JP3651270B2 - Blast furnace operation method using low SiO2 sintered ore - Google Patents

Blast furnace operation method using low SiO2 sintered ore Download PDF

Info

Publication number
JP3651270B2
JP3651270B2 JP21852698A JP21852698A JP3651270B2 JP 3651270 B2 JP3651270 B2 JP 3651270B2 JP 21852698 A JP21852698 A JP 21852698A JP 21852698 A JP21852698 A JP 21852698A JP 3651270 B2 JP3651270 B2 JP 3651270B2
Authority
JP
Japan
Prior art keywords
solid fuel
sintered ore
sio
fuel powder
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21852698A
Other languages
Japanese (ja)
Other versions
JP2000034527A (en
Inventor
登 坂本
友男 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP21852698A priority Critical patent/JP3651270B2/en
Publication of JP2000034527A publication Critical patent/JP2000034527A/en
Application granted granted Critical
Publication of JP3651270B2 publication Critical patent/JP3651270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
高炉の低Si操業に好適な低SiO 焼結鉱を用いた高炉の操業方法に関する。
【0002】
【従来の技術】
高炉−転炉法による銑鋼一貫プロセスでは、最近、製鋼工程における脱燐効率の向上および脱燐スラグ発生量の抑制の観点から、高炉における低Si操業が要求されている。この高炉の低Si操業では低Si濃度の溶銑が長期間安定して出銑されることが要求され、一般には溶銑中Si濃度が安定して0.3質量%以下であることが求められる。
【0003】
溶銑中のSiについては、コークス灰分またはスラグ中に含まれるSiO成分が高炉内でSiOガスとなり、これが銑鉄中に移行して溶銑中Siとなると考えられており、このため溶銑中Si濃度を低減して高炉の低Si操業を実現するために、(1)SiOガス発生を抑制する、(2)SiOガスから銑鉄中へのSi移行反応を抑制する、(3)溶銑中に移行したSiを脱珪する等の観点から種々の操業方法が提案されている。
【0004】
その一つとして、高炉装入原料である焼結鉱として低SiO高被還元性焼結鉱を用いる方法がある。この方法は、(1)SiOガス発生の抑制及び、(2)SiOガスから銑鉄中へのSi移行反応の抑制を狙いとするものであり、例えば、特公平5−59972号公報には、通常の焼結鉱製造方法において、SiO成分が3.5質量%以下のゲーサイトを含む鉄鉱石粉を原料として、含CaO副原料粉の配合比率を(CaO%−1.2×SiO%)/(Fe%)の比で0.08〜0.25とすることにより、粒状ヘマタイトの生成を抑制し、針状カルシウム・フェライト主体の組織を得ることによって、SiO成分が4質量%以下で高被還元性の焼結鉱が得られることが示されている。
【0005】
また、特開平9−13107号公報には、高微粉炭吹き込み高炉操業における出銑比等の改善を目的として、SiO成分の含有量が4.0〜4.8質量%であって、Al、MgO及びCaOの各成分の含有量が所定の範囲に規制された低SiO高被還元性焼結鉱を用いる高炉操業方法が示されている。
【0006】
【発明が解決しようとする課題】
しかし、本発明者らによる種々の実験と検討の結果、これら従来技術に示される焼結鉱をはじめとして、従来の焼結鉱製造技術で製造される低SiO焼結鉱では、高炉の低Si操業の安定的な実施、具体的には溶銑中Si濃度が0.3質量%以下に安定して維持されるような低Si操業の実施は困難であることが判った。その理由については後に詳述する。
【0007】
したがって本発明の目的は、このような従来技術の課題を解決し、高炉において長期間安定した低Si操業、好ましくは溶銑中Si濃度が安定して0.3質量%以下に維持されるような低Si操業を可能ならしめる、低SiO 焼結鉱を用いた高炉操業方法を提供することにある。
【0008】
【課題を解決するための手段】
このような課題を解決するため、本発明は以下のような特徴を有する。
[1] 焼結鉱製造工程において、固体燃料粉を含まないか若しくは全固体燃料粉のうちの30質量%未満の固体燃料粉を含む配合原料を1次造粒した後、該1次造粒物に全固体燃料粉又は全固体燃料粉のうち1次造粒工程で配合されなかった残余の固体燃料粉を加えて2次造粒することにより、表層部に固体燃料粉が被覆された擬似粒子を形成し、該擬似粒子を焼結機パレット上に、擬似粒子の粒度が原料装入層高さ方向で下層側>上層側となるような粒度分布を有する状態に装入し、該原料装入層を焼成することにより、SiO 成分が5.0質量%以下、CaO成分とFeO成分の質量比[CaO%]/[FeO%]が1.55以上である低SiO 焼結鉱を製造し、該低SiO焼結鉱を単味若しくは他の装入原料と配合して炉頂から装入し、Si濃度が0.3質量%以下の低Si溶銑を得ることを特徴とする低SiO焼結鉱を用いた高炉操業方法。
[2] 上記[1]の高炉操業方法において、SiO成分が5.0質量%以下、CaO成分とFeO成分の質量比[CaO%]/[FeO%]が1.55以上である低SiO焼結鉱を、高炉に装入する主原料中の割合で60質量%以上とすることを特徴とする低SiO焼結鉱を用いた高炉操業方法。
[3] 上記[1] 又は [2] 高炉操業方法において、焼結鉱製造工程において、タンブラー強度(+10mm)が67〜69%、被還元性(RI)が70〜72%である低SiO焼結鉱が、生産率1.9T/h/m以上で製造されることを特徴とする低SiO焼結鉱を用いた高炉操業方法。
[4] 固体燃料粉を含まないか若しくは全固体燃料粉のうちの30質量%未満の固体燃料粉を含む配合原料を1次造粒した後、該1次造粒物に全固体燃料粉又は全固体燃料粉のうち1次造粒工程で配合されなかった残余の固体燃料粉を加えて2次造粒することにより、表層部に固体燃料粉が被覆された擬似粒子を形成し、該擬似粒子を焼結機パレット上に、擬似粒子の粒度が原料装入層高さ方向で下層側>上層側となるような粒度分布を有する状態に装入し、該原料装入層を焼成することにより、SiO成分が5.0質量%以下、CaO成分とFeO成分の質量比[CaO%]/[FeO%]が1.55以上である焼結鉱を製造することを特徴とする低SiO焼結鉱の製造方法。
[5] 上記[4]の製造方法において、タンブラー強度(+10mm)が67〜69%、被還元性(RI)が70〜72%である低SiO焼結鉱を生産率1.9T/h/m以上で製造することを特徴とする低SiO焼結鉱の製造方法。
【0009】
【発明の実施の形態】
本発明者らは、低SiO焼結鉱を用いた高炉の低Si操業を実現すべく、低SiO焼結鉱の成分組成と溶銑中Si濃度との関係について詳細な検討を行った。その結果、溶銑中のSi濃度は、焼結鉱中のSiO含有量だけでなくCaO成分とFeO成分の比率(CaO成分とFeO成分の質量比[CaO%]/[FeO%])に大きく影響され、焼結鉱中の[CaO%]/[FeO%]をある特定の水準以上とすることにより、低SiO焼結鉱を用いた高炉操業において溶銑中Si濃度を安定して低減化できることを見い出した。
【0010】
以下、このような知見を得るに至った経緯と、この知見事実に基づく本発明の詳細を説明する。
図1は、SiO含有量が5.0質量%以下の低SiO焼結鉱を用いた高炉操業において、使用された焼結鉱中のCaO成分とFeO成分の質量比[CaO%]/[FeO%]と得られた溶銑中のSi濃度との関係について本発明者らが調査した結果を示している。
【0011】
同図中、○印が従来の国内の代表的な高炉での操業例の結果を示しており、これら従来の操業例では溶銑中Si濃度が0.3質量%を下回るものはなく、また、使用された何れの低SiO焼結鉱も[CaO%]/[FeO%]は1.55未満の低い水準にある。
これに対し、●印は本発明者らが独自の製法により製造した低SiO焼結鉱を用いた操業例の結果を示しており、この操業例では溶銑中Si濃度:0.3質量%以下が安定的に達成されており、一方、使用した低SiO焼結鉱の[CaO%]/[FeO%]の値は従来の操業例で使用した焼結鉱のそれよりも高く、いずれも1.55以上の値となっている。
【0012】
このような図1の結果からして、各高炉の操業条件が異なるにも拘わらず溶銑中Si濃度と焼結鉱中の[CaO%]/[FeO%]の間には概ね逆比例の相関関係が認められ、従来の低SiO焼結鉱を用いた高炉操業において溶銑中Si濃度を十分に低減化できなかったのは、焼結鉱中の[CaO%]/[FeO%]の値が低いためであることが強く示唆される。
【0013】
上記のように、従来行われている低SiO焼結鉱を用いた高炉操業において、溶銑中Si濃度:0.3質量%以下の水準が安定して維持されるような低Si操業ができなかったのは、[CaO%]/[FeO%]の値が低い焼結鉱を用いていたためであると考えられるが、より根本的な理由としては、従来の焼結鉱製造技術では低SiO含有量で且つ[CaO%]/[FeO%]が高い焼結鉱(例えば、SiO含有量:5.0質量%以下、[CaO%]/[FeO%]:1.55以上)を工業規模で製造することができず、実操業で使用できるような焼結鉱が事実上存在していなかったためであると考えられる。このため先に明らかにしたような低SiO焼結鉱中の[CaO%]/[FeO%]と溶銑中Si濃度との相関関係についても、従来では全く明らかにされていなかった。
【0014】
一般に、従来製造されている焼結鉱では、焼結鉱中のSiO含有量を低下させると焼結過程でのスラグ生成量が減少して焼結鉱の強度低下をきたし、このため成品歩留まりが悪化して生産性が著しく低下する。したがって、焼結鉱の強度を確保し生産性の著しい低下を防止するには、固体燃料粉(通常、粉コークス)の配合比率を高めて焼成熱量を増大させることが必要であるが、このように固体燃料粉の配合比率を高めて焼成熱量を増大させると、焼結鉱中のFeO生成量も増大するため、必然的に[CaO%]/[FeO%]の値が低くなってしまう。したがって、従来製造されている焼結鉱においては、SiO含有量を低減させることとFeO含有量を低減させること(並びに[CaO%]/[FeO%]の値を高めること)とは両立しない関係にある。
【0015】
SiO含有量が5.0質量%以下の低SiO焼結鉱を用いる高炉操業の従来技術としては、高炉の低Si操業を目的としたものではないが、FeO成分を4.5〜6.5質量%とした低SiO焼結鉱を使用することが特開平9−194914号公報に示されている。しかし、このような低FeO量の低SiO焼結鉱、特にFeO成分が6質量%以下の低SiO焼結鉱を従来の焼結鉱製造技術により実操業で製造するには、配合原料中の固体燃料粉量を低減させる必要があり、この結果、成品強度若しくは生産率の著しい低下を招き、これらのいずれかを大幅に犠牲にせざるを得ない。
【0016】
すなわち、従来の焼結鉱の製造方法によれば、FeO成分が略6質量%程度までの低SiO焼結鉱であれば、成品強度若しくは生産率を著しく低下させることなく製造可能であるが、FeO成分がより少ない焼結鉱を得るためには固体燃料粉量の低減が不可欠であり、このため通常の生産率で製造した場合には成品強度が著しく低下し、一方、所望の成品強度を得ようとすると焼結時間を確保するために生産率を極端に下げざるを得ず、いずれにしても高炉の実操業に適用できるような高品質で且つ大量生産可能な低SiO焼結鉱は得られない。この点、上記特開平9−194914号公報では良好な成品強度(落下強度SI)が得られるとしているが、仮にそのような成品強度を得ようとすれば、上述したように生産率を極端に下げる必要があり、このため同公報に示されるような低SiO焼結鉱を実操業において大量生産することは殆ど不可能であると言ってよい。
【0017】
したがって、この特開平9−194914号公報に示され、或いはこれに類するような低FeO量の低SiO焼結鉱が高炉の実操業で使用されたという報告例は未だかつてなく、当然のことながら、図1に示すような焼結鉱中の[CaO%]/[FeO%]と溶銑中Si濃度との関係が高炉の実操業で検証された例もない。
【0018】
これに対して、図1の●印に示す操業例で用いた焼結鉱は、本発明者らが独自に開発した全く新たな製法により製造された低SiO焼結鉱であり、この低SiO焼結鉱は成品強度や生産率を低下させることなく低FeO量及び高[CaO%]/[FeO%]を実現できることが判った。すなわち、本発明者らはこのような低SiO焼結鉱をはじめて製造し、この低SiO焼結鉱を用いた高炉の実操業の結果に基づき、図1に示すような焼結鉱中の[CaO%]/[FeO%]と溶銑中Si濃度との関係を見い出したものである。
【0019】
上記のような低SiO含有量で、しかも[CaO%]/[FeO%]の値の高い焼結鉱は、固体燃料粉の配合比率を低減化した上で、擬似粒子における固体燃料粉の効率的な燃焼と原料装入層高さ方向での均一な熱量分布を確保するために、擬似粒子内での固体燃料粉の分布形態を含めた擬似粒子構造と焼結機における原料装入層高さ方向での原料装入形態を適正化することにより製造することができる。この低SiO焼結鉱は、成品強度としてタンブラー強度(+10mm)67〜69%という従来の製造方法で得られる焼結鉱に較べて遜色ない成品強度を確保でき、また、生産率も1.9(T/h/m)以上が確保できる。その具体的な製造方法については、後に詳述する。
【0020】
図1に示す結果に基づき、低SiO焼結鉱中の[CaO%]/[FeO%]と溶銑中Si濃度との関係についてより詳細な検討を行った。すなわち、SiO含有量が5.0質量%以下であって、[CaO%]/[FeO%]が約1.3〜2.1の範囲の低SiO焼結鉱を使用した高炉操業を実施し、焼結鉱中の[CaO%]/[FeO%]が溶銑中Si濃度に及ぼす影響を調査した。その結果を図2に示す。これによれば、使用する焼結鉱のSiO含有量が5.0質量%以下であって、且つ[CaO%]/[FeO%]が1.55以上の場合にのみ、溶銑中Si濃度を0.3質量%以下に安定して維持できることが判る。
【0021】
このため本発明では、低SiO焼結鉱の組成としてSiO成分が5.0質量%以下であるとともに、[CaO%]/[FeO%]の質量比が1.55以上であることを条件とする。
このような本発明の低SiO焼結鉱は被還元性も高く、JIS−RI値で70〜72%という高被還元性が得られる。これは、粉コークスを外装化することにより粉コークス量を低減できるためであり、より具体的には成品焼結鉱の[FeO%]を6.0〜5.0質量%程度に低減できることによるものである。
【0022】
また、本発明の低SiO焼結鉱中の[CaO%]/[FeO%]は、以下に述べるような理由から1.67〜2.20の範囲とすることが特に好ましい。
すなわち、焼結鉱の組成としては、[CaO%]が高い方が還元性の良好な多孔質のカルシウムフェライトが生成しやすく、また、高炉内で生成するSiOガスの活量を下げてSiの溶銑中への移行が抑制されやすくなり、この結果、安定した低Si操業の実施には有利になる。したがって、焼結鉱中の[CaO%]は10質量%以上であることが望ましいが、一方において、塩基度[CaO%]/[SiO%]が高すぎると高炉内でスラグの生成が円滑に行われなくなり、このため[CaO%]は11質量%程度が上限となる。また、焼結鉱中の[FeO%]については、本発明の焼結鉱は粉コークスを外装化して製造されるとはいえ、[FeO%]を過度に低下させようとすると粉コークスの絶対量が減少して焼成熱量が過度に不足するため、せいぜい6.0〜5.0質量%程度が最も製造し易い範囲となる。したがって、以上の[CaO%]と[FeO%]の好ましい範囲からして[CaO%]/[FeO%]の特に好ましい範囲は1.67〜2.20となる。
【0023】
一方、焼結鉱中のCaO濃度が過剰であることにより[CaO%]/[FeO%]が高くなり過ぎると、焼結鉱組織中に吸湿性のある未反応フリーライムが生成して空気中の水分により焼結鉱を崩壊粉化させ、ヤード備蓄する際に問題が生じやすく、また、焼結鉱中のFeO濃度が過少であることにより[CaO%]/[FeO%]が高くなり過ぎると、焼結鉱組織中のヘマタイト量が増大して還元粉化性が悪化するという問題があるが、[CaO%]/[FeO%]が略3.0以下であればこれらの問題は生じないことも判明した。したがって、[CaO%]/[FeO%]の質量比の上限は3.0程度とすることが好ましい。
【0024】
本発明の低SiO焼結鉱を用いた高炉操業では、本発明の低SiO焼結鉱を単味若しくは他の装入原料と配合して炉頂から装入し、低Si溶銑を製造するが、この場合、一般には本発明の低SiO焼結鉱を主原料中の割合で60質量%以上とすることで、低Si溶銑を安定的に得ることができる。したがって、例えば主原料中に占める焼結鉱の割合が80質量%である場合でも、主原料中の60質量%以上が本発明の低SiO焼結鉱であれば、残りは通常の焼結鉱でよい。
但し、本発明の低SiO焼結鉱と通常の焼結鉱を併用する場合には、通常の焼結鉱についてもSiO成分が5.0質量%以下のものを用いることが、高炉の低Si操業の安定化のために特に好ましい。
【0025】
次に、上述した成分組成を有する本発明の低SiO焼結鉱の好ましい製造方法について説明する。
焼結鉱を製造するに当って、成品焼結鉱中のSiO含有量とCaO含有量を目標値に調整することは配合原料の成分調整で可能であるが、成品焼結鉱のFeO含有量は、焼成の結果であるため原料配合段階で予め調整することができない。したがって、成品焼結鉱のFeO含有量を目標値に調整するためには、焼成条件、特に焼成熱量の制御が重要である。
【0026】
上述したように従来の焼結鉱の製造方法(所定の生産率と成品強度が得られる実操業での製造方法)では、焼結鉱の低SiO化と低FeO化を同時に達成することはできない。これは先に述べたように、原料鉱石粉中のSiO含有量を低減させると焼結時のスラグ成分が減少するため成品焼結鉱の強度が低下する傾向にあり、このため生産率を維持しつつ所望の成品強度を確保するためには固体燃料粉を増量して強熱で焼成する必要があるが、固体燃料粉を増量するとFeO生成量が増大してしまうからである。
【0027】
本発明者らは、SiO成分:5.0質量%以下の低SiO焼結鉱において、成品強度や生産率を低下させることなく、生成するFeO量が少なく且つ[CaO%]/[FeO%]:1.55以上を確保できる焼結鉱組織およびその焼結プロセスについて検討を行い、その結果、低SiO含有量で且つFeO生成量が少ない焼結鉱を得るためには、焼結原料中への固体燃料粉の配合比率、固体燃料粉の燃焼性に大きな影響を与える擬似粒子内での固体燃料粉の分布形態を含めた擬似粒子構造、さらには、焼結機における原料装入層高さ方向での均一な熱量分布を得るための原料装入形態を適正化することが重要であり、固体燃料粉の配合比率を低減化した上で、擬似粒子における固体燃料粉の効率的な燃焼と原料装入層高さ方向での均一な熱量分布を確保するために、擬似粒子内での固体燃料粉の分布形態を含めた擬似粒子構造と原料装入層高さ方向での原料装入形態を適正化することにより、より具体的には、造粒工程での固体燃料粉の外装化と焼結機パレットへの装入工程での偏析装入との組み合わせにより、上記した所望の組成を有する低SiO焼結鉱が得られることが判った。
【0028】
図3は本発明の低SiO焼結鉱の製造フローの一例を示しており、B粉1、返鉱3、媒溶材4等の配合原料(場合によっては、さらに固体燃料粉2の一部を添加)を1次ドラムミキサー5(または1次皿型造粒機)に装入し、適量の水分を加えて調湿、混合、造粒して1次造粒物を得る。次いで、この1次造粒物に固体燃料粉2を加え、2次ドラムミキサー6(または2次皿型造粒機)で2次造粒することにより、表層部に固体燃料粉が被覆(外装)された擬似粒子を形成する。この擬似粒子は図示しない原料装入装置を介して焼結機7のパレット上に装入されるが、この際、焼結時に原料装入層高さ方向で均一な熱量分布が得られるようにするため、擬似粒子が層高方向に所定の粒度偏析を持った原料装入層を形成する。
【0029】
前記B粉1は粒径が0.125mm以下の粒子の割合が30質量%未満の通常の焼結用粉鉱石であって、例えば、MBR、カラジャス、CVGに代表される低SiO含有鉱石を単銘柄で若しくは複数銘柄を適宜配合して用いる。通常、このB粉1は焼結鉱のSiO含有量が5.0質量%以下、Fe含有量が56質量%以上になるように調整して用いる。一般に、焼結鉱中のFe含有量が56質量%未満では、焼結過程で脈石と石灰石が反応してカルシウムシリケート系スラグが増加し、これが被還元鉄酸化物であるヘマタイト、カルシウムフェライト、マグネタイトなどの組織を覆った焼結緻密組織となり易いため好ましくない。
固体燃料粉2としては一般に粉コークスが用いられるが、これ以外にチャー、無煙炭、石油コークス、石炭を用いることができ、また、これらの混合物を用いてもよい。
【0030】
本発明の低SiO焼結鉱を製造する上で、固体燃料粉2の配合量と擬似粒子内における分布形態が非常に重要な要素となる。
先ず、固体燃料粉2の配合量は、FeOの生成量を極力抑制するために必要最低限にとどめることが好ましく、具体的には固体燃料粉の配合量は成品焼結鉱1t当たり44kg以下とすることが好ましい。
【0031】
また、固体燃料粉2の擬似粒子内での分布形態については、固体燃料粉の大部分が擬似粒子の表層部に外装(被覆)される必要がある。このように固体燃料粉を擬似粒子に対して外装化する狙いの一つは、固体燃料粉の多くを擬似粒子表層部に存在させることで固体燃料粉の燃焼性を向上させ、固体燃料粉の配合量の低減化に伴う焼成熱量の不足を補うことにある。すなわち、擬似粒子の表面に被覆された固体燃料粉は擬似粒子内部に包含される場合に較べて燃焼効率が高いため、固体燃料粉量を増加させずに焼成熱量を増加させることができる。また、固体燃料粉の外装化のもう一つの狙いは、固体燃料粉が燃焼する際の擬似粒子内部への過剰な熱供給を抑制し、これにより上記固体燃料粉配合量の低減化と相俟ってFeOの生成量を極力抑制するようにするためである。
【0032】
固体燃料粉2は、2次造粒工程(通常、ドラムミキサーによる造粒工程)で実質的に全量を擬似粒子表層部に外装してもよいが、一部を1次造粒工程(通常、ドラムミキサーによる造粒工程)で添加し、残量分を2次造粒工程で擬似粒子表層部に外装するようにしてもよい。但し、上述した固体燃料粉の外装化による効果を確実に得るためには、固体燃料粉2の一部を1次造粒工程で添加する場合の添加量は固体燃料粉の全配合量の30質量%未満とし、残りの70質量%以上の固体燃料粉は2次造粒工程で擬似粒子の表層部に外装することが必要である。また、1次造粒工程での固体燃料粉の添加量が30質量%以上になると、焼結過程で擬似粒子内部に拡散する酸素量に対して擬似粒子内の固体燃料粉量の比率が高過ぎ、固体燃料粉の燃焼が著しく遅くなる結果、焼結時間が延び、生産率の低下を招くため好ましくない。
【0033】
本発明の低SiO焼結鉱の製造においては、上記のように固体燃料粉を擬似粒子の表層部に外装(被覆)することと、以下に述べるような擬似粒子を焼結機パレット上に粒度偏析装入(層高方向で粒度分布をもつような装入)することとの組み合わせにより、擬似粒子における固体燃料粉の効率的な燃焼の確保、擬似粒子内部への過剰な熱供給の抑制、さらには原料装入層高さ方向での均一な熱量分布の確保が図られ、これら複合的な作用により成品強度および生産率が高水準に維持されつつ、FeO生成量の少ない焼結鉱が得られるものである。
【0034】
一般に、焼結時の原料装入層はその高さ方向における下層部側ほど熱レベルが高い傾向にある。すなわち、原料装入層の下層部側は固体燃料粉の燃焼熱に加えて上中層部からの高温燃焼ガスが流入するため熱レベルが高く、熱余剰を生じやすい。一方、原料装入層の上層部側は固体燃料粉の燃焼と同時に室温の空気を吸い込むため熱レベルが低く、熱不足を生じ易い。したがって、擬似粒子が受ける熱レベルを原料装入層の高さ方向で均一にするには、原料装入層の上層部側には固体燃料粉濃度の高い擬似粒子を、また、下層部側には固体燃料粉濃度の低い擬似粒子を装入することが必要となる。
【0035】
ここで、擬似粒子の固体燃料粉濃度は、固体燃料粉が擬似粒子に内装されている場合には擬似粒子の粒径に拘りなくほぼ一定であるが、固体燃料粉が擬似粒子の表層部に外装(被覆)されている場合には、擬似粒子表面を被覆する固体燃料粉の質量は擬似粒子の表面積に比例(すなわち、擬似粒子径Rの2乗に比例)すると考えられ、また、擬似粒子の質量は擬似粒子径Rの3乗に比例すると考えられるから、擬似粒子の単位質量当たりの固体燃料粉濃度はR/Rに比例する、つまり擬似粒子径に反比例すると考えられる。したがって、固体燃料粉で被覆された擬似粒子を原料装入層の上層部側から下層部側にかけて粒子径が漸次増加するような粒度偏析した状態(すなわち、擬似粒子の粒度が原料装入層高さ方向で下層側>上層側となるような粒度分布)に装入すれば、固体燃料粉濃度が原料装入層の上層部側で高く、下層部側で低い極めて理想的な固体燃料粉の濃度分布を得ることが可能になると考えられる。
【0036】
本発明者らは上記の点を確認するために、図3に示す製造フローで造粒した擬似粒子(表層部が固体燃料粉で被覆された擬似粒子)を2次ドラムミキサー出口でサンプリングし、擬似粒子の粒度別(平均粒度)の固体燃料粉濃度(擬似粒子の単位質量当たりの固体燃料粉濃度)を分析した。また、比較のために固体燃料粉の全量を1次ドラムミキサーで焼結原料に添加し、造粒して得られた固体燃料粉内装型の擬似粒子(2次ドラムミキサーでは固体燃料粉は添加せず)についても、同様に粒度別の固体燃料粉濃度を分析した。
【0037】
図4はその結果を示すもので、固体燃料粉内装型の擬似粒子では、擬似粒子の単位質量当たりの固体燃料粉濃度は粒子径に拘りなくほぼ一定の値を示しているのに対し、表層部が固体燃料粉で被覆された固体燃料粉外装型の擬似粒子では、擬似粒子の単位質量当たりの固体燃料粉濃度は擬似粒子径に反比例していることが確認できた。
【0038】
したがって、擬似粒子を固体燃料粉外装型とし、且つこれを原料装入層の上層部側から下層部側にかけて擬似粒子径が漸次増加するような粒度偏析状態、すなわち、擬似粒子の粒度が原料装入層高さ方向で下層側>上層側となるような粒度分布を有する状態に装入すれば、原料装入層の上層部側ほど固体燃料粉濃度が高い固体燃料粉濃度分布を得ることが可能となる。
【0039】
なお、擬似粒子の粒度が原料装入層高さ方向で下層側>上層側となるような粒度分布とは、装入された個々の擬似粒子の粒径が常に原料装入層高さ方向で下層側>上層側の関係にあるという厳密な意味ではなく、また、以下に述べるような具体的な原料装入方法や装置的な構成からしても、そのような厳密な意味での粒度分布を得ることは事実上不可能である。したがって、本発明が条件とする上記擬似粒子の粒度分布は、原料装入層高さ方向全体において擬似粒子の平均粒径が下層側>上層側の関係を満足するような粒度分布を意味している。
【0040】
本発明の低SiO焼結鉱の製造では、上述のように擬似粒子を原料装入層の上層部側から下層部側にかけて擬似粒子径が漸次増加するような粒度偏析状態に装入するために、例えば、図5に示すような粒度偏析装入用のスクリーン状シュート8を介して擬似粒子を焼結機パレット12上に装入する。このスクリーン状シュート8は、原料装入装置における原料供給部9の下方に下向き傾斜状に設けられるもので、焼結機パレット幅方向と略平行なスリット10をシュート上下方向で並列的に複数形成し、これらスリット10の幅をシュート上部側ほど狭めた構造を有している。
【0041】
このようなスクリーン状シュート8を介して擬似粒子を焼結機パレット12上に装入する際、原料供給部9から払い出されてスクリーン状シュート8上を滑り落ちる擬似粒子は、スリット10の幅がシュート上部側ほど小さいため、スリット10を通じて焼結機パレット12上に落下する際に粒径に応じて篩い分けされ、粒径の大きい擬似粒子ほど焼結機パレット12の原料装入始端側に装入される。この結果、擬似粒子装入後の原料装入層は上層部側ほど擬似粒子径が小さく、層高方向で擬似粒子が粒度偏析した状態となる。
【0042】
なお、上記スクリーン状シュート8の一般的な構造としては、シュート本体が索状体(例えば、ワイヤロープ等)または棒状体(例えば、中実または中空ロッド等)からなる焼結機パレット幅方向に略平行な複数のスクリーン構成部材11から構成され、隣接するスクリーン構成部材11間の間隙が前記スリット10を構成する。
【0043】
これらスクリーン構成部材11は固定式の構造でもよいが、場合によっては、各スクリーン構成部材11をその長手方向で移動可能とするとともに、その移動の際に部材表面に付着した擬似粒子を掻き落とすための掻き取り手段(例えば、スクリーン構成部材11が挿通するガイド孔を有する付着物掻き取り兼用のガイド部材)を有する構造とし、スクリーン構成部材11を適宜移動させ、その表面に付着した擬似粒子を前記掻き取り手段で掻き落とすことにより、擬似粒子によるスリット10の閉塞を防止するようにしてもよい。
【0044】
前記スリット10は、シュート最上部側のスリット幅をw、シュート最下部側のスリット幅をwnとした場合に、例えばスリット幅wからスリット幅wnまでの大きさをスリット毎に連続的に変えてもよいし、或いは隣接するいくつかのスリット幅を同じにして、スリット幅の大きさをw…w,w…w,…のように段階的に変えてもよく、その態様は任意である。したがって、スリット10の幅がシュート上部側ほど小さいという上記構成には、これら各種態様が含まれる。また、擬似粒子が滑落するスクリーン状シュート上面の形状は、直線状、凹湾曲状等のいずれでもよい。
【0045】
次に、擬似粒子の好ましい粒度と上述した粒度偏析装入による擬似粒子の原料装入層高さ方向における好ましい粒度分布について説明する。
擬似粒子の粒度範囲は1mm〜10mmの範囲とすること(但し、一部不可避的に造粒されないで存在する微粉成分を除く)が好ましい。この擬似粒子径が1mm未満では焼結性は向上するものの、擬似粒子粒度が細かすぎるため原料装入層の上層部側の通気性が悪化し、操業度の低下を招き易い。一方、擬似粒子径が10mmを超えると、外装された固体燃料粉の燃焼熱が擬似粒子内部まで届かず、十分が焼成ができなくなる。
【0046】
また、焼結機パレット上に装入される擬似粒子の層高方向での粒度分布としては、原料装入層の上層部側(原料装入層を層高方向で2分した時の上層側部分)の平均擬似粒子径が1mm〜3mm、原料装入層の下層部側(原料装入層を層高方向で2分した時の下層側部分)の平均擬似粒子径が3mm超〜10mmであることが好ましい。ここで、原料装入層の上層部側と下層部側の境界平均擬似粒子径を3mmとしたのは、図4に示されるように擬似粒子の固体燃料粉濃度は粒子径が3mmを超える領域では低位安定しており、したがって、このような粒子径の擬似粒子を原料装入層の下層部側に配置することにより、原料装入層の上中層部からの高温燃焼ガスが流入して熱レベルが上昇しても、焼結反応が抑えられて過剰な融液生成が抑制されるためである。
【0047】
したがって、上記の粒度分布を満足するようにして、原料装入層の上層部側ほど擬似粒子径が小さくなるような粒度偏析装入を行うことが、原料装入層の層高方向における熱量分布を均一化する上で最も好ましい。
以上のような焼結プロセスで焼結原料を焼成することにより、SiO成分:5.0質量%以下でありながら、[CaO%]/[FeO%]が1.55以上の組成を有し、しかも成品強度、生産率ともに優れた低SiO焼結鉱(成品強度:タンブラー強度(+10mm)67〜69%,生産率1.9T/h/m以上)が安定して得られる。
【0048】
【実施例】
[低SiO焼結鉱の製造例]
図3に示したフローに従って本発明例および比較例の低SiO焼結鉱を製造した。使用した配合原料の銘柄構成を表1に、配合原料の成分組成、粒度構成および粉コークスの平均粒度を表2に示す。
造粒機としては、1次造粒工程ではドラムミキサー(内径4.4m、有効長さ15m)を用い、また、2次造粒工程ではドラムミキサー(内径5.0m、有効長さ18m)または皿型造粒機(直径7.5m、深さ0.5m)を用いた。また、焼結機としては有効焼結面積400m、装入層層厚570mm、ブロアー負圧17.7kPaのドワイトロイド型焼結機を使用した。
【0049】
本発明例については、2次造粒工程で粉コークスの全量を添加(外装)する製造例1および製造例2と、全粉コークスのうち1次造粒工程で30質量%を添加(内装)し、2次造粒工程で残りの70質量%を添加(外装)する製造例3を実施した。
焼結機における原料装入装置の装入シュートとしては、本発明例については、図5に示すようなスリットを有するスクリーン状シュート(ワイヤータイプのスクリーン状シュート)を使用して原料装入を行った。
【0050】
一方、比較例については、1次造粒工程で粉コークスの全量を添加(内装)するとともに、原料装入装置の装入シュートとして従来型の板状スローピングシュートを使用して焼結機への原料装入を行った比較例1と、2次造粒工程で粉コークスの全量を添加(外装)するとともに、原料装入装置の装入シュートとして従来型の板状スローピングシュートを使用して焼結機への原料装入を行った比較例2と、1次造粒工程で粉コークスの全量を添加(内装)するとともに、原料装入装置の装入シュートとして図5に示すようなスリットを有するスクリーン状シュート(ワイヤータイプのスクリーン状シュート)を使用して焼結機への原料装入を行った比較例3をそれぞれ実施した。
【0051】
表3および表4に本発明例および比較例の焼結操業諸元及び成品焼結鉱の性状を示す。これによれば、本発明例ではSiO含有量が5.0質量%以下で、且つ[CaO%]/[FeO%]が1.55以上の焼結鉱が得られ、これらはいずれもJIS−RI:70%以上の高被還元性で、しかも1.9T/h/m以上の高い生産率でありながら、比較例に比べて遜色のない成品強度及び歩留りが得られている。
【0052】
これに対して、比較例では[CaO]/[FeO]の質量比が1.36〜1.42の焼結鉱しか得られていない。また、これら比較例の焼結鉱はいずれもJIS−RI値が68%以下となっている。
また、本発明例では粉コークスが擬似粒子の表層部に外装(被覆)され且つ焼結機に粒度偏析装入されたことにより粉コークスの燃焼性が改善され、その結果、比較例に較べてコークス原単位が約1〜7kg/t程度も低減している。また、表3および表4には示されていないが、返鉱原単位についても比較例に較べて約40kg/tも減少した。
【0053】
【表1】

Figure 0003651270
【0054】
【表2】
Figure 0003651270
【0055】
【表3】
Figure 0003651270
【0056】
【表4】
Figure 0003651270
【0057】
[高炉の操業例]
本発明例の低SiO焼結鉱を使用して高炉の低Si操業を行った。本発明の操業例で使用した低SiO焼結鉱の[CaO%]/[FeO%]は1.55〜2.09の範囲にあり、いずれも上述した本発明の製造方法によって製造されたものである。
使用した高炉は、A高炉(内容積3223m)およびB高炉(内容積4288m)であり、A高炉はオールコークス操業、B高炉は微粉炭吹込み操業を行った。各操業において使用した主原料構成および低SiO焼結鉱の配合割合を、高炉の操業条件および操業結果とともに表5に示す。なお、この表5に示す操業結果は1ヶ月平均の値である。
【0058】
表5によれば、本発明の低SiO焼結鉱を用いることにより、オールコークス操業および微粉炭吹込み操業のいずれにおいても安定した低Si操業が可能であることが判る。本発明の操業例では、いずれも溶銑中Si濃度:0.3質量%以下の低Si溶銑が1ヶ月以上安定して継続的に得られた。
これに対して、[CaO%]/[FeO%]が1.55未満の低SiO焼結鉱を用いた比較例では、焼結鉱のSiO含有量が5.0質量%以下でありながら溶銑中Si濃度は0.38質量%と高く、低Si操業は達成されていない。
【0059】
【表5】
Figure 0003651270
【0060】
【発明の効果】
以上述べたように本発明の低SiO焼結鉱を用いた高炉操業方法によれば、低Si操業、特に溶銑中Si濃度が0.3質量%以下の低Si操業を長期間安定的に実施することができる。
【図面の簡単な説明】
【図1】 SiO含有量が5.0質量%以下である従来の低SiO焼結鉱と本発明者らが製造した低SiO焼結鉱をそれぞれ用いた高炉操業において、低SiO焼結鉱中のCaO成分とFeO成分の質量比[CaO%]/[FeO%]と溶銑中Si濃度との関係を示すグラフ
【図2】 SiO含有量が5.0質量%以下の低SiO焼結鉱を用いた高炉操業において、低SiO焼結鉱中のCaO成分とFeO成分の質量比[CaO%]/[FeO%]と溶銑中Si濃度との関係を示すグラフ
【図3】 本発明の低SiO焼結鉱の製造フローの一例を示す説明図
【図4】 擬似粒子径と擬似粒子の単位質量当たりの固体燃料粉濃度との関係を示すグラフ
【図5】 本発明の低SiO焼結鉱の製造で用いられる原料装入装置のスクリーン状シュートおよびこれによる焼結機パレット上への原料装入状況を示す説明図
【符号の説明】
1…B粉、2…固体燃料粉、3…返鉱、4…媒溶材、5…1次ドラムミキサー(または皿型造粒機)、6…2次ドラムミキサー(または皿型造粒機)、7…焼結機、8…スクリーン状シュート、9…原料供給部、10…スリット、11…スクリーン構成部材、12…焼結機パレット[0001]
BACKGROUND OF THE INVENTION
  Suitable for blast furnace low Si operationLow SiO 2 The present invention relates to a method for operating a blast furnace using sintered ore.
[0002]
[Prior art]
  In the integrated steelmaking process by the blast furnace-converter method, recently, low Si operation in a blast furnace is required from the viewpoint of improving the dephosphorization efficiency in the steelmaking process and suppressing the amount of dephosphorization slag. In this blast furnace low Si operation, it is required that the molten iron having a low Si concentration is stably output for a long period of time.mass%The following is required.
[0003]
  About Si in hot metal, SiO contained in coke ash or slag2It is considered that the component becomes SiO gas in the blast furnace, and this shifts into pig iron and becomes Si in the hot metal, so that in order to reduce the Si concentration in the hot metal and realize low Si operation of the blast furnace,(1)Suppresses the generation of SiO gas,(2)Suppresses Si transfer reaction from SiO gas into pig iron,(3)Various operation methods have been proposed from the viewpoint of desiliconizing Si transferred to the hot metal.
[0004]
  One of them is low SiO as sintered ore that is a raw material for blast furnace charging.2There is a method using a highly reducible sintered ore. This method(1)Suppression of SiO gas generation;(2)The purpose is to suppress the Si transfer reaction from SiO gas into pig iron. For example, Japanese Patent Publication No. 5-59972 discloses a method for producing sintered sinter with SiO 2.2Ingredient 3.5mass%Using the iron ore powder containing the following goethite as a raw material, the blending ratio of the CaO-containing auxiliary raw material powder (CaO% −1.2 × SiO 2)2%) / (Fe%) in a ratio of 0.08 to 0.25, the formation of granular hematite is suppressed, and a structure mainly composed of acicular calcium / ferrite is obtained.2Ingredients 4mass%It is shown below that a highly reducible sintered ore is obtained.
[0005]
  Japanese Patent Laid-Open No. 9-13107 discloses SiO 2 for the purpose of improving the output ratio and the like in high pulverized coal blowing blast furnace operation.2Component content is 4.0-4.8mass%And Al2O3, MgO, and CaO are low SiO in which the content of each component is regulated within a predetermined range2A blast furnace operating method using highly reducible sintered ore is shown.
[0006]
[Problems to be solved by the invention]
  However, as a result of various experiments and examinations by the present inventors, low SiO produced by the conventional sinter manufacturing technology including the sinter shown in the prior art.2In sintered ore, the stable implementation of low-Si operation in the blast furnace, specifically, the Si concentration in the hot metal is 0.3.mass%It has been found that it is difficult to carry out a low Si operation that is stably maintained below. The reason will be described in detail later.
[0007]
  Therefore, the object of the present invention is to solve such problems of the prior art and to maintain a stable low Si operation in the blast furnace for a long period of time, preferably the Si concentration in the hot metal is stably maintained at 0.3% by mass or less. If low Si operation is possibleLow SiO 2 The object is to provide a blast furnace operating method using sintered ore.
[0008]
[Means for Solving the Problems]
  In order to solve such a problem, the present invention has the following features.
[1]In the sintered ore production process, after primary granulation of a blended raw material that does not contain solid fuel powder or contains solid fuel powder of less than 30% by mass of the total solid fuel powder, The remaining solid fuel powder that has not been blended in the primary granulation step of the solid fuel powder or the whole solid fuel powder is added and subjected to secondary granulation to form pseudo particles whose surface layer portion is coated with the solid fuel powder. The pseudo particles are charged onto a sintering machine pallet in a state having a particle size distribution such that the particle size of the pseudo particles is lower layer side> upper layer side in the raw material charge layer height direction, and the raw material charge layer By baking, SiO 2 Low SiO in which the component is 5.0% by mass or less and the mass ratio [CaO%] / [FeO%] of the CaO component to the FeO component is 1.55 or more 2 Producing sintered ore,Low SiO2Low SiO, characterized in that sintered ore is mixed with plain or other charging raw materials and charged from the top of the furnace to obtain a low Si hot metal having a Si concentration of 0.3% by mass or less.2Blast furnace operation method using sintered ore.
[2] In the blast furnace operating method of the above [1], SiO2Low SiO in which the component is 5.0% by mass or less and the mass ratio [CaO%] / [FeO%] of the CaO component to the FeO component is 1.55 or more2Low SiO, characterized in that the sintered ore is 60% by mass or more in the main raw material charged into the blast furnace.2Blast furnace operation method using sintered ore.
[3] the above[1] Or [2] ofIn the blast furnace operation method, in the sinter production process, the tumbler strength (+10 mm) is 67 to 69% and the reducibility (RI) is 70 to 72%.2Sintered ore has a production rate of 1.9 T / h / m2Low SiO, which is manufactured as described above2Blast furnace operation method using sintered ore.
[Four] After primary granulation of a blended raw material that does not contain solid fuel powder or contains less than 30% by mass of solid fuel powder out of all solid fuel powder, all solid fuel powder or all solid fuel is added to the primary granulated product. The remaining solid fuel powder that was not blended in the primary granulation step of the powder is added and subjected to secondary granulation to form pseudo particles whose surface layer portion is coated with solid fuel powder, and the pseudo particles are baked. By charging the material pallet in a state having a particle size distribution such that the particle size of the pseudo particles is lower layer side> upper layer side in the raw material charging layer height direction, and firing the raw material charging layer, SiO 22Low-SiO 2 characterized by producing a sintered ore having a component of 5.0% by mass or less and a mass ratio [CaO%] / [FeO%] of CaO component to FeO component of 1.55 or more.2A method for producing sintered ore.
[Five] the above[Four]In this manufacturing method, the low tumbler strength (+10 mm) is 67 to 69% and the reducibility (RI) is 70 to 72%.2Sintered ore production rate 1.9 T / h / m2Low SiO, characterized by being manufactured as described above2A method for producing sintered ore.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
  We have a low SiO2To realize low Si operation of blast furnace using sintered ore, low SiO2A detailed study was made on the relationship between the component composition of the sintered ore and the Si concentration in the hot metal. As a result, the Si concentration in the hot metal is equal to that in the sintered ore.2Not only the content but also the ratio of CaO component to FeO component (CaO component to FeO componentMass ratio[CaO%] / [FeO%]) is greatly influenced by the [CaO%] / [FeO%] in the sintered ore to a certain level or more, thereby reducing the low SiO.2It was found that the Si concentration in the hot metal can be stably reduced in blast furnace operation using sintered ore.
[0010]
  The details of the present invention based on the background to obtain such knowledge and the knowledge fact will be described below.
  FIG. 1 shows SiO2Content is 5.0mass%The following low SiO2In blast furnace operation using sintered ore, the CaO component and FeO component in the used sintered oreMass ratioThe result of investigation by the present inventors on the relationship between [CaO%] / [FeO%] and the Si concentration in the obtained hot metal is shown.
[0011]
  In the figure, the circles indicate the results of the conventional domestic blast furnace operation examples. In these conventional operation examples, the Si concentration in the hot metal is 0.3.mass%None, and any low SiO used2The sintered ore also has a low level of [CaO%] / [FeO%] of less than 1.55.
  In contrast, the ● mark indicates a low SiO produced by the inventors of the present invention.2The result of the operation example using sintered ore is shown. In this operation example, the Si concentration in the hot metal: 0.3mass%The following has been achieved stably, while the low SiO used2The value of [CaO%] / [FeO%] of the sintered ore is higher than that of the sintered ore used in the conventional operation example, and both values are 1.55 or more.
[0012]
  From the results shown in FIG. 1, the inversely proportional correlation between the Si concentration in the hot metal and the [CaO%] / [FeO%] in the sintered ore despite the fact that the operating conditions of each blast furnace are different. The relationship is recognized and the conventional low SiO2It was strongly suggested that the Si concentration in the hot metal could not be sufficiently reduced in blast furnace operation using sintered ore because of the low value of [CaO%] / [FeO%] in the sintered ore. The
[0013]
  As mentioned above, the conventional low SiO2In blast furnace operation using sintered ore, Si concentration in hot metal: 0.3mass%The reason why the low Si operation in which the following levels were stably maintained could be attributed to the use of sintered ore having a low [CaO%] / [FeO%] value, The basic reason is that conventional sinter production technology uses low SiO2Sinter with high content and high [CaO%] / [FeO%] (for example, SiO2Content: 5.0mass%Hereinafter, [CaO%] / [FeO%]: 1.55 or more) could not be produced on an industrial scale, and it was considered that there was virtually no sintered ore that could be used in actual operation. It is done. For this reason, the low SiO as previously clarified2The correlation between [CaO%] / [FeO%] in the sintered ore and the Si concentration in the hot metal has not been clarified in the past.
[0014]
  Generally, in the conventionally produced sintered ore, the SiO in the sintered ore2When the content is reduced, the amount of slag produced in the sintering process is reduced and the strength of the sintered ore is lowered. For this reason, the product yield is deteriorated and the productivity is remarkably lowered. Therefore, in order to ensure the strength of the sintered ore and prevent a significant decrease in productivity, it is necessary to increase the mixing ratio of the solid fuel powder (usually powder coke) to increase the calorific value. When the mixing ratio of the solid fuel powder is increased to increase the calorific value, the amount of FeO produced in the sintered ore also increases, and the value of [CaO%] / [FeO%] is inevitably lowered. Therefore, in the conventionally produced sintered ore, SiO2There is an incompatible relationship between reducing the content and reducing the FeO content (and increasing the value of [CaO%] / [FeO%]).
[0015]
  SiO2Content is 5.0mass%The following low SiO2The conventional technology of blast furnace operation using sintered ore is not intended for low Si operation of blast furnace, but FeO component is 4.5 to 6.5.mass%Low SiO2The use of sintered ore is disclosed in Japanese Patent Laid-Open No. 9-194914. However, such low FeO content low SiO2Sinter, especially FeO component is 6mass%The following low SiO2In order to produce sinter by actual operation using conventional sinter production technology, it is necessary to reduce the amount of solid fuel powder in the blended raw material, which results in a significant decrease in product strength or production rate. One of these must be sacrificed significantly.
[0016]
  That is, according to the conventional method for producing sintered ore, the FeO component is approximately 6%.mass%Low SiO to the extent2Sintered ores can be manufactured without significantly reducing product strength or production rate, but in order to obtain sintered ores with fewer FeO components, it is essential to reduce the amount of solid fuel powder. When the product is manufactured at a normal production rate, the product strength is remarkably reduced. On the other hand, when trying to obtain the desired product strength, the production rate must be extremely reduced to secure the sintering time. High-quality and low-mass SiO that can be applied to actual blast furnace operations2Sinter is not obtained. In this respect, the above-mentioned JP-A-9-194914 discloses that a good product strength (drop strength SI) can be obtained. However, if such product strength is to be obtained, the production rate is extremely reduced as described above. Therefore, the low SiO as shown in the publication2It can be said that mass production of sintered ore is almost impossible.
[0017]
  Therefore, a low SiO content with a low FeO content as shown in Japanese Patent Laid-Open No. 9-194914 or similar thereto.2There has never been a report that sinter has been used in actual operation of a blast furnace, and naturally, [CaO%] / [FeO%] in the sintered ore and the Si concentration in the hot metal as shown in FIG. There is no example that the relationship with the
[0018]
  On the other hand, the sintered ore used in the operation example shown by ● in FIG. 1 is a low SiO produced by a completely new manufacturing method originally developed by the present inventors.2This is a sintered ore and this low SiO2It was found that the sintered ore can realize a low FeO content and a high [CaO%] / [FeO%] without reducing the product strength and the production rate. That is, the present inventors have made such a low SiO2Sintered ore is manufactured for the first time, and this low SiO2Based on the results of actual operation of a blast furnace using sintered ore, the relationship between [CaO%] / [FeO%] in the sintered ore and the Si concentration in the hot metal as shown in FIG. 1 was found.
[0019]
  Low SiO as above2Sintered ore with a high content of [CaO%] / [FeO%] reduces the blending ratio of solid fuel powder, and allows efficient combustion of solid fuel powder and raw material charge in pseudo particles. In order to ensure a uniform heat distribution in the bed height direction, the raw material charge in the raw material charge layer height direction in the sintering machine and the pseudo particle structure including the distribution form of the solid fuel powder in the pseudo particles It can be manufactured by optimizing the shape. This low SiO2The sintered ore can secure a product strength comparable to the sintered ore obtained by the conventional manufacturing method of tumbler strength (+10 mm) 67 to 69% as the product strength, and the production rate is 1.9 (T / h / m2The above can be secured. The specific manufacturing method will be described later in detail.
[0020]
  Based on the results shown in FIG.2A more detailed study was made on the relationship between [CaO%] / [FeO%] in the sintered ore and the Si concentration in the hot metal. That is, SiO2Content is 5.0mass%A low SiO, wherein [CaO%] / [FeO%] is in the range of about 1.3 to 2.1.2Blast furnace operation using sintered ore was carried out, and the influence of [CaO%] / [FeO%] in the sintered ore on the Si concentration in the hot metal was investigated. The result is shown in FIG. According to this, SiO of the sintered ore to be used2Content is 5.0mass%Or less, and only when [CaO%] / [FeO%] is 1.55 or more, the Si concentration in the hot metal is 0.3.mass%It can be seen that the following can be maintained stably.
[0021]
  Therefore, in the present invention, low SiO2The composition of sintered ore is SiO2Ingredient 5.0mass%And [CaO%] / [FeO%]Mass ratioIs 1.55 or more.
  Such low SiO of the present invention2Sintered ore has high reducibility, and a high reducibility of 70 to 72% in terms of JIS-RI value is obtained. This is because the amount of powder coke can be reduced by packaging powder coke, and more specifically, the [FeO%] of the product sintered ore is 6.0 to 5.0.mass%This is because it can be reduced to a certain extent.
[0022]
  In addition, the low SiO of the present invention2[CaO%] / [FeO%] in the sintered ore is particularly preferably in the range of 1.67 to 2.20 for the reasons described below.
  That is, as the composition of the sintered ore, the higher [CaO%], the easier it is to produce porous calcium ferrite having better reducibility, and the activity of Si gas is reduced by lowering the activity of the SiO gas generated in the blast furnace. Transition to the hot metal is easily suppressed, and as a result, it is advantageous for the implementation of a stable low Si operation. Therefore, [CaO%] in the sintered ore is 10mass%On the other hand, the basicity [CaO%] / [SiO2%] Is too high, slag cannot be generated smoothly in the blast furnace. For this reason, [CaO%] is 11mass%The degree is the upper limit. In addition, regarding [FeO%] in the sintered ore, the sintered ore of the present invention is manufactured by packaging powdered coke, but if [FeO%] is excessively reduced, the absolute value of the powdered coke is not obtained. Since the amount is reduced and the calorific value is excessively insufficient, at most 6.0-5.0mass%The degree is the range that is most easily manufactured. Therefore, the particularly preferable range of [CaO%] / [FeO%] is 1.67 to 2.20 from the above preferable ranges of [CaO%] and [FeO%].
[0023]
  On the other hand, if the [CaO%] / [FeO%] becomes too high due to an excessive CaO concentration in the sintered ore, hygroscopic unreacted free lime is generated in the sintered ore structure, and in the air When the sinter is pulverized and stored in the yard by moisture, the problem tends to occur, and the [CaO%] / [FeO%] becomes too high because the FeO concentration in the sinter is too low. In addition, there is a problem that the amount of hematite in the sintered ore structure increases and the reduced powdering property deteriorates. However, if [CaO%] / [FeO%] is approximately 3.0 or less, these problems occur. It also turned out not to be. Therefore, [CaO%] / [FeO%]Mass ratioThe upper limit is preferably about 3.0.
[0024]
  Low SiO of the present invention2In blast furnace operation using sintered ore, the low SiO of the present invention is used.2The sintered ore is blended with plain or other charging raw materials and charged from the top of the furnace to produce a low Si hot metal.260% of the sinter in the main raw materialmass%By setting it as the above, a low Si hot metal can be obtained stably. Therefore, for example, the proportion of sintered ore in the main raw material is 80mass%Even in the case ofmass%The above is the low SiO of the present invention.2If it is a sinter, the remainder may be a normal sinter.
  However, the low SiO of the present invention2When sinter and ordinary sinter are used in combination, SiO2 is also used for ordinary sinter.2Ingredient 5.0mass%It is particularly preferable to use the following to stabilize the low Si operation of the blast furnace.
[0025]
  Next, the low SiO of the present invention having the component composition described above.2A preferred method for producing sintered ore will be described.
  In producing sintered ore, SiO in the product sintered ore2Although it is possible to adjust the content and CaO content to the target values by adjusting the ingredients of the blended raw material, the FeO content of the product sintered ore can be adjusted in advance at the raw material blending stage because it is the result of firing. Can not. Therefore, in order to adjust the FeO content of the sintered product ore to the target value, it is important to control the firing conditions, particularly the calorific value.
[0026]
  As described above, in the conventional method for manufacturing a sintered ore (a manufacturing method in an actual operation in which a predetermined production rate and product strength can be obtained), the sintered ore low SiO2And low FeO cannot be achieved at the same time. As described above, this is because SiO in the raw ore powder.2If the content is reduced, the strength of the sintered product ore tends to decrease because the slag component during sintering decreases, so in order to ensure the desired product strength while maintaining the production rate, solid fuel powder However, if the amount of solid fuel powder is increased, the amount of FeO produced increases.
[0027]
  We have made SiO2Ingredient: 5.0mass%The following low SiO2Sintered ore structure and sintering process capable of securing [CaO%] / [FeO%]: 1.55 or more with a small amount of FeO produced without reducing product strength and production rate in sintered ore As a result, low SiO2In order to obtain a sintered ore with a low content of FeO, the solid fuel powder in the quasi-particles has a great influence on the blending ratio of the solid fuel powder into the sintering raw material and the combustibility of the solid fuel powder. It is important to optimize the quasi-particle structure including the distribution form of the raw material, and also to optimize the raw material charge form in order to obtain a uniform heat distribution in the raw material charge layer height direction in the sintering machine. In order to ensure efficient combustion of solid fuel powder in the quasi-particles and uniform heat distribution in the raw material charge layer height direction while reducing the powder blending ratio, the solid fuel powder in the quasi-particles More specifically, by optimizing the pseudo-particle structure including the distribution form of the raw material and the raw material charging form in the raw material charging layer height direction, more specifically, packaging and sintering of the solid fuel powder in the granulation process Desired by combining with the segregation charging in the charging process to the machine pallet Low SiO having a composition2It was found that sinter was obtained.
[0028]
  FIG. 3 shows the low SiO of the present invention.2An example of the production flow of sintered ore is shown, and blended raw materials such as B powder 1, return mineral 3, and solvent 4 (in some cases, a part of solid fuel powder 2 is further added) are used as a primary drum mixer 5 (Or a primary dish type granulator), and an appropriate amount of moisture is added to condition, mix and granulate to obtain a primary granulated product. Next, solid fuel powder 2 is added to the primary granulated product, and secondary granulation is performed with a secondary drum mixer 6 (or a secondary dish granulator), so that the solid fuel powder is coated on the surface layer (exterior) ) Formed pseudo-particles. The pseudo particles are charged onto the pallet of the sintering machine 7 through a raw material charging device (not shown) so that a uniform heat distribution can be obtained in the height direction of the raw material charging layer during sintering. Therefore, the raw material charge layer in which the pseudo particles have a predetermined particle size segregation in the layer height direction is formed.
[0029]
  The ratio of particles having a particle size of 0.125 mm or less in the B powder 1 is 30.mass%Less than ordinary sinter powder ore, for example, low SiO, represented by MBR, Carajas, CVG2Use ore containing single or multiple brands as appropriate. Normally, this B powder 1 is a sintered ore SiO 22Content is 5.0mass%Hereinafter, the Fe content is 56.mass%Adjust and use as above. In general, the Fe content in the sintered ore is 56.mass%Less than, gangue and limestone react during the sintering process to increase calcium silicate slag, which tends to become a sintered dense structure covering the structure of hematite, calcium ferrite, magnetite, etc., which are reduced iron oxides. It is not preferable.
  Although powder coke is generally used as the solid fuel powder 2, char, anthracite, petroleum coke, or coal can be used in addition to this, and a mixture thereof may be used.
[0030]
  Low SiO of the present invention2In producing the sintered ore, the blending amount of the solid fuel powder 2 and the distribution form in the pseudo particles are very important factors.
  First, the blending amount of the solid fuel powder 2 is preferably kept to the minimum necessary to suppress the production amount of FeO as much as possible. Specifically, the blending amount of the solid fuel powder is 44 kg or less per 1 ton of product sintered ore. It is preferable to do.
[0031]
  As for the distribution form of the solid fuel powder 2 in the pseudo particles, most of the solid fuel powder needs to be covered (covered) on the surface layer portion of the pseudo particles. One of the aims of packaging solid fuel powder against the pseudo particles in this way is to improve the combustibility of the solid fuel powder by making most of the solid fuel powder exist in the surface layer of the pseudo particle. It is intended to compensate for the shortage of calorific value due to the reduction of the blending amount. That is, since the solid fuel powder coated on the surface of the pseudo particles has higher combustion efficiency than the case where the solid fuel powder is included in the pseudo particles, the calorific value can be increased without increasing the amount of the solid fuel powder. Another aim of the solid fuel powder exterior is to suppress excessive heat supply to the interior of the pseudo particles when the solid fuel powder burns, thereby reducing the amount of the solid fuel powder blended with it. This is to suppress the generation amount of FeO as much as possible.
[0032]
  The solid fuel powder 2 may be externally coated on the surface of the pseudo particle substantially in the secondary granulation step (usually a granulation step using a drum mixer). It may be added in the granulating step using a drum mixer), and the remaining amount may be externally covered on the surface of the pseudo particle in the secondary granulating step. However, in order to surely obtain the effect of the above-described solid fuel powder exteriorization, the addition amount when part of the solid fuel powder 2 is added in the primary granulation step is 30 of the total blended amount of the solid fuel powder.mass%Less than 70mass%The above solid fuel powder needs to be packaged on the surface layer portion of the pseudo particles in the secondary granulation step. Also, the amount of solid fuel powder added in the primary granulation step is 30mass%When it is above, the ratio of the amount of solid fuel powder in the pseudo particles to the amount of oxygen diffusing inside the pseudo particles during the sintering process is too high, and the combustion of the solid fuel powder becomes significantly slow, resulting in an increase in the sintering time, This is not preferable because the production rate is reduced.
[0033]
  Low SiO of the present invention2In the production of sintered ore, the solid fuel powder is externally coated (coated) on the surface layer of the pseudo particles as described above, and the pseudo particles as described below are loaded into the particle size segregation (layer) on the sintering machine pallet. In combination with the high-direction particle size distribution), ensuring efficient combustion of solid fuel powder in the quasi-particle, suppressing excessive heat supply inside the quasi-particle, and charging the raw material A uniform calorie distribution in the layer height direction is ensured, and a composite ore and a sintered ore with a small amount of FeO generation can be obtained while maintaining a high product strength and production rate.
[0034]
  Generally, the raw material charge layer during sintering tends to have a higher heat level toward the lower layer side in the height direction. That is, since the high temperature combustion gas from the upper middle layer flows in addition to the combustion heat of the solid fuel powder on the lower layer side of the raw material charging layer, the heat level is high and heat surplus is likely to occur. On the other hand, the upper layer side of the raw material charging layer sucks in air at room temperature simultaneously with the combustion of the solid fuel powder, so the heat level is low and heat shortage is likely to occur. Therefore, in order to make the heat level received by the quasi-particles uniform in the height direction of the raw material charging layer, the quasi-particles having a high solid fuel powder concentration are formed on the upper layer side of the raw material charging layer and on the lower layer side. It is necessary to charge pseudo particles having a low solid fuel powder concentration.
[0035]
  Here, the concentration of the solid fuel powder of the pseudo particles is substantially constant regardless of the particle size of the pseudo particles when the solid fuel powder is embedded in the pseudo particles, but the solid fuel powder is in the surface layer portion of the pseudo particles. If it is packaged (coated), the solid fuel powder that covers the surface of the pseudoparticlesmassIs considered to be proportional to the surface area of the pseudo particles (ie, proportional to the square of the pseudo particle diameter R),massIs considered to be proportional to the cube of the pseudo particle diameter R, so the unit of pseudo particlesmassPer solid fuel powder concentration is R2/ R3It is thought that it is proportional to the pseudo-particle diameter. Therefore, the quasi particles coated with the solid fuel powder are segregated so that the particle diameter gradually increases from the upper layer side to the lower layer side of the raw material charging layer (that is, the pseudo particle size is higher than the raw material charging layer height). If the particle size distribution is such that the lower layer side> the upper layer side in the vertical direction), the solid fuel powder concentration is high on the upper layer side of the raw material charge layer and low on the lower layer side. It is considered that a concentration distribution can be obtained.
[0036]
  In order to confirm the above points, the inventors sampled pseudo particles (pseudo particles whose surface layer portion is coated with solid fuel powder) granulated in the production flow shown in FIG. 3 at the outlet of the secondary drum mixer, Solid fuel powder concentration by pseudo particle size (average particle size) (unit of pseudo particles)massPer solid fuel powder concentration). For comparison, the solid fuel powder is added to the sintering raw material with a primary drum mixer and granulated, and the solid fuel powder is contained in a pseudo-particle (in the secondary drum mixer, solid fuel powder is added). In the same manner, the solid fuel powder concentration by particle size was analyzed.
[0037]
  FIG. 4 shows the results. In the case of solid fuel powder-incorporated pseudoparticles, the unit of pseudoparticles is shown.massThe solid fuel powder concentration per unit shows an almost constant value regardless of the particle diameter, whereas in the solid fuel powder exterior type pseudo particles whose surface layer is coated with solid fuel powder, the unit of pseudo particlesmassIt was confirmed that the concentration of the solid fuel powder per unit was inversely proportional to the pseudo particle size.
[0038]
  Therefore, the quasi-particle is a solid fuel powder exterior type, and the particle size segregation state in which the quasi-particle diameter gradually increases from the upper layer side to the lower layer side of the raw material charging layer, that is, the quasi-particle size is the raw material charge If the particle size distribution is such that the lower layer side> the upper layer side in the layer height direction, a solid fuel powder concentration distribution with a higher solid fuel powder concentration toward the upper layer side of the raw material charged layer can be obtained. It becomes possible.
[0039]
  Note that the particle size distribution in which the particle size of the pseudo particles is lower layer side> upper layer side in the raw material charge layer height direction means that the particle size of each charged pseudo particle is always in the raw material charge layer height direction. It is not a strict meaning that there is a relationship of lower layer side> upper layer side, and the particle size distribution in such a strict sense also from the specific raw material charging method and apparatus configuration as described below It is virtually impossible to get. Therefore, the particle size distribution of the above-mentioned pseudo particles which is a condition of the present invention means a particle size distribution in which the average particle size of the pseudo particles satisfies the relationship of lower layer side> upper layer side in the entire raw material charge layer height direction. Yes.
[0040]
  Low SiO of the present invention2In the production of sintered ore, as described above, in order to charge the pseudo particles into a particle size segregation state in which the pseudo particle diameter gradually increases from the upper layer side to the lower layer side of the raw material charging layer, for example, FIG. The pseudo particles are charged onto the sintering machine pallet 12 through the screen-like chute 8 for particle size segregation charging as shown in FIG. The screen-like chute 8 is provided in a downwardly inclined manner below the raw material supply unit 9 in the raw material charging apparatus, and a plurality of slits 10 substantially parallel to the sintering machine pallet width direction are formed in parallel in the vertical direction of the chute. In addition, the slit 10 has a structure in which the width of the slit 10 is narrowed toward the upper side of the chute.
[0041]
  When the pseudo particles are charged onto the sintering machine pallet 12 through such a screen-like chute 8, the pseudo particles that are discharged from the raw material supply unit 9 and slide down on the screen-like chute 8 have a width of the slit 10. Since it is smaller on the upper side of the chute, when it falls onto the sintering machine pallet 12 through the slit 10, it is sieved according to the particle size, and pseudo particles having a larger particle size are loaded on the raw material charging start end side of the sintering machine pallet 12. Entered. As a result, the raw material charge layer after the pseudo particle charging has a smaller pseudo particle diameter toward the upper layer side, and the pseudo particles are segregated in the layer height direction.
[0042]
  In addition, as a general structure of the screen-like chute 8, the chute body is formed in the width direction of the sintering machine pallet including a cord-like body (eg, wire rope) or a rod-like body (eg, solid or hollow rod). A plurality of substantially parallel screen constituent members 11 are formed, and a gap between adjacent screen constituent members 11 constitutes the slit 10.
[0043]
  These screen constituent members 11 may have a fixed structure, but in some cases, each screen constituent member 11 can be moved in its longitudinal direction, and the pseudo particles adhering to the member surface can be scraped off during the movement. A scraping means (for example, a guide member for scraping and adhering matter having a guide hole through which the screen constituent member 11 is inserted), the screen constituent member 11 is appropriately moved, and the pseudo particles adhering to the surface thereof are You may make it prevent the clogging of the slit 10 by a pseudo particle by scraping off with a scraping means.
[0044]
  The slit 10 has a slit width on the uppermost side of the chute w.1When the slit width on the lowermost side of the chute is wn, for example, the slit width w2To slit width wn may be changed continuously for each slit, or several adjacent slit widths may be the same, and the slit width may be changed to w.1... w1, W2... w2,... May be changed step by step, and the mode is arbitrary. Therefore, the above configuration in which the width of the slit 10 is smaller toward the upper side of the chute includes these various aspects. Further, the shape of the upper surface of the screen-like chute on which the pseudo particles slide down may be either a straight shape or a concave curve shape.
[0045]
  Next, the preferable particle size distribution in the height direction of the raw material charge layer of the pseudo particles by the preferable particle size of the pseudo particles and the above-described particle size segregation charging will be described.
  The particle size range of the pseudo particles is preferably in the range of 1 mm to 10 mm (however, excluding fine powder components that are inevitably partly granulated). If the pseudo particle size is less than 1 mm, the sinterability is improved, but the pseudo particle size is too fine, so that the air permeability on the upper layer side of the raw material charging layer is deteriorated, and the operation rate is likely to be lowered. On the other hand, if the pseudo particle diameter exceeds 10 mm, the combustion heat of the solid fuel powder that has been packaged does not reach the inside of the pseudo particles, and sufficient firing is not possible.
[0046]
  The particle size distribution in the layer height direction of the pseudo particles charged on the sintering machine pallet is the upper layer side of the raw material charge layer (the upper layer side when the raw material charge layer is divided into two in the layer height direction). The average pseudo particle size of the portion) is 1 mm to 3 mm, and the average pseudo particle size on the lower layer side of the raw material charging layer (the lower layer side portion when the raw material charging layer is divided into two in the layer height direction) is more than 3 mm to 10 mm Preferably there is. Here, the boundary average pseudo particle diameter between the upper layer part side and the lower layer part side of the raw material charging layer was set to 3 mm as shown in FIG. Therefore, by arranging the pseudo particles having such a particle size on the lower layer side of the raw material charging layer, the high-temperature combustion gas from the upper middle layer of the raw material charging layer flows in and heats up. This is because even if the level is increased, the sintering reaction is suppressed and excessive melt production is suppressed.
[0047]
  Therefore, it is possible to perform the particle size segregation charging so that the pseudo particle diameter becomes smaller toward the upper layer side of the raw material charging layer so as to satisfy the above particle size distribution, and the heat quantity distribution in the layer height direction of the raw material charging layer. Is most preferable in order to make uniform.
  By firing the sintering raw material by the above sintering process,2Ingredient: 5.0mass%Although it is below, [CaO%] / [FeO%] has a composition of 1.55 or more, and is excellent in both product strength and production rate.2Sinter (product strength: tumbler strength (+10 mm) 67-69%, production rate 1.9 T / h / m2The above is stably obtained.
[0048]
【Example】
[Low SiO2Example of manufacturing sintered ore]
  In accordance with the flow shown in FIG.2Sinter was produced. Table 1 shows the brand composition of the used blended raw material, and Table 2 shows the component composition, the particle size composition and the average particle size of the powdered coke.
  As the granulator, a drum mixer (inner diameter 4.4 m, effective length 15 m) is used in the primary granulation process, and a drum mixer (inner diameter 5.0 m, effective length 18 m) or in the secondary granulation process. A dish granulator (diameter 7.5 m, depth 0.5 m) was used. Also, as a sintering machine, effective sintering area 400m2A Dwytroid type sintering machine having a charge layer thickness of 570 mm and a blower negative pressure of 17.7 kPa was used.
[0049]
  Regarding the inventive examples, Production Example 1 and Production Example 2 in which the total amount of powder coke is added (exterior) in the secondary granulation step, and 30 in the primary granulation step among the whole powder coke.mass%(Interior) and the remaining 70 in the secondary granulation processmass%Production Example 3 in which (addition) was added was carried out.
  As the charging chute of the raw material charging apparatus in the sintering machine, the raw material charging is performed using a screen-like chute having a slit as shown in FIG. It was.
[0050]
  On the other hand, for the comparative example, the total amount of powdered coke is added (interior) in the primary granulation step, and a conventional plate-shaped sloping chute is used as a charging chute for the raw material charging device. In Comparative Example 1 in which raw material was charged and in the secondary granulation process, all the amount of powdered coke was added (exterior), and a conventional plate-shaped sloping chute was used as a charging chute for the raw material charging device. While adding the total amount of coke breeze in the comparative example 2 which performed the raw material charging to a kneading machine and a primary granulation process, as shown in FIG. 5 as a charging chute of a raw material charging device The comparative example 3 which performed the raw material charging to the sintering machine using the screen-like chute (wire-type screen-like chute) which each has was implemented.
[0051]
  Tables 3 and 4 show the specifications of the sintering operation and the properties of the product sintered ore of the present invention and comparative examples. According to this, in the present invention example, SiO2Content is 5.0mass%In the following, sintered ore with [CaO%] / [FeO%] of 1.55 or more was obtained, both of which had high reducibility of JIS-RI: 70% or more, and 1.9 T / h. / M2Although it is the above high production rate, the product strength and yield comparable with a comparative example are obtained.
[0052]
  In contrast, in the comparative example, [CaO] / [FeO]Mass ratioHowever, only sinter of 1.36 to 1.42 is obtained. Moreover, all of the sintered ores of these comparative examples have a JIS-RI value of 68% or less.
  Further, in the present invention example, the powder coke is coated (coated) on the surface layer portion of the pseudo particles and the particle size segregation charging is performed in the sintering machine, so that the combustibility of the powder coke is improved, and as a result, compared with the comparative example. The basic unit of coke is reduced by about 1-7 kg / t. Moreover, although not shown in Table 3 and Table 4, about 40 kg / t also decreased compared with the comparative example also about the ore basic unit.
[0053]
[Table 1]
Figure 0003651270
[0054]
[Table 2]
Figure 0003651270
[0055]
[Table 3]
Figure 0003651270
[0056]
[Table 4]
Figure 0003651270
[0057]
[Example of blast furnace operation]
  Low SiO of Example of the Invention2The blast furnace was operated at low Si using sintered ore. Low SiO used in the operation example of the present invention2[CaO%] / [FeO%] of the sintered ore is in the range of 1.55 to 2.09, and each is manufactured by the above-described manufacturing method of the present invention.
  The blast furnace used was A blast furnace (with an internal volume of 3223 m3) And B blast furnace (internal volume 4288m)3The blast furnace A was all coke operation, and the blast furnace B was pulverized coal injection operation. Main raw material composition and low SiO used in each operation2Table 5 shows the blending ratio of the sintered ore together with the operation conditions and operation results of the blast furnace. In addition, the operation result shown in Table 5 is an average value for one month.
[0058]
  According to Table 5, the low SiO of the present invention2By using sintered ore, it can be seen that a stable low Si operation is possible in both the all coke operation and the pulverized coal injection operation. In all the operation examples of the present invention, the Si concentration in the hot metal: 0.3mass%The following low Si molten iron was stably and continuously obtained for more than one month.
  In contrast, [CaO%] / [FeO%] is a low SiO less than 1.55.2In the comparative example using sintered ore, the sintered ore SiO2Content is 5.0mass%Although it is below, the Si concentration in the hot metal is 0.38.mass%The low Si operation has not been achieved.
[0059]
[Table 5]
Figure 0003651270
[0060]
【The invention's effect】
  As described above, the low SiO of the present invention.2Sintered oreAccording to the blast furnace operation method using low Si operationIn particular, a low Si operation in which the Si concentration in the hot metal is 0.3% by mass or less can be carried out stably for a long time.
[Brief description of the drawings]
[Fig. 1] SiO2Content is 5.0mass%Conventional low SiO2Sintered ore and low SiO produced by the inventors2In blast furnace operation using sintered ore, low SiO2Of CaO and FeO components in sintered oreMass ratioGraph showing the relationship between [CaO%] / [FeO%] and the Si concentration in the hot metal
[Fig. 2] SiO2Content is 5.0mass%The following low SiO2In blast furnace operation using sintered ore, low SiO2Of CaO and FeO components in sintered oreMass ratioGraph showing the relationship between [CaO%] / [FeO%] and the Si concentration in the hot metal
FIG. 3 shows the low SiO of the present invention.2Explanatory drawing showing an example of the manufacturing flow of sintered ore
[Figure 4] Pseudo particle size and pseudo particle unitmassGraph showing the relationship with solid fuel powder concentration per unit
FIG. 5: Low SiO of the present invention2Explanatory drawing showing the state of raw material charging on the screen-like chute of the raw material charging device used in the production of sintered ore and the sintering machine pallet
[Explanation of symbols]
  1 ... B powder, 2 ... solid fuel powder, 3 ... returning, 4 ... solvent, 5 ... primary drum mixer (or dish type granulator), 6 ... secondary drum mixer (or dish type granulator) , 7 ... Sintering machine, 8 ... Screen-like chute, 9 ... Raw material supply unit, 10 ... Slit, 11 ... Screen component, 12 ... Sintering machine pallet

Claims (5)

焼結鉱製造工程において、固体燃料粉を含まないか若しくは全固体燃料粉のうちの30質量%未満の固体燃料粉を含む配合原料を1次造粒した後、該1次造粒物に全固体燃料粉又は全固体燃料粉のうち1次造粒工程で配合されなかった残余の固体燃料粉を加えて2次造粒することにより、表層部に固体燃料粉が被覆された擬似粒子を形成し、該擬似粒子を焼結機パレット上に、擬似粒子の粒度が原料装入層高さ方向で下層側>上層側となるような粒度分布を有する状態に装入し、該原料装入層を焼成することにより、SiO 成分が5.0質量%以下、CaO成分とFeO成分の質量比[CaO%]/[FeO%]が1.55以上である低SiO 焼結鉱を製造し、該低SiO焼結鉱を単味若しくは他の装入原料と配合して炉頂から装入し、Si濃度が0.3質量%以下の低Si溶銑を得ることを特徴とする低SiO焼結鉱を用いた高炉操業方法。 In the sintered ore production process, after primary granulation of a blended raw material that does not contain solid fuel powder or contains solid fuel powder of less than 30% by mass of the total solid fuel powder, The remaining solid fuel powder that has not been blended in the primary granulation step of the solid fuel powder or all solid fuel powder is added and subjected to secondary granulation to form pseudo particles whose surface layer portion is coated with solid fuel powder. The pseudo particles are charged on a sintering machine pallet in a state having a particle size distribution such that the particle size of the pseudo particles is lower layer side> upper layer side in the raw material charging layer height direction, and the raw material charging layer By firing the low-SiO 2 sintered ore , the SiO 2 component is 5.0 mass% or less and the mass ratio [CaO%] / [FeO%] of the CaO component to the FeO component is 1.55 or more. , charged from the furnace top with the low SiO 2 sintered ore blended with plain or other charging material , Blast furnace operation method using a low SiO 2 sintered ore Si concentration is characterized by obtaining the following low Si molten iron 0.3 wt%. SiO成分が5.0質量%以下、CaO成分とFeO成分の質量比[CaO%]/[FeO%]が1.55以上である低SiO焼結鉱を、高炉に装入する主原料中の割合で60質量%以上とすることを特徴とする請求項1に記載の低SiO焼結鉱を用いた高炉操業方法。Main raw material for charging low blast furnace sinter with low SiO 2 sintered ore having a SiO 2 component of 5.0% by mass or less and a mass ratio [CaO%] / [FeO%] of CaO component to FeO component of 1.55 or more. The blast furnace operating method using the low SiO 2 sintered ore according to claim 1, wherein the content is 60% by mass or more. 焼結鉱製造工程において、タンブラー強度(+10mm)が67〜69%、被還元性(RI)が70〜72%である低SiO焼結鉱が、生産率1.9T/h/m以上で製造されることを特徴とする請求項1又は2に記載の低SiO焼結鉱を用いた高炉操業方法。In the sinter production process, a low SiO 2 sinter with a tumbler strength (+10 mm) of 67 to 69% and a reducibility (RI) of 70 to 72% is a production rate of 1.9 T / h / m 2 or more. blast furnace operation method using a low SiO 2 sintered ore according to claim 1 or 2, characterized in that it is produced in. 固体燃料粉を含まないか若しくは全固体燃料粉のうちの30質量%未満の固体燃料粉を含む配合原料を1次造粒した後、該1次造粒物に全固体燃料粉又は全固体燃料粉のうち1次造粒工程で配合されなかった残余の固体燃料粉を加えて2次造粒することにより、表層部に固体燃料粉が被覆された擬似粒子を形成し、該擬似粒子を焼結機パレット上に、擬似粒子の粒度が原料装入層高さ方向で下層側>上層側となるような粒度分布を有する状態に装入し、該原料装入層を焼成することにより、SiO成分が5.0質量%以下、CaO成分とFeO成分の質量比[CaO%]/[FeO%]が1.55以上である焼結鉱を製造することを特徴とする低SiO焼結鉱の製造方法。After primary granulation of a blended raw material that does not contain solid fuel powder or contains less than 30% by mass of solid fuel powder out of all solid fuel powder, all solid fuel powder or all solid fuel is added to the primary granulated product. The remaining solid fuel powder that was not blended in the primary granulation step of the powder is added and subjected to secondary granulation to form pseudo particles whose surface layer portion is coated with solid fuel powder, and the pseudo particles are baked. By charging the material pallet with a particle size distribution in which the particle size of the pseudo particles is lower layer side> upper layer side in the raw material charge layer height direction, and firing the raw material charge layer, SiO 2 Low SiO 2 sintering characterized by producing a sintered ore in which the two components are 5.0 mass% or less and the mass ratio [CaO%] / [FeO%] of the CaO component to the FeO component is 1.55 or more. Manufacturing method of ore. タンブラー強度(+10mm)が67〜69%、被還元性(RI)が70〜72%である低SiO焼結鉱を生産率1.9T/h/m以上で製造することを特徴とする請求項4に記載の低SiO焼結鉱の製造方法。A low SiO 2 sintered ore having a tumbler strength (+10 mm) of 67 to 69% and a reducibility (RI) of 70 to 72% is produced at a production rate of 1.9 T / h / m 2 or more. low SiO 2 sinter method according to claim 4.
JP21852698A 1998-07-16 1998-07-16 Blast furnace operation method using low SiO2 sintered ore Expired - Fee Related JP3651270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21852698A JP3651270B2 (en) 1998-07-16 1998-07-16 Blast furnace operation method using low SiO2 sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21852698A JP3651270B2 (en) 1998-07-16 1998-07-16 Blast furnace operation method using low SiO2 sintered ore

Publications (2)

Publication Number Publication Date
JP2000034527A JP2000034527A (en) 2000-02-02
JP3651270B2 true JP3651270B2 (en) 2005-05-25

Family

ID=16721318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21852698A Expired - Fee Related JP3651270B2 (en) 1998-07-16 1998-07-16 Blast furnace operation method using low SiO2 sintered ore

Country Status (1)

Country Link
JP (1) JP3651270B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135770B2 (en) * 2018-11-20 2022-09-13 日本製鉄株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JP2000034527A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
JP4167101B2 (en) Production of granular metallic iron
KR20120042981A (en) Unfired carbon-containing agglomerate for blast furnaces and production method therefor
JP3731361B2 (en) Method for producing sintered ore
JP4984488B2 (en) Method for producing semi-reduced sintered ore
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JPH08134516A (en) Operation of blast furnace
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP3651270B2 (en) Blast furnace operation method using low SiO2 sintered ore
JPH02228428A (en) Charging material for blast furnace and its production
JP4529838B2 (en) Sinter ore and blast furnace operation method
JP7339222B2 (en) Pig iron manufacturing method
JP4228678B2 (en) Method for manufacturing raw materials for sintering
JP4241285B2 (en) Method for producing semi-reduced sintered ore
JP2003129141A (en) Sintered ore for blast furnace and manufacturing method therefor
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
JP3531464B2 (en) Method for producing sintered ore with low SiO2 content
JP2009114485A (en) Method for manufacturing sintered ore
JP7273305B2 (en) Method for producing sintered ore
JP4501656B2 (en) Method for producing sintered ore
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
JP4816119B2 (en) Method for producing sintered ore
JP2011021221A (en) Method for operating blast furnace
JP2004218067A (en) Method for operating blast furnace
JPH0645828B2 (en) Agglomeration method of baked pellets
JP2000178659A (en) PRODUCTION OF HIGH QUALITY LOW SiO2 SINTERED ORE

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees