JP2001107114A - Operation of blast furnace using highly reducible sintered ore - Google Patents

Operation of blast furnace using highly reducible sintered ore

Info

Publication number
JP2001107114A
JP2001107114A JP28534399A JP28534399A JP2001107114A JP 2001107114 A JP2001107114 A JP 2001107114A JP 28534399 A JP28534399 A JP 28534399A JP 28534399 A JP28534399 A JP 28534399A JP 2001107114 A JP2001107114 A JP 2001107114A
Authority
JP
Japan
Prior art keywords
blast furnace
content
sintered ore
iron ore
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28534399A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamaguchi
一良 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28534399A priority Critical patent/JP2001107114A/en
Publication of JP2001107114A publication Critical patent/JP2001107114A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve the lowering of fuel ratio and the improvement of production in a blast furnace by securing the reducibility of a sintered ore, raising an O/C ratio at the peripheral part of the furnace and improving the reducing efficiency in this zone when a large quantity of pulverized fine coal is blown in. SOLUTION: In an operational method of the blast furnace, by which the pulverized fine coal is blown from a tuyere part of the blast furnace, and also, iron raw material and carbonaceous material are charged from the furnace top part of the blast furnace, the high reducible sintered ore containing <5 wt.% SiO2, <1 wt.% MgO and <1.8 wt.% Al2O3 and having 1.8-2.5 basicity (CaO/SiO2) is charged from the furnace top part of the blast furnace, or in addition, together with the highly reducible sintered ore, massive iron ore having high content of Al2O3 and 10-35 mm grain diameter, is pre-mixed therewith and charged, or the powdery iron ore having high content of Al2O3 and <5 mm grain diameter is blown from the tuyere part of the blast furnace to adjust the Al2O3 content in slag flowing out from an iron tapping outlet of the blast furnace to 13-16 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炉頂から装入され
る鉄鉱石の大部分を占める焼結鉱の被還元性を確保する
ことにより、燃料比を低減させ、生産性を向上させる高
炉操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace for reducing the fuel ratio and improving the productivity by securing the reducibility of the sinter which occupies most of the iron ore charged from the furnace top. Regarding the operation method.

【0002】[0002]

【従来の技術】従来から高炉操業において、コ−クスの
代替として、安価で燃焼性がよく発熱量の高い微粉炭、
石油、重油、ナフサ等の燃料を高炉羽口部より吹込みこ
とで、溶銑の製造コスト低減や生産性向上を図る技術が
特公昭40−23763号公報等で知られている。特に
最近では、製造コストの点から微粉炭吹込み操業が主流
となってきており、燃料比低減(コスト低減)や生産性
向上に大きく寄与している。
2. Description of the Related Art Conventionally, in blast furnace operation, pulverized coal which is inexpensive, has good flammability, and has a high calorific value has been used as an alternative to coke.
Japanese Patent Publication No. 40-23376 discloses a technique for injecting a fuel such as petroleum, heavy oil, or naphtha from a tuyere of a blast furnace to reduce the production cost and improve the productivity of hot metal. In recent years, in particular, pulverized coal injection has become the mainstream in terms of production cost, and has greatly contributed to a reduction in fuel ratio (cost reduction) and an improvement in productivity.

【0003】このような微粉炭吹込み操業においては、
一部のコ−クスに代って高炉羽口部より吹込まれた微粉
炭が高炉内で燃焼し、良好な燃焼性のため高い発熱量が
得られるため、多量の高温還元ガスを生成して高炉の炉
熱を高くでき、鉄鉱石の効率的な還元反応を行うことが
できる。したがって高炉炉頂部より装入された鉄鉱石
は、上記高温還元ガスにより容易に金属状態に還元さ
れ、かつ溶融して高温の溶銑となるため、高炉の生産性
の向上に寄与している。
In such a pulverized coal injection operation,
Pulverized coal injected from the blast furnace tuyere in place of some coke is burned in the blast furnace, and a high calorific value is obtained due to good combustibility. The furnace heat of the blast furnace can be increased, and an efficient reduction reaction of iron ore can be performed. Therefore, the iron ore charged from the top of the blast furnace is easily reduced to a metallic state by the high-temperature reducing gas and melted to form hot metal, thereby contributing to an improvement in productivity of the blast furnace.

【0004】また、上記の微粉炭吹込み操業において、
100kg/t以上の多量の微粉炭を吹込んだ場合に
は、高炉の塊状帯における加熱還元効率の指標である熱
流比(ガスの熱容量に対する固体の熱容量の比)が低下
し、加熱還元に余裕が生じるため、従来、高炉原料装入
時の鉄鉱石とコ−クスの比率(以下O/Cと称する)を
増加させた高還元率指向の操業が行われていた。
In the above pulverized coal injection operation,
When a large amount of pulverized coal of 100 kg / t or more is blown, the heat flow ratio (the ratio of the heat capacity of the solid to the heat capacity of the gas), which is an index of the heat reduction efficiency in the massive zone of the blast furnace, decreases, and the heat reduction is not sufficient. Conventionally, a high reduction rate-oriented operation has been performed in which the ratio of iron ore to coke (hereinafter referred to as O / C) at the time of charging the blast furnace raw material is increased.

【0005】さらに、近年の高炉操業においては、高炉
炉頂部から装入される鉄原料において鉄鉱石に対する焼
結鉱の占める割合は通常60〜80%と非常に高くなっ
てきており、高炉内の還元効率は、焼結鉱の被還元性等
の性状によりほぼ決定される。したがって、上記の高還
元効率を指向した炉周辺部の高O/C化操業において
も、焼結鉱の被還元性等の性状は、高炉の燃料比低減、
生産性の向上にとって非常に重要である。
Further, in recent blast furnace operations, the ratio of sinter to iron ore in the iron raw material charged from the top of the blast furnace has become extremely high, usually 60 to 80%. The reduction efficiency is substantially determined by the properties of the sinter such as reducibility. Therefore, even in the above-mentioned high O / C operation at the periphery of the furnace aimed at high reduction efficiency, the properties such as the reducibility of the sintered ore can be reduced by reducing the fuel ratio of the blast furnace,
It is very important for productivity improvement.

【0006】一般に、高炉の微粉炭吹込み操業において
は、炉内周辺部に装入された鉄鉱石は、高炉羽口部のコ
−クス旋回燃焼領域(以下レ−スウェイと称する)で生
成した高温還元ガスとの間で反応伝熱が進行し、鉄鉱石
の軟化融着により融着帯が生成する(ここで炉周辺部に
生成するものを根と称する)。この根は、通常の高炉操
業においては、炉下部炉周辺部に安定して存在し、位置
と厚みに変動のないことが望ましい。
[0006] Generally, in the pulverized coal injection operation of a blast furnace, iron ore charged in the peripheral portion of the furnace is generated in a coke swirl combustion region (hereinafter, referred to as a raceway) of a blast furnace tuyere. Reaction heat transfer proceeds with the high-temperature reducing gas, and a cohesive zone is generated by softening and welding of the iron ore (the one generated at the periphery of the furnace is referred to as a root). It is desirable that the roots are stably present in the periphery of the lower furnace in normal blast furnace operation and do not change in position and thickness.

【0007】高還元効率を指向した微粉炭多量吹込み操
業においては、前述したように炉周辺部のO/Cが非常
に高くなるため、鉄鉱石の層厚が厚くなり、焼結鉱が高
炉内を降下する過程での加熱還元が遅れ、その結果、還
元せずに残存したFeOとシリカ(SiO2 )が結合し
て低融点化合物が生成される。この低融点化合物の融液
中にさらに鉄鉱石や焼結鉱中のアルミナ(Al2 O3)
やマグネシァ(MgO)が溶け込み、この融液中にさら
に残存したFeOが溶け込むことで融液の量が増加す
る。
[0007] In the pulverized coal mass injection operation aimed at high reduction efficiency, the O / C around the furnace becomes extremely high as described above, so that the iron ore layer becomes thick and the sintered ore becomes blast furnace. Heat reduction in the process of descending inside is delayed, and as a result, FeO and silica (SiO2) remaining without being reduced combine to form a low melting point compound. Alumina (Al2 O3) in iron ore and sintered ore is added to the melt of the low melting point compound.
And magnesium (MgO) dissolve, and the remaining FeO further dissolves in the melt, thereby increasing the amount of the melt.

【0008】この融液は、還元ガスの浸透が悪いため、
この融液量の増加とともに焼結鉱の加熱還元遅れがさら
に助長される。したがつて、従来の微粉炭多量吹込み操
業においては、上記のような問題を回避するために、炉
周辺部のO/Cを低下させるアクションを実施せざるを
得なかった。
[0008] Since this melt has poor penetration of the reducing gas,
The increase in the amount of the melt further promotes the delay of the heat reduction of the sintered ore. Therefore, in the conventional pulverized coal large-volume injecting operation, in order to avoid the above-mentioned problem, an action to reduce the O / C in the furnace peripheral portion has to be performed.

【0009】このような焼結鉱の還元遅れの要因となる
低融点化合物の融液量を減少させるために、焼結鉱中の
脈石成分であるSiO2 ,Al2 O3 ,MgO,カルシ
ァ(CaO)を減少させることが従来から試みられてき
た。しかしながら、焼結鉱中の脈石成分のうち、CaO
は焼結鉱の強度、被還元性を改善したり、塩基度(Ca
O/SiO2 )を確保するために必要な成分であり、A
l2 O3 の低減は、鉄鉱石のコストの増加を招く。
In order to reduce the amount of the low-melting-point compound which causes a delay in the reduction of the sinter, the gangue components of the sinter, SiO2, Al2 O3, MgO, calcium (CaO), are reduced. It has been attempted in the past to reduce. However, among the gangue components in the sinter, CaO
Improves the strength and reducibility of the sintered ore, and improves the basicity (Ca
O / SiO2) is a component necessary for securing
The reduction of l2O3 leads to an increase in the cost of iron ore.

【0010】また、SiO2 ,MgOは、焼結鉱の強
度、還元粉化性を確保するために必要であるとともに、
特に、高炉の出銑口から流出するスラグ中のAl2 O3
とMgOの含有量をある定められた範囲に調整して、ス
ラグの流動性や脱硫能を確保するためにも必要である。
したがって、これらの焼結鉱中の脈石成分を低減するた
めに限界があった。
[0010] Further, SiO2 and MgO are necessary to secure the strength and reduced powderability of the sintered ore.
In particular, Al2 O3 in slag flowing out of the blast furnace taphole
It is also necessary to adjust the content of MgO and MgO to a predetermined range to secure the fluidity and desulfurization ability of the slag.
Therefore, there is a limit in reducing the gangue component in these sintered ores.

【0011】よって、従来、微粉炭多量吹込み操業にお
いては、上述のような焼結鉱の還元遅れのために炉周辺
部のO/Cを上昇することができないため、燃料比が増
加するとともに、炉周辺部のガス量が過剰になり、炉体
放散熱が増大し、装入物降下異常の発生、生産性の低下
などの問題が生じていた。そのため、微粉炭多量吹込み
によって得られる炉周辺部における加熱還元の余裕代を
有効に利用できず、燃料比・生産性向上のためには微粉
炭吹込み量を規制せざるを得なかった。なお、ここでい
う炉周辺部とは、炉壁から炉口径の15%の距離までの
領域を指す。
Therefore, conventionally, in the operation of injecting a large amount of pulverized coal, O / C in the periphery of the furnace cannot be increased due to the delay in reduction of the sinter, as described above. However, the amount of gas in the vicinity of the furnace becomes excessive, the heat dissipated in the furnace body increases, and problems such as the occurrence of an abnormal charge drop and a decrease in productivity have been encountered. Therefore, the margin of heating reduction in the periphery of the furnace obtained by injecting a large amount of pulverized coal cannot be effectively used, and the amount of pulverized coal to be injected must be regulated in order to improve the fuel ratio and productivity. Here, the furnace peripheral part refers to a region from the furnace wall to a distance of 15% of the furnace diameter.

【0012】このような問題点の改善を図るために本発
明者らは、この点を改良した技術の発明を行い既に特開
平11−29803号として出願を行っている。その概
要は「高炉への微粉炭多量吹込み時に焼結鉱の被還元性
を確保し、炉周辺部のO/Cを上昇させ、この領域の還
元効率を向上させることにより、高炉の燃料比低減、生
産性向上を達成する目的で、焼結鉱中のSiO2 および
MgOの含有量をそれぞれ5.0wt%未満、1.0w
t%未満とし、かつCaO/SiO2 を1.8〜2.5
とすることにより、焼結鉱の被還元性を良好に維持する
と共に、出銑口から流出するスラグ中のAl2 O3 ,M
gO含有量の調整のために、炉頂部からSiO2 ・Mg
Oを含む塊状副原料を装入、あるいは羽口部からSiO
2 ・MgOを含む粉状副原料を吹込む」ことにある。
In order to improve such a problem, the present inventors have invented a technique which has improved this point, and have already filed an application as Japanese Patent Application Laid-Open No. Hei 11-29803. The outline is, "When the large amount of pulverized coal is injected into the blast furnace, the reducibility of the sinter is secured, the O / C at the periphery of the furnace is increased, and the reduction efficiency of this region is improved. In order to achieve reduction and improvement in productivity, the contents of SiO2 and MgO in the sinter are less than 5.0 wt% and 1.0 w%, respectively.
t% and CaO / SiO2 of 1.8 to 2.5
By keeping the reducibility of the sinter good, the Al2 O3, M in the slag flowing out of the taphole is maintained.
In order to adjust the gO content, SiO2
A bulk auxiliary material containing O is charged, or SiO
2 ・ Blow in powdery auxiliary material containing MgO ”.

【0013】[0013]

【発明が解決しようとする課題】上記した発明によって
従来技術の問題点の解決は、それなりに果たすことがで
きたが、本発明者らはさらなる改善を目指して、焼結鉱
の被還元性を向上させることにより、微粉炭多量吹込み
時に炉周辺部のO/Cを上昇させ、この領域の還元効率
の上昇を図ることにより、高炉の燃料比低減、生産性向
上を安定的に行うことを課題とした。
The above-mentioned inventions have been able to solve the problems of the prior art to some extent, but the present inventors have aimed at reducing the reducibility of the sintered ore with the aim of further improvement. By increasing the O / C around the furnace when a large amount of pulverized coal is blown, the reduction efficiency in this area is increased, so that the fuel ratio of the blast furnace can be reduced and the productivity can be stably improved. Assigned.

【0014】[0014]

【課題を解決するための手段】本発明は前記した従来方
法における問題点を解決するためになされたものであっ
て、その要旨するところは、下記手段にある。 (1) 高炉羽口部から微粉炭を吹込むとともに、高炉
炉頂部から鉄原料および炭材を装入する高炉操業におい
て、高炉炉頂部からSiO2 が5wt%未満、MgOが
1wt%未満、Al2 O3 が1.8wt%未満それぞれ
含有し、かつ塩基度(CaO/SiO2 )が1.8〜
2.5である高被還元性焼結鉱を装入する高被還元性焼
結鉱を使用した高炉操業方法。 (2) 高炉炉頂部から高被還元性焼結鉱とともに、A
l2 O3 含有量の多い粒径10〜35mmの塊状鉄鉱石
とを予め混合して装入し、高炉出銑口から流出するスラ
グ中のAl2 O3 含有量を13〜16wt%に調節する
(1)記載の高被還元性焼結鉱を使用した高炉操業方
法。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the conventional method, and its gist lies in the following means. (1) In a blast furnace operation in which pulverized coal is blown from the tuyere of the blast furnace and iron and carbon materials are charged from the top of the blast furnace, SiO2 is less than 5 wt%, MgO is less than 1 wt%, Al2 O3 Is less than 1.8 wt%, and the basicity (CaO / SiO2) is 1.8 to
A blast furnace operating method using a highly reducible sintered ore into which the highly reducible sintered ore of 2.5 is charged. (2) From the top of the blast furnace, together with highly reducible sintered ore,
A lump mass of iron ore having a large l2 O3 content and having a particle size of 10 to 35 mm is previously mixed and charged, and the Al2 O3 content in the slag flowing out of the blast furnace taphole is adjusted to 13 to 16 wt% (1). A blast furnace operating method using the highly reducible sintered ore described in the above.

【0015】(3) 前記高炉出銑口から流出するスラ
グ中のAl2 O3 含有量を適正範囲内に調節するため、
高炉炉頂部から装入する鉄鉱石の配合割合をAl2 O3
含有量によって調整する(2)記載の高被還元性焼結鉱
を使用した高炉操業方法。 (4) 高炉炉頂部から高被還元性焼結鉱を装入すると
ともに、高炉羽口部からAl2 O3 含有量の多い粒径5
mm未満の粉状鉄鉱石を吹込み、高炉出銑口から流出す
るスラグ中のAl2 O3 含有量を13〜16wt%に調
節する(1)記載の高被還元性焼結鉱を使用した高炉操
業方法。
(3) In order to adjust the content of Al 2 O 3 in the slag flowing out of the blast furnace tap hole within an appropriate range,
The mixing ratio of iron ore charged from the top of the blast furnace
A method for operating a blast furnace using the highly reducible sintered ore according to (2), which is adjusted by the content. (4) A highly reducible sintered ore is charged from the top of the blast furnace, and a particle having a large Al2O3 content is discharged from the tuyere of the blast furnace.
Blast furnace operation using highly reducible sintered ore according to (1), wherein fine iron ore having a diameter of less than 1 mm is blown and the Al2O3 content in the slag flowing out of the blast furnace taphole is adjusted to 13 to 16 wt%. Method.

【0016】(5) 前記高炉出銑口から流出するスラ
グ中のAl2 O3 含有量を適正範囲内に調節するため、
高炉羽口部から吹込む粉状鉄鉱石の配合割合をAl2 O
3 含有量によって調整する(4)記載の高被還元性焼結
鉱を使用した高炉操業方法。 (6) 予め40〜90%の予備還元を行った粉状鉄鉱
石を高炉羽口部から吹込む(4)または(5)に記載の
高被還元性焼結鉱を使用した高炉操業方法。 (7) 粉状鉄鉱石を予め微粉炭と混合して、高炉羽口
部から吹込む(4)ないし(6)の何れかに記載の高被
還元性焼結鉱を使用した高炉操業方法。
(5) In order to adjust the content of Al 2 O 3 in the slag flowing out of the blast furnace tap hole within an appropriate range,
The mixing ratio of the powdered iron ore injected from the tuyere
3. A method for operating a blast furnace using the highly reducible sintered ore according to (4), wherein the sinter is adjusted by the content. (6) A method for operating a blast furnace using the highly reducible sintered ore according to (4) or (5), wherein the fine iron ore that has been preliminarily reduced by 40 to 90% is blown from the tuyere of the blast furnace. (7) A blast furnace operating method using the highly reducible sintered ore according to any one of (4) to (6), wherein the fine iron ore is previously mixed with pulverized coal and blown from the tuyere of the blast furnace.

【0017】[0017]

【発明の実施の形態】本発明においては、高炉炉頂部か
ら鉄原料として装入する焼結鉱中のSiO2含有量を5
wt%未満、MgOの含有量を1wt%未満、Al2 O
3 の含有量を1.8wt%未満にそれぞれ限定した。焼
結鉱中のSiO2 は、焼結鉱が還元される際に、残留し
たFeOと結合により低融点化合物からなる溶液を生成
し、還元ガスの通気性を悪化させ周辺の焼結鉱の被還元
性を阻害するため、その溶液量を低減させるために焼結
鉱中のSiO2 含有量を5wt%未満とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the content of SiO2 in a sintered ore charged as iron raw material from the top of a blast furnace is 5%.
wt%, MgO content less than 1 wt%, Al2O
3 was limited to less than 1.8 wt%. When the sinter is reduced, the SiO2 in the sinter generates a solution composed of a low-melting-point compound by bonding with the remaining FeO, deteriorating the permeability of the reducing gas, and reducing the reduction of the surrounding sinter. Therefore, the content of SiO2 in the sinter was set to less than 5 wt% in order to reduce the amount of the solution in order to inhibit the property.

【0018】焼結鉱中のMgOは、上記の低融点化合物
の融液中に溶け込むことにより、融液量を増大させるた
め、その増大による周辺焼結鉱の被還元性の阻害を防止
するために、その含有量を1wt%未満とした。焼結鉱
中のAl2 O3 は、FeOとの結合により低融点化合物
を生成したり、その溶液中に溶け込むことにより溶液量
を増大させるため、その溶液による周辺焼結鉱の被還元
性の阻害を防止するために、その含有量を1.8wt%
未満とした。
MgO in the sinter is dissolved in the low-melting-point compound melt to increase the amount of the melt. The content was less than 1 wt%. Al2O3 in the sinter generates a low melting point compound by bonding with FeO, or increases the amount of the solution by dissolving in the solution. In order to prevent this, its content is 1.8 wt%
Less than.

【0019】このように、焼結鉱中のSiO2 ,Mg
O,Al2 O3 の含有量を上記の量に規定することによ
り、FeOとSiO2 ,MgO,Al2 O3 からなる低
融点の融液の生成量を低減させ、焼結鉱の被還元性の低
下を抑制でき、被還元性を向上させることができる。こ
の焼結鉱の被還元性向上の効果により、焼結鉱の還元が
促進され低融点化合物を形成する残留FeO自体が少な
くなるため、その融液量を相乗的に減少でき、焼結鉱の
被還元性をさらに向上させることができる。
As described above, the SiO 2, Mg
By defining the contents of O and Al2 O3 to the above-mentioned amounts, the amount of the low melting point melt composed of FeO and SiO2, MgO and Al2 O3 is reduced, and the reduction of the reducibility of the sintered ore is suppressed. And the reducibility can be improved. Because of the effect of improving the reducibility of the sintered ore, the reduction of the sintered ore is promoted and the amount of residual FeO itself forming a low melting point compound is reduced, so that the amount of the melt can be reduced synergistically, and The reducibility can be further improved.

【0020】これらの効果は、特に、高微粉炭吹込み等
でO/Cが高く還元遅れが生じる炉周辺部において顕著
に現れるが、焼結鉱中のSiO2 含有量が5wt%以
上、MgO含有量が1wt%以上、Al2 O3 含有量が
1.8wt%以上の場合には、その効果は期待できな
い。
These effects are particularly noticeable in the periphery of the furnace where the O / C is high and the reduction delay occurs due to high pulverized coal injection or the like. However, the content of SiO 2 in the sintered ore is 5 wt% or more, and the content of MgO is When the amount is 1 wt% or more and the Al2O3 content is 1.8 wt% or more, the effect cannot be expected.

【0021】本発明のSiO2 含有量が5wt%未満、
MgO含有量が1wt%未満、Al2 O3 含有量が1.
8wt%未満である焼結鉱を製造するためには、焼結原
料において、たとえば、SiO2 ・MgOを多く含む副
原料(例えば蛇紋岩、橄欖岩、ジュナイト等)の配合
量、およびSiO2 ・Al2 O3 を多く含む鉄鉱石(例
えば豪州系鉄鉱石)の配合量を極力少なくすることによ
り容易に得られる。
The SiO 2 content of the present invention is less than 5 wt%,
MgO content is less than 1 wt%, Al2O3 content is 1.
In order to produce a sintered ore having a content of less than 8 wt%, in the sintering raw material, for example, the compounding amount of an auxiliary raw material (for example, serpentine, peridotite, junite, etc.) containing a large amount of SiO 2 .MgO, Can be easily obtained by minimizing the blending amount of iron ore (for example, Australian iron ore) containing a large amount of iron ore.

【0022】焼結鉱の被還元性向上の観点からは、焼結
鉱のSiO2 ,MgO,Al2 O3のそれぞれの含有量
の下限値は、特に規定する必要はない。しかしながら、
焼結鉱中のSiO2 ,MgO,Al2 O3 の含有は、焼
結鉱における強度、還元粉化性、またスラグにおいては
流動性及び脱硫能等の向上に効果があるので、これらの
成分を本発明で規定したように低減すると、前記効果が
低下することになり好ましくない。
From the viewpoint of improving the reducibility of the sintered ore, the lower limit of the content of each of SiO2, MgO and Al2 O3 in the sintered ore does not need to be particularly specified. However,
The content of SiO2, MgO and Al2 O3 in the sinter is effective in improving the strength, reduction and powdering properties of the sinter, and the fluidity and desulfurization ability of the slag. If the amount is reduced as specified in the above, the effect is undesirably reduced.

【0023】よって、これらの効果を確保するために本
発明においては、さらに以下の限定を行う。先ず、焼結
鉱中のMgO,Al2 O3 は、強度、還元粉化性の向上
に効果があるので、これらの成分を低減すると、焼結鉱
の強度、還元粉化性が低下せしめることになる。この問
題を解決するために、本発明では、さらに焼結鉱の塩基
度(CaO/SiO2 )を1.8〜2.5の範囲に規定
した。この理由は、塩基度が1.8未満であると焼結鉱
の被還元性が低下し、また、2.5を超えると、強度、
還元粉化性の確保が困難となるからである。
Therefore, in order to secure these effects, the present invention is further limited as follows. First, MgO and Al2 O3 in the sinter are effective in improving the strength and the reduction pulverizability. Therefore, when these components are reduced, the strength and the reduction pulverizability of the sinter decrease. . In order to solve this problem, in the present invention, the basicity (CaO / SiO2) of the sintered ore is further specified in the range of 1.8 to 2.5. The reason for this is that if the basicity is less than 1.8, the reducibility of the sinter decreases, and if it exceeds 2.5, the strength,
This is because it becomes difficult to ensure the reduction pulverizability.

【0024】次に、焼結鉱中のSiO2 ,MgO,Al
2 O3 の含有量の減少により、高炉の出銑口から流出す
るスラグ量も必然的に減少し、その流動性および脱硫能
が低下する。そこで、この問題を解決するために、本発
明では、SiO2 ,MgO,Al2O3 を多く含む鉄鉱
石を粒径10〜35mmの塊状鉄鉱石として前記焼結鉱
と予め混合して装入するか、または、SiO2 ・Al2
O3 を多く含む鉄鉱石を粒径5mm未満の粉状鉄鉱石と
して高炉羽口部から吹込むことにより、高炉出銑口から
流出するスラグ中のAl2 O3 含有量を13〜16wt
%に調節し、スラグの流動性および脱硫能を確保する。
Next, SiO2, MgO, Al in the sintered ore
Due to the decrease in the content of 2 O3, the amount of slag flowing out of the tap hole of the blast furnace is also inevitably reduced, and its fluidity and desulfurization ability are reduced. Therefore, in order to solve this problem, in the present invention, iron ore containing a large amount of SiO2, MgO and Al2O3 is preliminarily mixed with the sinter ore as a massive iron ore having a particle diameter of 10 to 35 mm. , SiO2 · Al2
The iron ore containing a large amount of O3 is blown from the tuyere of the blast furnace as fine iron ore having a particle size of less than 5 mm, so that the Al2O3 content in the slag flowing out of the blast furnace taphole is reduced to 13 to 16 wt.
% To ensure the fluidity and desulfurization capacity of the slag.

【0025】すなわち、上記塊状鉄鉱石を高被還元性焼
結鉱と予め混合して高炉炉頂部から装入する場合は、本
発明では、その塊状鉄鉱石の粒径を10〜35mmの範
囲に限定する。その理由は、粒径が35mmを超える
と、塊状鉄鉱石の還元が進行しにくくなり、また粒径が
10mm未満であると、還元進行には差し支えないが高
炉の通気性が低下するためである。
That is, when the above-mentioned massive iron ore is preliminarily mixed with the highly reducible sinter ore and charged from the blast furnace top, in the present invention, the particle diameter of the massive iron ore is set to a range of 10 to 35 mm. limit. The reason is that if the particle size exceeds 35 mm, the reduction of the lump iron ore becomes difficult to proceed, and if the particle size is less than 10 mm, the reduction does not interfere with the progress of the reduction, but the permeability of the blast furnace decreases. .

【0026】この様な方法を採ることにより、SiO2
およびAl2 O3 の含有量が低い高被還元性焼結鉱であ
っても、SiO2 およびAl2 O3 の含有量が高い塊状
鉄鉱石を混合して装入すると、焼結鉱の還元により低融
点化合物からなる融液を生成するが、生成する融液量が
少ないためにその融液による周辺の焼結鉱の還元進行を
阻害することはなく、その状態で融液との反応が進行し
てスラグを生成することができる。その結果、出銑口か
ら流出するスラグ中のAl2 O3 含有量を低下すること
が避けられ、スラグの流動性および脱硫能を適切な値に
確保できる。
By adopting such a method, SiO 2
And high reducible sinter having a low content of Al2 O3, when a massive iron ore having a high content of SiO2 and Al2 O3 is mixed and charged, the sinter is reduced to reduce the low melting point compound. However, since the amount of generated melt is small, it does not hinder the progress of the reduction of the surrounding sinter by the melt, and the reaction with the melt proceeds in that state to generate slag. Can be generated. As a result, it is possible to avoid reducing the Al2O3 content in the slag flowing out of the taphole, and it is possible to secure the fluidity and desulfurization ability of the slag to appropriate values.

【0027】しかして、本発明では、これらの方法を用
い出銑口から流出するスラグ中のAl2 O3 含有量をス
ラグ流動性および脱硫能が良好となる13〜16wt%
の範囲に調整するするものである。また、上記塊状鉄鉱
石を装入する際、焼結鉱と混合せずに単独に装入する
と、SiO2 ,MgOの成分偏析を招く惧れがあり、好
ましくないので予め焼結鉱と混合することが必要であ
る。
According to the present invention, the content of Al2 O3 in the slag flowing out of the taphole by using these methods is determined to be 13 to 16 wt% at which the slag fluidity and desulfurization ability are improved.
Is adjusted in the range of. In addition, when the above-mentioned massive iron ore is charged, if it is charged alone without mixing with the sintered ore, there is a fear that the component segregation of SiO2 and MgO may be caused. is necessary.

【0028】スラグ中のAl2 O3 含有量を13〜16
wt%の適正範囲に確保するための方法としては、例え
ば豪州系鉄鉱石などのSiO2 およびAl2 O3 を多く
含む塊状鉄鉱石を用い、高被還元性焼結鉱と混合する際
にその配合量を調整することにより行う。
The content of Al 2 O 3 in the slag is 13-16.
As a method for ensuring an appropriate range of wt%, for example, a lump iron ore such as an Australian iron ore containing a large amount of SiO2 and Al2 O3 is used, and when the iron ore is mixed with a highly reducible sintered ore, the amount thereof is adjusted. Adjustment is performed.

【0029】次に、粉状鉄鉱石を高炉羽口部から吹き込
む場合は、その粉状鉄鉱石の粒径を5mm未満に限定す
る。その理由は、粉状鉄鉱石の粒径が5mm以上の場合
は、レ−スウェイ内での溶融、スラグ化され難く吹き込
みによる効果が得られないためである。粉状鉄鉱石を高
炉羽口部から吹き込む場合にも、SiO2 およびAl2
O3 の含有量が低い高被還元性焼結鉱の使用効果である
ところの低融点融液量が少ないため、SiO2 およびA
l2 O3 の含有量が高い粉状鉄鉱石と反応してスラグを
生成することができる。その結果、塊状鉄鉱石の混合装
入と同様に、出銑口から流出するスラグ中のAl2 O3
含有量を低下することが避けられ、スラグの流動性およ
び脱硫能を確保できる。
Next, when the fine iron ore is blown from the tuyere of the blast furnace, the particle size of the fine iron ore is limited to less than 5 mm. The reason is that when the particle size of the fine iron ore is 5 mm or more, it is difficult to melt and slag in the raceway and the effect of blowing cannot be obtained. Even when fine iron ore is blown from the tuyere of the blast furnace, SiO2 and Al2
Due to the small amount of low melting point melt, which is the effect of using a highly reducible sintered ore having a low O3 content, SiO2 and A
Slag can be produced by reacting with fine iron ore having a high content of l2 O3. As a result, similar to the mixed charging of massive iron ore, Al2 O3 in slag flowing out of the taphole
Lowering of the content is avoided, and the fluidity and desulfurization ability of the slag can be secured.

【0030】この粉状鉄鉱石を高炉羽口部から吹き込む
場合には、豪州系鉄鉱石などのSiO2 およびAl2 O
3 を多く含む塊状鉄鉱石を粉状化して用い、高炉羽口部
から吹き込む際の吹込み量を調整することにより、スラ
グ中のAl2 O3 含有量をスラグ流動性および脱硫能が
良好となる13〜16wt%の範囲に確保するものであ
る。スラグ中のAl2 O3 含有量が13〜16wt%の
範囲から外れた場合は、スラグ流動性および脱能を良好
に保つことができない。
When this powdery iron ore is blown from the tuyere of the blast furnace, SiO2 and Al2O such as Australian iron ore are used.
By using a lump iron ore containing a large amount of 3 in the form of powder and adjusting the amount of air blown from the tuyere of the blast furnace, the Al2O3 content in the slag improves the slag fluidity and desulfurization ability. -16% by weight. If the Al2 O3 content in the slag is out of the range of 13 to 16% by weight, the slag fluidity and deaeration cannot be kept good.

【0031】また、高炉羽口部から粉状鉄鉱石を吹き込
む際、本発明では、予め40〜90%に予備還元した鉄
鉱石を使用する方が好ましい。かくすることにより、高
炉炉頂部から装入する焼結鉱や鉄鉱石の還元に必要な熱
量を低減させることができ、その分、レ−スウェイ内の
温度を上昇させ、レ−スウェイ内での溶融、スラグ化を
促進させることができる。粉状鉄鉱石を高炉羽口部から
吹込む際は、微粉炭吹込み用のランスとは別の専用ラン
スから吹込んでも、予め微粉炭と混合して同一ランスか
ら吹込んでも、どちらでもよくレ−スウェイ内での溶
融、スラグ化の効果を享受できる。
In the present invention, it is preferable to use iron ore preliminarily reduced to 40 to 90% when blowing fine iron ore from the tuyere of the blast furnace. By doing so, the amount of heat required for reducing the sinter ore ore charged from the top of the blast furnace can be reduced, and accordingly, the temperature in the raceway is increased, and the temperature in the raceway is increased. Melting and slag formation can be promoted. When pulverized iron ore is blown from the tuyere of the blast furnace, it may be blown from a dedicated lance separate from the lance for blowing pulverized coal, or may be mixed with pulverized coal in advance and blown from the same lance. The effect of melting and slag formation in the raceway can be enjoyed.

【0032】本発明で用いるのSiO2 及びAl2 O3
多く含む塊状鉄鉱石や粉状鉄鉱石は、高被還元性焼結鉱
を製造す際の配合において低減したSiO2 及びAl2
O3の含有量の少ない鉄鉱石(例えば豪州系鉄鉱石)を
用いることが可能であるため、原料コストを低減するう
えでも効果がある。
SiO 2 and Al 2 O 3 used in the present invention
Lumped iron ore or fine iron ore, which contains a large amount, is reduced in SiO2 and Al2 in the formulation when producing highly reducible sintered ore.
Since it is possible to use iron ore having a low O3 content (eg, Australian iron ore), it is also effective in reducing raw material costs.

【0033】[0033]

【実施例】以下実施例により本発明の効果を具体的に説
明する。実施した高炉は内容積3000m3 の中型高炉
であり、鉄鉱石中の焼結鉱使用割合が75wt%,焼結
鉱中(SiO2 )=5.5wt%,(MgO)=1.5
wt%,CaO/SiO2 =1.75で、かつ燃料比5
00kg/t,微粉炭吹込み量140kg/tに維持し
ながら操業を行い、溶銑を6000t/日製造してい
た。このときの焼結配合原料中には、SiO2 ・Al2
O3 を多く含む豪州系鉄鉱石を30.0wt%,SiO
2 ・MgOを多く含む副原料(蛇紋岩)を2.0wt%
配合していた。また出銑口から流出するスラグ中の(A
l2 O3 )=14.5wt%,(MgO)=6.5wt
%の含有量を保持していた。
EXAMPLES The effects of the present invention will be specifically described below with reference to examples. The blast furnace used was a medium-sized blast furnace with an inner volume of 3000 m 3 , the ratio of sinter used in iron ore was 75 wt%, (SiO 2) = 5.5 wt% in sintered ore, (MgO) = 1.5
wt%, CaO / SiO2 = 1.75, and a fuel ratio of 5
The operation was performed while maintaining the pulverized coal injection rate at 140 kg / t and the pulverized coal injection rate at 6000 t / day. At this time, the raw material for sintering is SiO2.Al2
30.0wt% of Australian iron ore containing a large amount of O3, SiO
2 2.0% by weight of secondary material (serpentine) containing much MgO
It was blended. (A) in the slag flowing out of the taphole
l2 O3) = 14.5 wt%, (MgO) = 6.5 wt
% Content was retained.

【0034】(実施例1)高炉羽口部からの微粉炭吹込
み量を180kg/tに増加すると共に、燃料比を49
0kg/tに低減し、焼結配合原料中に30.0wt%
配合していた豪州系鉄鉱石を25.0wt%に減少し、
焼結配合原料中に2.0wt%配合していた蛇紋岩を
1.0wt%に減少し、焼結鉱中(SiO2 )=4.8
wt%,(MgO)=0.9wt%,CaO/SiO2
=1.9とした。この結果、出銑口から流出するスラグ
中の(Al2 O3 )=15.5wt%,(MgO)=
6.5wt%になった。本発明による操業例とほぼ同一
である比較例1に比し、燃料比が低くでき、出銑量が多
くできた。
(Example 1) The amount of pulverized coal injected from the tuyere of the blast furnace was increased to 180 kg / t, and the fuel ratio was increased to 49 kg / t.
0kg / t, 30.0wt%
Australian iron ore that had been blended was reduced to 25.0 wt%,
The serpentinite, which had been blended at 2.0 wt% in the raw material for sintering, was reduced to 1.0 wt%, and (SiO2) = 4.8 in the sinter.
wt%, (MgO) = 0.9 wt%, CaO / SiO2
= 1.9. As a result, (Al2 O3) in the slag flowing out of the taphole = 15.5 wt%, (MgO) =
It became 6.5 wt%. Compared with Comparative Example 1 which is almost the same as the operation example according to the present invention, the fuel ratio can be reduced and the tapping amount can be increased.

【0035】(実施例2)高炉羽口部からの微粉炭吹込
み量を180kg/tに増加すると共に、燃料比を50
0kg/tとし、焼結配合原料中に30.0wt%配合
していた豪州系鉄鉱石を25.0wt%に減少し、焼結
配合原料中に2.0wt%配合していた蛇紋岩を1.0
wt%に減少し、焼結鉱中(SiO2 )=4.8wt
%,(MgO)=0.9wt%,CaO/SiO2 =
1.9とした。このとき、出銑口から流出するスラグ中
の(Al2 O3 )=14.5wt%,(MgO)=5.
0wt%となるように、高炉炉頂部から、15〜35m
m塊状豪州系鉄鉱石を装入鉄鉱石の3.8wt%の量だ
け、焼結鉱とあらかじめ混合して装入した本発明による
操業例である。比較例1に対比すると、燃料比が低く、
出銑量が多かった。
(Example 2) The amount of pulverized coal injected from the tuyere of the blast furnace was increased to 180 kg / t, and the fuel ratio was increased to 50 kg / t.
0 kg / t, the Australian iron ore blended in the sintering blending material was reduced to 35.0 wt% to 25.0 wt%, and the serpentinite blended in the sintering blending material was reduced to 2.0 wt%. .0
wt%, and in the sintered ore (SiO2) = 4.8 wt%
%, (MgO) = 0.9 wt%, CaO / SiO2 =
1.9. At this time, (Al2 O3) = 14.5 wt% and (MgO) = 5 in the slag flowing out of the taphole.
15 to 35 m from the top of the blast furnace so as to be 0 wt%
This is an operation example according to the present invention in which m massive Australian iron ore was previously mixed and charged in an amount of 3.8 wt% of the charged iron ore with the sinter. Compared to Comparative Example 1, the fuel ratio was low,
The tapping amount was large.

【0036】(実施例3)高炉羽口部からの微粉炭吹込
み量を180kg/tに増加すると共に、燃料比を49
5kg/tに低減し、焼結配合原料中に30.0wt%
配合していた豪州系鉄鉱石を25.0wt%に減少し、
焼結配合原料中に2.0wt%配合していた蛇紋岩を
1.0wt%に減少し、焼結鉱中(SiO2 )=4.8
wt%,(MgO)=0.9wt%,CaO/SiO2
=1.9とした。このとき、出銑口から流出するスラグ
中の(Al2 O3 )=14.5wt%,(MgO)=
5.0wt%となるように、羽口部から5.0mm未満
の粉状鉄鉱石を60kg/tの量だけ、微粉炭とは別の
ランスで吹込んだ本発明による操業例である。比較例1
に対比すると、燃料比が低く、出銑量が多かった。
(Example 3) The amount of pulverized coal injected from the tuyere of the blast furnace was increased to 180 kg / t, and the fuel ratio was increased to 49 kg / t.
Reduced to 5kg / t, 30.0wt%
Australian iron ore that had been blended was reduced to 25.0 wt%,
The serpentinite, which had been blended at 2.0 wt% in the raw material for sintering, was reduced to 1.0 wt%, and (SiO2) = 4.8 in the sinter.
wt%, (MgO) = 0.9 wt%, CaO / SiO2
= 1.9. At this time, (Al2 O3) in the slag flowing out of the taphole = 14.5 wt%, (MgO) =
This is an operation example according to the present invention in which fine iron ore having a diameter of less than 5.0 mm from the tuyere portion is blown at a rate of 60 kg / t with a lance separate from pulverized coal so as to be 5.0 wt%. Comparative Example 1
Compared to, the fuel ratio was low and the tapping amount was large.

【0037】(実施例4)高炉羽口部からの微粉炭吹込
み量を180kg/tに増加すると共に、燃料比を49
5kg/tに低減し、焼結配合原料中に30.0wt%
配合していた豪州系鉄鉱石を25.0wt%に減少し、
焼結配合原料中に2.0wt%配合していた蛇紋岩を
1.0wt%に減少し、焼結鉱中(SiO2 )=4.8
wt%,(MgO)=0.9wt%,CaO/SiO2
=1.9とした。このとき、出銑口から流出するスラグ
中の(Al2 O3 )=14.5wt%,(MgO)=
5.0wt%となるように、羽口部から5.0mm未満
の粉状鉄鉱石を60kg/tの量だけ、予め65%予備
還元して微粉炭と予め混合し、同一ランスで吹込んだ本
発明による操業例である。比較例1に対比すると、燃料
比が低く、出銑量が多かった。
(Example 4) The amount of pulverized coal injected from the tuyere of the blast furnace was increased to 180 kg / t, and the fuel ratio was increased to 49 kg / t.
Reduced to 5kg / t, 30.0wt%
Australian iron ore that had been blended was reduced to 25.0 wt%,
The serpentinite, which had been blended at 2.0 wt% in the raw material for sintering, was reduced to 1.0 wt%, and (SiO2) = 4.8 in the sinter.
wt%, (MgO) = 0.9 wt%, CaO / SiO2
= 1.9. At this time, (Al2 O3) in the slag flowing out of the taphole = 14.5 wt%, (MgO) =
Fine iron ore less than 5.0 mm from the tuyere portion was preliminarily reduced by 65% in an amount of 60 kg / t so as to be 5.0 wt%, and preliminarily mixed with pulverized coal, and blown in the same lance. It is an operation example by this invention. Compared with Comparative Example 1, the fuel ratio was low and the tapping amount was large.

【0038】(比較例1)高炉羽口部からの微粉炭吹込
み量を180kg/tに増加すると共に、燃料比を51
5kg/tに増加し、焼結配合原料中に30.0wt%
配合していた豪州系鉄鉱石をそのままにし、また焼結原
料中に2.0wt%配合していた蛇紋岩をそのままにし
て、焼結鉱中(SiO2 )=5.5wt%,(MgO)
=1.5wt%,CaO/SiO2 =1.75として操
業を継続した従来法による操業例である。実施例1、
2、3、4に比べて、燃料比を上昇せざるを得ず、上昇
したにも拘らず生産量は低下した。上記高炉操業結果を
まとめ、実施例と比較例として比較し、表1に示した。
(Comparative Example 1) The amount of pulverized coal injected from the tuyere of the blast furnace was increased to 180 kg / t, and the fuel ratio was increased to 51 kg / t.
5kg / t, 30.0wt%
With the Australian iron ore blended as it is and the serpentine blended with 2.0 wt% in the sintering raw materials as it is, the sinter ore (SiO2) = 5.5 wt%, (MgO)
= 1.5 wt%, CaO / SiO 2 = 1.75 is an operation example according to the conventional method in which the operation was continued. Example 1,
Compared to 2, 3, and 4, the fuel ratio had to be increased, and despite the increase, the production volume decreased. The results of the above blast furnace operation were summarized, compared with Examples and Comparative Examples, and are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】以上説明したように、本発明において
は、焼結鉱中のSiO2 が5wt%未満、およびMgO
が1wt%未満、かつCaO/SiO2 を1.8〜2.
5とすることにより、微粉炭多量吹込み時の焼結鉱の被
還元性を良好に維持できるため、炉周辺部のO/Cを増
加・還元効率を向上させ、高炉の燃料比低減、生産性向
上を安定的に行うことができる。また、高炉炉頂部から
粒径10〜35mmの塊状鉄鉱石とを予め、混合して装
入したり、高炉羽口部から粒径5mm未満の粉状鉄鉱石
を吹込むことで、高炉の出銑口から流出するスラグ中の
Al2 O3 含有量を13〜16wt%に調節することが
でき、流動性、脱硫能の良好なスラグを生成できる。
As described above, in the present invention, the content of SiO2 in the sintered ore is less than 5 wt% and the content of MgO
Is less than 1 wt% and CaO / SiO2 is 1.8 to 2.
By setting the value to 5, the reducibility of the sintered ore when a large amount of pulverized coal is injected can be maintained well, so the O / C around the furnace is increased, the reduction efficiency is improved, the fuel ratio of the blast furnace is reduced, and the production is reduced. Stability can be stably improved. Also, a lump of iron ore having a particle diameter of 10 to 35 mm is previously mixed and charged from the top of the blast furnace, or powdery iron ore having a particle diameter of less than 5 mm is blown from the tuyere of the blast furnace, thereby allowing the blast furnace to exit. The content of Al2 O3 in the slag flowing out of the pig iron can be adjusted to 13 to 16 wt%, and slag having good fluidity and desulfurization ability can be produced.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高炉羽口部から微粉炭を吹込むととも
に、高炉炉頂部から鉄原料および炭材を装入する高炉操
業において、高炉炉頂部からSiO2 が5wt%未満、
MgOが1wt%未満、Al2 O3 が1.8wt%未満
それぞれ含有し、かつ塩基度(CaO/SiO2 )が
1.8〜2.5である高被還元性焼結鉱を装入すること
を特徴とする高被還元性焼結鉱を使用した高炉操業方
法。
1. In a blast furnace operation in which pulverized coal is injected from a tuyere of a blast furnace and iron and carbon materials are charged from the top of the blast furnace, SiO2 is less than 5 wt% from the top of the blast furnace.
A highly reducible sintered ore containing less than 1 wt% of MgO and less than 1.8 wt% of Al2 O3 and having a basicity (CaO / SiO2) of 1.8 to 2.5 is charged. Blast furnace operation method using highly reducible sintered ore.
【請求項2】 高炉炉頂部から高被還元性焼結鉱ととも
に、Al2 O3 含有量の多い粒径10〜35mmの塊状
鉄鉱石とを予め混合して装入し、高炉出銑口から流出す
るスラグ中のAl2 O3 含有量を13〜16wt%に調
節することを特徴とする請求項1記載の高被還元性焼結
鉱を使用した高炉操業方法。
2. A high-reducible sintered ore, together with a lump iron ore having a large Al2 O3 content and a particle diameter of 10 to 35 mm, are charged and charged from the top of the blast furnace and discharged from the blast furnace taphole. The blast furnace operating method using a highly reducible sintered ore according to claim 1, wherein the content of Al2O3 in the slag is adjusted to 13 to 16 wt%.
【請求項3】 前記高炉出銑口から流出するスラグ中の
Al2 O3 含有量を適正範囲内に調節するため、高炉炉
頂部から装入する鉄鉱石の配合割合をAl2O3 含有量
によって調整することを特徴とする請求項2記載の高被
還元性焼結鉱を使用した高炉操業方法。
3. In order to adjust the Al2 O3 content in the slag flowing out of the blast furnace taphole within an appropriate range, the mixing ratio of the iron ore charged from the top of the blast furnace is adjusted by the Al2 O3 content. A blast furnace operating method using the highly reducible sintered ore according to claim 2.
【請求項4】 高炉炉頂部から高被還元性焼結鉱を装入
するとともに、高炉羽口部からAl2 O3 含有量の多い
粒径5mm未満の粉状鉄鉱石を吹込み、高炉出銑口から
流出するスラグ中のAl2 O3 含有量を13〜16wt
%に調節することを特徴とする請求項1記載の高被還元
性焼結鉱を使用した高炉操業方法。
4. A highly reducible sintered ore is charged from the top of the blast furnace, and fine iron ore having a large Al2 O3 content and less than 5 mm in diameter is blown from the tuyere of the blast furnace, and the blast furnace tapping port is provided. The content of Al2 O3 in the slag flowing out of
%. The method for operating a blast furnace using a highly reducible sintered ore according to claim 1, wherein the sintering rate is adjusted to%.
【請求項5】 前記高炉出銑口から流出するスラグ中の
Al2 O3 含有量を適正範囲内に調節するため、高炉羽
口部から吹込む粉状鉄鉱石の配合割合をAl2 O3 含有
量によって調整することを特徴とする請求項4記載の高
被還元性焼結鉱を使用した高炉操業方法。
5. The mixing ratio of the powdered iron ore blown from the blast furnace tuyere is adjusted by the Al2 O3 content in order to adjust the Al2 O3 content in the slag flowing out of the blast furnace taphole within an appropriate range. A method for operating a blast furnace using the highly reducible sintered ore according to claim 4, wherein
【請求項6】 予め40〜90%の予備還元を行った粉
状鉄鉱石を高炉羽口部から吹込むことを特徴とする請求
項4または5に記載の高被還元性焼結鉱を使用した高炉
操業方法。
6. The highly reducible sintered ore according to claim 4, wherein fine iron ore which has been preliminarily reduced by 40 to 90% is blown from a tuyere of the blast furnace. Blast furnace operation method.
【請求項7】 粉状鉄鉱石を予め微粉炭と混合して、高
炉羽口部から吹込むことを特徴とする請求項4ないし6
の何れかに記載の高被還元性焼結鉱を使用した高炉操業
方法。
7. The powdery iron ore is preliminarily mixed with pulverized coal and blown from a tuyere of a blast furnace.
A blast furnace operating method using the highly reducible sintered ore according to any one of the above.
JP28534399A 1999-10-06 1999-10-06 Operation of blast furnace using highly reducible sintered ore Withdrawn JP2001107114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28534399A JP2001107114A (en) 1999-10-06 1999-10-06 Operation of blast furnace using highly reducible sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28534399A JP2001107114A (en) 1999-10-06 1999-10-06 Operation of blast furnace using highly reducible sintered ore

Publications (1)

Publication Number Publication Date
JP2001107114A true JP2001107114A (en) 2001-04-17

Family

ID=17690336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28534399A Withdrawn JP2001107114A (en) 1999-10-06 1999-10-06 Operation of blast furnace using highly reducible sintered ore

Country Status (1)

Country Link
JP (1) JP2001107114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062473A1 (en) * 2002-01-24 2003-07-31 Jfe Steel Corporation Method for producing low silicon hot-metal
KR101167371B1 (en) 2009-10-29 2012-07-19 현대제철 주식회사 A method of improving a movable slag in iron making process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062473A1 (en) * 2002-01-24 2003-07-31 Jfe Steel Corporation Method for producing low silicon hot-metal
KR101167371B1 (en) 2009-10-29 2012-07-19 현대제철 주식회사 A method of improving a movable slag in iron making process

Similar Documents

Publication Publication Date Title
AU2008301651A1 (en) Process for producing molten iron
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP2001107114A (en) Operation of blast furnace using highly reducible sintered ore
JP5012138B2 (en) Blast furnace operation method
WO2020196769A1 (en) Blast furnace operation method
JPH0913107A (en) Operation of blast furnace
JP2002060809A (en) Low furnace heat blast furnace operation method using sintered ore having controlled chemical composition
JP3815234B2 (en) Operation method for mass injection of pulverized coal into blast furnace
JPH1129803A (en) Operation of blast furnace using high reducibility sintered ore
JP2002060808A (en) Blast furnace operation method using sintered ore having controlled chemical composition
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
TWI223006B (en) Method for producing molten iron having low silicon content
JP5671426B2 (en) Manufacturing method of granular metallic iron
JP3533062B2 (en) Powder blowing blast furnace operation method
JP2011179090A (en) Method for producing granulated iron
JP6740779B2 (en) Method of melting ferrous material
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JPH06108126A (en) Operation of blast furnace
JP2001107115A (en) Operation of blast funace using highly reducible sintered ore
WO1997012066A1 (en) Chromium ore smelting reduction process
JP3651270B2 (en) Blast furnace operation method using low SiO2 sintered ore
JP4155225B2 (en) Blast furnace operation method
JP5074043B2 (en) Method for producing sintered ore
JP3580059B2 (en) Smelting reduction method of chromium ore
JPS601368B2 (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109