, if the MgO content in the slag is 10% by mass or less, the adverse effect due to the residual slag in the furnace is relatively small.

図5は、前記図1において示した操業条件と同様の条件で操業を行った際に、副原料として、水酸化マグネシウム鉱石、ドロマイトおよび蛇紋岩をそれぞれ単独に装入した場合の装入量と溶銑中Si含有率の変化との関係を示す図である。水酸化マグネシウム鉱石を装入するとスラグ中SiO2の活量が低下し、SiOガスの発生を抑制する結果、溶銑中Si含有率が低下する。水酸化マグネシウム鉱石は、同一装入量であっても、他の副原料と比較して溶銑中Si含有率の低減効果が大きい。 FIG. 5 shows the amount of charge when each of magnesium hydroxide ore, dolomite and serpentinite is charged as auxiliary materials when operating under the same conditions as those shown in FIG. It is a figure which shows the relationship with the change of Si content rate in hot metal. When magnesium hydroxide ore is charged, the activity of SiO 2 in the slag decreases, and as a result of suppressing the generation of SiO gas, the Si content in the hot metal decreases. Magnesium hydroxide ore has a large effect of reducing the Si content in the hot metal compared with other auxiliary materials even if the amount is the same.

図6に、前記図1において示した操業条件と同様の条件で操業した際の、副原料の装入量と溶銑中S含有率の変化との関係を示す。同図にみられるとおり、副原料の装入により、羽口前で発生するSガスのスラグによる吸収能力が向上し、溶銑中S含有率が低下する。水酸化マグネシウム鉱石は、他の副原料に比して溶銑中S含有率の低減効果が大きい。   FIG. 6 shows the relationship between the amount of the auxiliary raw material charged and the change in the S content in the hot metal when operating under the same operating conditions as those shown in FIG. As seen in the figure, the introduction of the auxiliary material improves the absorption capacity of the S gas slag generated in front of the tuyere and decreases the S content in the hot metal. Magnesium hydroxide ore has a greater effect of reducing the S content in hot metal than other auxiliary materials.

図7に、前記図1において示した操業条件と同様の条件で操業した際の、副原料の装入量と炉内圧損変化との関係を示す。副原料装入量の増加にともなって炉内圧損変化は上昇するが、水酸化マグネシウム鉱石を装入した場合は、ドロマイトまたは蛇紋岩を装入した場合に比してスラグの増加量が小さいことから、炉内圧損の上昇量も少ない。   FIG. 7 shows the relationship between the charging amount of the auxiliary raw material and the change in pressure loss in the furnace when operated under the same operating conditions as those shown in FIG. Although the pressure drop change in the furnace increases with the increase in the amount of secondary raw material, the amount of increase in slag is smaller when magnesium hydroxide ore is charged than when dolomite or serpentine is charged. Therefore, the amount of increase in furnace pressure loss is small.

本発明の高炉操業方法は、微粉炭吹込み量が100(kg/t−溶銑)以上および塊鉱石比率が30質量%以下の高炉操業を対象とする。微粉炭吹込み量が100(kg/t−溶銑)未満の操業では、炉頂ガス温度は低位であり、炉頂設備に対する熱負荷も小さく炉頂ガス温度を低下させる必要性は少ない。また、微粉炭吹込み量が少ないと高炉操業が安定し、炉熱変動が小さくなるため、溶銑中Si含有率および溶銑中S含有率は低位で安定しやすくなる。以上の理由により、微粉炭吹込み量が100(kg/t−溶銑)未満の操業条件においては、本発明の操業方法を適用する効果が小さいからである。   The blast furnace operation method of the present invention is intended for blast furnace operation in which the pulverized coal injection amount is 100 (kg / t-molten metal) or more and the lump ore ratio is 30 mass% or less. In operations where the amount of pulverized coal injection is less than 100 (kg / t-molten metal), the furnace top gas temperature is low, the heat load on the furnace top equipment is small, and there is little need to lower the furnace top gas temperature. In addition, when the amount of pulverized coal injection is small, the operation of the blast furnace is stabilized and the furnace heat fluctuation is reduced, so that the Si content in the hot metal and the S content in the hot metal are easily stabilized at a low level. For the above reasons, the effect of applying the operation method of the present invention is small under the operation conditions where the amount of pulverized coal injection is less than 100 (kg / t-molten metal).

また、塊鉱石比率が30質量%を超えて高くなると、鉱石由来の水分が増加し、炉頂ガス温度が低下する。さらに、鉱石中水分の増加により高炉内部の温度が低下した状態において水酸化マグネシウム鉱石を投入した場合には、より一層の温度低下を招き、鉄鉱石の昇温および還元が遅れて、炉内融着帯の肥大化による高炉通気性の悪化や、吹き込み羽口前への未還元鉱石の降下により通気性や通液性が阻害され、羽口破損を起こす可能性がある。羽口破損を起こすと、羽口取替のために高炉を休止せざるを得なくなり、稼働率が低下する。以上のように、塊鉱石比率が30質量%を超えて高くなると、本発明の操業方法を適用する効果が小さくなることから、本発明では塊鉱石比率30%以下とした。   Moreover, when the mass ore ratio exceeds 30 mass% and becomes high, the water | moisture content derived from an ore will increase and furnace top gas temperature will fall. In addition, when magnesium hydroxide ore is introduced in a state where the temperature inside the blast furnace is lowered due to an increase in the moisture in the ore, the temperature is further reduced, and the temperature rise and reduction of the iron ore is delayed, causing melting in the furnace. The deterioration of the blast furnace air permeability due to the enlargement of the banding and the fall of the unreduced ore before the blowing tuyere impedes the air permeability and liquid permeability and may cause tuyere damage. If a tuyere breaks down, the blast furnace must be stopped to replace the tuyere and the operating rate falls. As described above, when the lump ore ratio exceeds 30% by mass, the effect of applying the operation method of the present invention is reduced. Therefore, in the present invention, the lump ore ratio is set to 30% or less.

3.水酸化マグネシウム鉱石の高炉内装入位置
水酸化マグネシウム鉱石の高炉内装入位置は、炉中心から炉半径の0.4〜1倍の位置、すなわち、前記(1)式により表される関係を満足する位置に装入するのが好ましい。
3. The position of the magnesium hydroxide ore entering the blast furnace interior The position of the magnesium hydroxide ore entering the blast furnace interior is 0.4 to 1 times the furnace radius from the center of the furnace, that is, the relationship expressed by the above formula (1) is satisfied. It is preferable to charge the position.

その理由は、装入位置が炉中心から炉半径の0.4倍未満の場合には、炉芯コークス中に未溶融の副原料が残存し、炉芯の通気性および通液性が悪化すること、および、レースウェイ近傍を中心に炉壁側に多く発生するSiOガスやSガスの発生抑制効果が低下し、溶銑中SiおよびS含有率の低減効果が減少するからである。   The reason for this is that when the charging position is less than 0.4 times the furnace radius from the furnace center, unmelted auxiliary materials remain in the furnace core coke, and the air permeability and liquid permeability of the furnace core deteriorate. This is because the effect of suppressing the generation of SiO gas and S gas that are frequently generated on the furnace wall side around the vicinity of the raceway is reduced, and the effect of reducing the Si and S content in the hot metal is reduced.

また、炉内の通気性をさらに改善するためには、装入する水酸化マグネシウム鉱石は塊状鉱石であることが好ましい。なお、本発明において、「塊鉱石」または「塊状鉱石」とは、粒径が5mm以下の部分が占める比率が20質量%以下であり、かつ、平均粒径が10mm以上の鉱石を意味する。   In order to further improve the air permeability in the furnace, the magnesium hydroxide ore to be charged is preferably a massive ore. In the present invention, the term “block ore” or “block ore” means an ore in which the ratio of the portion having a particle size of 5 mm or less is 20% by mass or less and the average particle size is 10 mm or more.

図8は、副原料の炉内半径方向装入位置と炉内圧損の変化および溶銑中Si含有率の変化との関係を示す図であり、同図(a)は副原料の炉内半径方向装入位置と炉内圧損の変化との関係を示し、同図(b)は副原料の炉内半径方向装入位置と溶銑中Si含有率の変化との関係を示す。同図の結果は、炉内容積が2150m3の高炉において、水酸化マグネシウム鉱石の装入量を一定とした条件で高炉内への装入位置を変更する試験を行った際の炉内圧損の変化および溶銑中Si含有率の変化を示したものである。 FIG. 8 is a diagram showing the relationship between the charging position of the auxiliary raw material in the furnace radial direction, the change in pressure loss in the furnace and the change in the Si content in the hot metal, and FIG. The relationship between the charging position and the change in furnace pressure loss is shown, and FIG. 5B shows the relationship between the charging position of the auxiliary material in the furnace radial direction and the change in the Si content in the hot metal. The result of the figure shows that the pressure loss in the furnace when the test was performed to change the charging position in the blast furnace under the condition that the charging amount of magnesium hydroxide ore was constant in a blast furnace with a furnace volume of 2150 m 3 . The change and the change of Si content in hot metal are shown.

同図の結果から、装入位置を中心側へ移行させるにしたがって炉内圧損が上昇し、溶銑中Si含有率の低下量も低減することが確認できる。特に、中心から炉半径の0.4倍以内の中心側の領域に装入すると、炉内圧損変化量が大幅に上昇する。したがって、水酸化マグネシウム鉱石の炉内装入位置は炉中心から炉半径の0.4〜1倍の位置、すなわち、前記(1)式の関係を満足する位置に装入するのが好ましい。   From the results shown in the figure, it can be confirmed that the pressure loss in the furnace increases as the charging position shifts to the center side, and the amount of decrease in the Si content in the hot metal also decreases. In particular, when the battery is inserted into a region on the center side within 0.4 times the furnace radius from the center, the amount of change in pressure loss in the furnace significantly increases. Therefore, it is preferable to insert the magnesium hydroxide ore into the furnace interior at a position 0.4 to 1 times the furnace radius from the furnace center, that is, at a position satisfying the relationship of the expression (1).

4.SiO2含有率が4.5質量%以上の塊鉱石との混合装入
水酸化マグネシウム鉱石を、SiO2含有率が4.5質量%以上の塊鉱石と混合して装入すると、溶銑中Si含有率の増加を抑制するだけではなく、高炉通気性の悪化を抑制できるので好ましい。
4). Mixing and charging with lump ore with SiO 2 content of 4.5% by mass or more When magnesium hydroxide ore is mixed with lump ore with SiO 2 content of 4.5% by mass or more and charged, Si in hot metal This is preferable because not only the increase in the content rate but also the deterioration of the blast furnace air permeability can be suppressed.

現存する塊鉱石の中で、SiO2含有率が4.5質量%以上の塊鉱石は、高結晶水鉄鉱石として存在するものが多い。高結晶水鉄鉱石は、一般的に高炉上部において結晶水離脱時の割れまたは強度低下により、炉内において粉化し、炉内通気性を阻害する。その結果、還元が遅れ、未還元状態のFeOがCaOまたはSiO2と反応して低融点化合物を形成する。この低融点化合物が生成すると、炉内における融着帯の肥大化を招き、炉下部通気性が悪化する。 Among existing lump ores, most lump ores having a SiO 2 content of 4.5% by mass or more exist as high crystal hydrous ores. High crystal hydrous iron ore is generally pulverized in the furnace due to cracking or strength reduction when the crystal water is released from the upper part of the blast furnace, and impairs the air permeability in the furnace. As a result, the reduction is delayed, and the unreduced FeO reacts with CaO or SiO 2 to form a low melting point compound. When this low-melting-point compound is produced, the cohesive zone in the furnace is enlarged, and the lower part air permeability is deteriorated.

これに対して、水酸化マグネシウム鉱石を、SiO2含有率が4.5質量%以上の高結晶水塊鉱石と混合して炉内に装入した場合には、水酸化マグネシウムが熱分解して生成されるMgOが未還元状態のFeOに固溶し、高融点化合物を形成する。この高融点化合物の生成により、塊鉱石の低温での軟化溶融が防止され、融着帯の肥大化が防止される。また、塊鉱石の融点を上昇させるので、炉下部の高温領域に至るまでガス還元を進行させることが可能となる。その結果、ガス還元による到達還元率が向上し、炉内の還元反応に占める直接還元反応すなわち吸熱反応の比率が減少するので、吸熱量が減少する。また、MgO自体の融点も非常に高いため、融着層においても比較的高い粒子間空隙率を維持でき、炉内で最も通気性の悪い融着帯においても良好な通気性を確保することができる。 On the other hand, when magnesium hydroxide ore is mixed with high-crystal water block ore having a SiO 2 content of 4.5% by mass or more and charged into the furnace, magnesium hydroxide is thermally decomposed. The produced MgO is dissolved in the unreduced FeO to form a high melting point compound. By producing this high melting point compound, softening and melting of the lump ore at a low temperature is prevented, and enlargement of the cohesive zone is prevented. Moreover, since the melting point of the lump ore is raised, it is possible to proceed the gas reduction up to the high temperature region at the bottom of the furnace. As a result, the ultimate reduction rate due to gas reduction is improved, and the ratio of the direct reduction reaction, that is, the endothermic reaction, occupying the reduction reaction in the furnace is reduced, so that the endothermic amount is reduced. In addition, since the melting point of MgO itself is very high, it is possible to maintain a relatively high interparticle porosity even in the fusion layer, and to ensure good air permeability even in the fusion zone having the lowest air permeability in the furnace. it can.

図9は、SiO2含有率が4.5質量%以上の高結晶水鉄鉱石の使用比率と炉内圧損の変化との関係を、高結晶水鉄鉱石単独使用の場合と水酸化マグネシウム鉱石混合使用の場合とについて比較して示す図である。同図の結果から、水酸化マグネシウム鉱石を混合使用した場合には、炉内圧損の上昇が少ないことが確認できる。したがって、水酸化マグネシウム鉱石を混合使用すれば、高炉炉況を悪化させることなく、SiO2含有率が4.5質量%以上の塊鉄鉱石を多量に装入することができるので好ましい。 FIG. 9 shows the relationship between the use ratio of high-crystal water iron ore with a SiO 2 content of 4.5% by mass or more and the change in pressure loss in the furnace. It is a figure shown in comparison with the case of use. From the results in the figure, it can be confirmed that when the magnesium hydroxide ore is mixed and used, the increase in pressure loss in the furnace is small. Therefore, it is preferable to use magnesium hydroxide ore because a large amount of massive iron ore having a SiO 2 content of 4.5% by mass or more can be charged without deteriorating the blast furnace condition.

本発明の高炉操業方法の効果を確認するため、下記の試験操業を行い、その効果を確認した。   In order to confirm the effect of the blast furnace operation method of the present invention, the following test operation was performed and the effect was confirmed.

1.実施例1
炉内容積:2150m3、微粉炭吹込み量:135kg/t−溶銑、焼結鉱比率:80質量%、塊鉱石比率:20質量%、出銑比:1.92t/d/m3の定常操業を行っている高炉において、試験操業を実施した。試験条件としての副原料の装入量、ならびにスラグ量変化、炉内圧損変化、炉頂温度変化、溶銑中SiおよびS含有率の変化といった試験結果を表2に示した。
1. Example 1
Furnace volume: 2150 m 3 , pulverized coal injection amount: 135 kg / t-hot metal, sintered ore ratio: 80 mass%, lump ore ratio: 20 mass%, tapping ratio: 1.92 t / d / m 3 A pilot operation was conducted in the blast furnace where the operation was conducted. Table 2 shows the test results such as the charging amount of the auxiliary raw materials as the test conditions, the slag amount change, the furnace pressure loss change, the furnace top temperature change, and the Si and S content in the hot metal.

Figure 0005012138
Figure 0005012138

試験番号1は、副原料として水酸化マグネシウム鉱石を装入し、本発明で規定する条件を満足する本発明例につての試験であり、試験番号2は、副原料としてドロマイトを、また試験番号3は、副原料として蛇紋岩を装入した比較例についての試験である。各試験ともに、副原量の装入量は15(kg/t−溶銑)とし、高炉内の装入位置は炉内半径方向無次元位置(r/R)で0.7〜0.8の範囲の位置とした。また、水酸化マグネシウム鉱石は加重平均粒径が14mmで、5mm以下の比率が7質量%のものを使用した。   Test No. 1 is a test for an example of the present invention in which magnesium hydroxide ore is charged as an auxiliary material and satisfies the conditions specified in the present invention. Test No. 2 is dolomite as an auxiliary material, and the test number. 3 is a test for a comparative example in which serpentine is inserted as an auxiliary material. In each test, the charging amount of the secondary raw material was 15 (kg / t-hot metal), and the charging position in the blast furnace was 0.7 to 0.8 in the dimensionless position (r / R) in the radial direction of the furnace. The position of the range. In addition, magnesium hydroxide ore having a weighted average particle diameter of 14 mm and a ratio of 5 mm or less of 7% by mass was used.

本発明例の試験である試験番号1では、水酸化マグネシウム鉱石の使用により、炉頂温度、溶銑中Si含有率および溶銑中S含有率がともに低下し、炉頂設備の保護および溶銑処理コストを低減することができた。また、炉内圧損はわずかに上昇したが、高炉内通気性に及ぼす影響は小さかった。   In Test No. 1, which is a test of the present invention example, the use of magnesium hydroxide ore decreases both the furnace top temperature, the Si content in the hot metal and the S content in the hot metal, thereby protecting the furnace top equipment and the hot metal treatment cost. It was possible to reduce. Moreover, although the pressure loss in the furnace slightly increased, the effect on the air permeability in the blast furnace was small.

これに対して、比較例の試験番号2および試験番号3では、ドロマイトおよび蛇紋岩の装入量は本発明例の試験番号1と同量であるにも拘わらず、高炉スラグ量の増加量が多く、その結果、炉内圧損が大幅に上昇し、炉内通気性の悪化に及ぼす影響が大きくなった。また、溶銑中Si含有率および溶銑中S含有率の低下量も試験番号1に比して少なかった。   On the other hand, in Test No. 2 and Test No. 3 of the comparative example, although the amount of dolomite and serpentine is the same as that of Test No. 1 of the present invention example, the amount of increase in the amount of blast furnace slag is As a result, the pressure loss in the furnace increased significantly, and the effect on the deterioration of the air permeability in the furnace became large. In addition, the amount of decrease in the Si content in the hot metal and the S content in the hot metal was less than that in Test No. 1.

2.実施例2
炉内容積:2150m3、微粉炭吹込み量:100kg/t−溶銑、焼結鉱比率:75質量%、塊鉱石比率:25質量%、出銑比:2.00t/d/m3の定常操業を行っている高炉において、試験操業を実施した。副原料の装入量および高結晶水鉄鉱石使用比率といった試験条件、ならびに炉内圧損変化、溶銑中SiおよびS含有率の変化といった試験結果を表3に示した。
2. Example 2
Furnace volume: 2150 m 3 , pulverized coal injection amount: 100 kg / t-hot metal, sintered ore ratio: 75 mass%, lump ore ratio: 25 mass%, tapping ratio: 2.00 t / d / m 3 A pilot operation was conducted in the blast furnace where the operation was conducted. Table 3 shows the test conditions such as the charge amount of the auxiliary material and the use ratio of the high-crystal water ore, and the test results such as changes in the furnace pressure loss and changes in the Si and S contents in the hot metal.

Figure 0005012138
Figure 0005012138

試験番号4は、高結晶水鉄鉱石を使用するに当たり、副原料として水酸化マグネシウム鉱石を装入した請求項3に記載の条件を満足する本発明例につての試験であり、試験番号5は、副原料を装入しなかった比較例についての試験である。高結晶水鉄鉱石としては、SiO2含有率が5.1質量%であり、加重平均粒径が15mmで、5mm以下の比率が8質量%のものを、主原料中に占める比率を6質量%として使用した。水酸化マグネシウム鉱石は、加重平均粒径が12mmで、5mm以下の比率が8質量%のものを使用し、その装入量は、15(kg/t−溶銑)とした。また、水酸化マグネシウム鉱石の高炉内の装入位置は炉内半径方向無次元位置(r/R)で0.6〜0.7の位置とした。 Test No. 4 is a test for the example of the present invention that satisfies the conditions according to claim 3 in which magnesium hydroxide ore is charged as an auxiliary material in using the high crystalline hydrous ore. This is a test for a comparative example in which no auxiliary material was charged. As the high crystalline hydrous ore, the SiO 2 content is 5.1 mass%, the weighted average particle diameter is 15 mm, and the ratio of 5 mm or less is 8 mass%. Used as a percentage. The magnesium hydroxide ore used had a weighted average particle diameter of 12 mm and a ratio of 5 mm or less of 8% by mass, and the charging amount was 15 (kg / t-hot metal). Further, the charging position of the magnesium hydroxide ore in the blast furnace was a dimensionless position (r / R) in the radial direction of the furnace, which was 0.6 to 0.7.

水酸化マグネシウム鉱石と高結晶水鉄鉱石を混合して装入した本発明例の試験番号4では、比較例の試験番号5に比して炉内圧損の増加量が極めて小さく、高炉の通気性をほとんど悪化させることなく、高結晶水鉄鉱石を使用することができた。また、溶銑中Si含有率および溶銑中S含有率ともに低下し、製銑および溶銑処理工程におけるトータル的な操業コストを低減することができた。   In the test number 4 of the present invention example in which the magnesium hydroxide ore and the high crystal hydrous iron ore were mixed and charged, the increase in the pressure loss in the furnace was extremely small compared to the test number 5 of the comparative example, and the air permeability of the blast furnace High crystal hydrous ore could be used with almost no deterioration. Further, both the Si content in the hot metal and the S content in the hot metal decreased, and the total operating cost in the iron making and hot metal treatment processes could be reduced.

本発明によれば、高炉スラグ塩基度の変動を生じさせず、かつスラグ量の大幅な増加をともなわずに、微粉炭多量吹込み操業時において問題となる炉頂温度の上昇を抑制し、溶銑中SiおよびS含有率を低減することができる。したがって、本発明は、微粉炭多量吹込み操業にともなう高炉通気性の悪化を抑制しつつ、炉頂設備の保護および溶銑処理コストの改善を可能とする高炉の操業方法として製銑および溶銑処理工程において、広範に適用できる技術である。   According to the present invention, the rise in the top temperature of the blast furnace slag, which does not cause a fluctuation in blast furnace slag basicity and is accompanied by a significant increase in the amount of slag, is suppressed during the operation of injecting a large amount of pulverized coal. Medium Si and S content can be reduced. Therefore, the present invention provides a steelmaking and hot metal treatment process as a method of operating a blast furnace capable of protecting the furnace top equipment and improving the hot metal treatment cost while suppressing deterioration in blast furnace air permeability associated with a large amount of pulverized coal injection operation. The technology is widely applicable.

高炉スラグ量と炉内圧損の変化との関係を示す図である。It is a figure which shows the relationship between the amount of blast furnace slag, and the change of furnace pressure loss. 副原料の装入量と高炉スラグ量の変化との関係を示す図である。It is a figure which shows the relationship between the charging amount of an auxiliary material, and the change of the amount of blast furnace slag. 副原料の装入量と高炉炉頂ガス温度の変化量との関係を示す図である。It is a figure which shows the relationship between the charging amount of an auxiliary material, and the variation | change_quantity of blast furnace top gas temperature. 水酸化マグネシウム鉱石の装入量とスラグ中MgO含有率および炉内圧損の変化との関係の関係を示す図である。It is a figure which shows the relationship of the charging amount of magnesium hydroxide ore, the relationship between the MgO content rate in slag, and the change of furnace pressure loss. 副原料の装入量と溶銑中Si含有率の変化との関係を示す図である。It is a figure which shows the relationship between the charging amount of an auxiliary material, and the change of Si content rate in hot metal. 副原料の装入量と溶銑中S含有率の変化との関係を示す図である。It is a figure which shows the relationship between the charging amount of an auxiliary material, and the change of S content rate in hot metal. 副原料の装入量と炉内圧損の変化との関係を示す図である。It is a figure which shows the relationship between the charging amount of an auxiliary material, and the change of the furnace pressure loss. 副原料の炉内半径方向装入位置と炉内圧損の変化および溶銑中Si含有率の変化との関係を示す図であり、同図(a)は副原料の炉内半径方向装入位置と炉内圧損の変化との関係を示し、同図(b)は副原料の炉内半径方向装入位置と溶銑中Si含有率の変化との関係を示す。It is a figure which shows the relationship between the radial charging position in the furnace of an auxiliary raw material, the change of the furnace pressure loss, and the change of Si content rate in a hot metal, The figure (a) is the radial charging position of the auxiliary raw material in the furnace. The relationship with the change in the furnace pressure loss is shown, and FIG. 4B shows the relationship between the charging position of the auxiliary material in the furnace radial direction and the change in the Si content in the hot metal. 高結晶水鉄鉱石の使用比率と炉内圧損の変化との関係を、高結晶水鉄鉱石単独使用の場合と水酸化マグネシウム鉱石混合使用の場合とについて比較して示す図である。It is a figure which shows the relationship between the use ratio of a high-crystal water iron ore, and the change of the pressure loss in a furnace in the case of using a high-crystal water iron ore alone and the case of using a magnesium hydroxide ore mixed use.

Claims (3)

微粉炭吹込み量が溶銑1トン(t)当たり100kg以上であり、鉱石類装入物中の塊鉱石比率が30質量%以下の高炉操業において、溶銑1トン(t)当たり5〜30kgの水酸化マグネシウム鉱石を高炉炉頂部から炉内に装入することを特徴とする高炉操業方法。   In blast furnace operation in which the amount of pulverized coal injection is 100 kg or more per 1 ton (t) of hot metal and the mass of ore in the ore charge is 30% by mass or less, 5 to 30 kg of water per 1 ton (t) of hot metal A method of operating a blast furnace, characterized in that magnesium oxide ore is charged into the furnace from the top of the blast furnace. 前記水酸化マグネシウム鉱石が塊状鉱石であって、装入物のストックレベルにおいて炉中心から水酸化マグネシウム鉱石の装入位置までの炉内半径方向距離をrとし、炉中心から炉壁までの距離をRとしたとき、前記水酸化マグネシウム鉱石を、その装入位置が、下記(1)式で表される関係を満足するように炉内に装入することを特徴とする請求項1に記載の高炉操業方法。
0.4≦r/R≦1 ・・・・(1)
The magnesium hydroxide ore is a massive ore, and the distance from the center of the furnace to the charging position of the magnesium hydroxide ore at the stock level of the charge is r, and the distance from the furnace center to the furnace wall is The said magnesium hydroxide ore is charged in a furnace so that the charging position may satisfy the relationship represented by the following formula (1) when R is set. Blast furnace operation method.
0.4 ≦ r / R ≦ 1 (1)
SiO2含有率が4.5質量%以上の塊鉱石と前記水酸化マグネシウム鉱石とを高炉炉頂部から炉内に混合装入することを特徴とする請求項1または2に記載の高炉操業方法。
Blast furnace operation according to claim 1 or 2 SiO 2 content to the said magnesium hydroxide ore with 4.5 mass% or more lump ore, wherein the mixing Sonyusu Turkey into the furnace from the blast furnace top Method.
JP2007085118A 2007-03-28 2007-03-28 Blast furnace operation method Active JP5012138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085118A JP5012138B2 (en) 2007-03-28 2007-03-28 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085118A JP5012138B2 (en) 2007-03-28 2007-03-28 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2008240109A JP2008240109A (en) 2008-10-09
JP5012138B2 true JP5012138B2 (en) 2012-08-29

Family

ID=39911790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085118A Active JP5012138B2 (en) 2007-03-28 2007-03-28 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5012138B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5400600B2 (en) * 2009-12-18 2014-01-29 株式会社神戸製鋼所 Blast furnace operation method
JP6519036B2 (en) * 2016-12-16 2019-05-29 Jfeスチール株式会社 Blast furnace operation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153209A (en) * 1984-12-26 1986-07-11 Nippon Kokan Kk <Nkk> Low-s operation method in blast furnace
JP2001140007A (en) * 1999-11-15 2001-05-22 Nippon Steel Corp Operating method of blast furnace using polycrystallized water-containing iron raw material
JP4155225B2 (en) * 2004-04-28 2008-09-24 住友金属工業株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
JP2008240109A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
US6149709A (en) Method of making iron and steel
KR101355325B1 (en) Blast furnace operation method
EP2210959B1 (en) Process for producing molten iron
JP2014132108A (en) Method for operating blast furnace and method for manufacturing molten iron
US8012237B2 (en) Process for producing molten iron
WO2009031368A1 (en) Vertical furnace and method of operating the same
JP5012138B2 (en) Blast furnace operation method
US8475561B2 (en) Method for producing molten iron
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
JPH0913107A (en) Operation of blast furnace
JP2004218067A (en) Method for operating blast furnace
JP3017009B2 (en) Blast furnace operation method
JP2001107114A (en) Operation of blast furnace using highly reducible sintered ore
JP4415690B2 (en) Method for producing sintered ore
JP4155225B2 (en) Blast furnace operation method
JP3590543B2 (en) How to inject iron-containing powder into the blast furnace
JP4768921B2 (en) High pulverized coal injection low Si blast furnace operation method
JP3226652B2 (en) Blast furnace operation method
JP5693768B2 (en) Blast furnace operating method and hot metal manufacturing method
JPH1129803A (en) Operation of blast furnace using high reducibility sintered ore
JP3617464B2 (en) Blast furnace operation method
JP2002060809A (en) Low furnace heat blast furnace operation method using sintered ore having controlled chemical composition
JPH06145734A (en) Operation method of blast furnace
JP2010242201A (en) Operation method for vertical type melting furnace
JP2011127197A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350