JP4984488B2 - Method for producing semi-reduced sintered ore - Google Patents

Method for producing semi-reduced sintered ore Download PDF

Info

Publication number
JP4984488B2
JP4984488B2 JP2005313101A JP2005313101A JP4984488B2 JP 4984488 B2 JP4984488 B2 JP 4984488B2 JP 2005313101 A JP2005313101 A JP 2005313101A JP 2005313101 A JP2005313101 A JP 2005313101A JP 4984488 B2 JP4984488 B2 JP 4984488B2
Authority
JP
Japan
Prior art keywords
compression
raw material
ore
sintered
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005313101A
Other languages
Japanese (ja)
Other versions
JP2007119841A (en
Inventor
智 町田
秀明 佐藤
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005313101A priority Critical patent/JP4984488B2/en
Publication of JP2007119841A publication Critical patent/JP2007119841A/en
Application granted granted Critical
Publication of JP4984488B2 publication Critical patent/JP4984488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、鉄鉱石、炭材、副原料等の原料を焼結してなり、高炉原料等として使用される半還元焼結鉱の製造方法に関する。   The present invention relates to a method for producing a semi-reduced sintered ore obtained by sintering raw materials such as iron ore, carbonaceous material, and auxiliary materials, and used as a blast furnace raw material.

高炉製銑法の主原料である焼結鉱は、一般的には、以下のようにして製造される。まず、約8mm以下で、平均粒径2.0〜3.0mmの粉鉄鉱石に、石灰石、生石灰、ドロマイト等のCaOを含んだCaO系副原料(石灰系副原料とも称する)や、硅石、ニッケルスラグ等の含SiO原料、製鉄所内で発生し回収された粉状リサイクル物、粒度が小さく再焼成を要する3〜5mmより小さい焼結粉、およびコークス粉、無煙炭などの炭材を加え、さらに適量の水を加えて調湿し、これらを混合・造粒して平均粒径が3.0〜5.0mmの擬似粒子とする。次いで、この擬似粒子を無端移動式焼結機のパレット上に400〜600mm程度の高さに充填し、充填ベッドの表層の炭材に点火し、下方に向けて空気を吸引しながら炭材を燃焼させて、その際の燃焼熱によって原料である擬似粒子を焼結する。焼結によって得られた焼結ケーキを破砕・整粒して3ないし5mm以上の成品焼結鉱とする。 Sinter ore, which is the main raw material of the blast furnace ironmaking method, is generally manufactured as follows. First, a CaO-based auxiliary material (also referred to as a lime-based auxiliary material) containing CaO such as limestone, quicklime, and dolomite in fine iron ore having an average particle size of 2.0 to 3.0 mm, which is about 8 mm or less, meteorite, containing SiO 2 raw material such as nickel slag, generated in steelworks recovered powder recycled product, 3 to 5 mm smaller than sintered powder requiring particle size is small refiring, and coke powder, a carbonaceous material such as anthracite added, Further, an appropriate amount of water is added to adjust the humidity, and these are mixed and granulated to obtain pseudo particles having an average particle diameter of 3.0 to 5.0 mm. Next, the pseudo particles are filled to a height of about 400 to 600 mm on a pallet of an endless moving type sintering machine, the carbon material on the surface layer of the packed bed is ignited, and the carbon material is drawn while sucking air downward. It burns, and the pseudo-particles which are raw materials are sintered by the combustion heat at that time. The sintered cake obtained by sintering is crushed and sized to obtain a product sintered ore of 3 to 5 mm or more.

このような焼結鉱は高炉に装入され、主にCOによりガス還元されて銑鉄となる。   Such sintered ore is charged into a blast furnace and gas-reduced mainly by CO to become pig iron.

通常、高炉製銑法は、COガスによる間接還元を主に利用するため、ガス還元平衡の制約を受け、多くの還元材を必要とすること、また、高炉内通気性の確保の面から強度の高い高品質の塊コークスが必要とされる。これに対して、近年、CO排出抑制による地球温暖化対策および老朽化が進んでいるコークス炉の炉命延長の観点から、製銑プロセスとして炭素(以下、Cと記す)による酸化鉄の直接還元を主に利用するプロセスが開発され実用化され始めている。この場合は、ガス還元平衡の制約を受けることがなくなるため、還元材の原単位を削減することができ、CO排出抑制およびコークス炉稼働率の低下を可能とする。 Normally, the blast furnace ironmaking method mainly uses indirect reduction with CO gas, so it is restricted by gas reduction equilibrium, requires a large amount of reducing material, and is strong in terms of ensuring air permeability in the blast furnace. High quality high quality coke is required. In contrast, in recent years, from the viewpoint of global warming countermeasures by suppressing CO 2 emissions and extending the life of coke ovens that are aging, direct iron oxide by carbon (hereinafter referred to as C) as a steelmaking process A process that mainly uses reduction has been developed and put into practical use. In this case, since there is no restriction on the gas reduction equilibrium, the basic unit of the reducing material can be reduced, and CO 2 emission can be suppressed and the coke oven operating rate can be reduced.

直接還元を利用する還元鉄製造方法としては、例えば溶融還元法、回転炉床法、およびロータリーキルン法が挙げられるが、いずれの方法も大規模な設備投資をともなうこと、生産性が著しく低い等の理由から、高炉法の補完プロセスとなっているのが現状である。   Examples of the method for producing reduced iron using direct reduction include a smelting reduction method, a rotary hearth method, and a rotary kiln method, all of which involve large-scale capital investment and extremely low productivity. For the reason, it is a supplementary process of the blast furnace method at present.

一方で、既存焼結機を利用し、焼結機上で塊成化と同時に還元反応も行わせ、金属Feまで還元された組織を一部含む焼結鉱を製造する方法が提案されている。   On the other hand, a method has been proposed in which an existing sintering machine is used, and a reduction reaction is performed simultaneously with agglomeration on the sintering machine to produce a sintered ore partially including a structure reduced to metallic Fe. .

例えば、特許文献1では、粉鉱石に5〜20wt%の粉コークス、無煙炭を造粒して内層とし、外層に粉鉱石、副原料および2〜5wt%の粉コークス、無煙炭を混合コーティングして2層擬似粒子を形成し、これを焼結原料の一部として混合・造粒した後、焼結過程でその原料の外層から生成する融液と内層の粉コークス・無煙炭中の直接還元により、焼結鉱の一部を還元することを特徴とする半還元焼結鉱の製造方法が開示されている。この技術では、内部に粉コークス・無煙炭を閉じこめると、焼結工程において昇温過程前半では粉コークス・無煙炭が空気中の酸素と接触しないので反応せず、1100℃の高温になって初めてFeO+C=Fe+CO−36350kcal/kmolの還元反応を起こし、焼結鉱の一部に金属Feを生成させる。そして、この反応は吸熱反応であるので、熱過剰になるのを防ぐことができるとしている。   For example, in Patent Document 1, 5 to 20 wt% of powdered coke and anthracite coal are granulated into an inner layer, and the outer layer is mixed with powdered ore, auxiliary materials, and 2 to 5 wt% of powdered coke and anthracite and coated 2 After forming layer pseudo-particles and mixing and granulating them as a part of the sintering raw material, sintering is performed by the direct reduction of the melt produced from the outer layer of the raw material and the inner layer of powdered coke and anthracite in the sintering process. A method for producing a semi-reduced sintered ore characterized by reducing a part of the ore is disclosed. In this technique, when powder coke and anthracite are confined in the interior, the powder coke and anthracite do not react with oxygen in the air in the first half of the temperature raising process in the sintering process, so they do not react and become FeO + C = only at a high temperature of 1100 ° C. A reduction reaction of Fe + CO-36350 kcal / kmol is caused to produce metallic Fe in a part of the sintered ore. Since this reaction is an endothermic reaction, it is possible to prevent heat from being excessive.

また、特許文献2によれば、鉄鉱石に炭材を15〜18%加えて造粒した擬似粒子の表層部にCaOを被覆して、あるいは造粒した擬似粒子をCaOが溶解された溶液に浸漬して擬似粒子表面にCaOを添加することで、焼成後の再酸化が防止され、還元率の高い半還元焼結鉱を製造することができるとしている。   According to Patent Document 2, CaO is coated on the surface layer of pseudo particles obtained by adding 15 to 18% of a carbonaceous material to iron ore or granulated, or the granulated pseudo particles are added to a solution in which CaO is dissolved. By dipping and adding CaO to the surface of the pseudo particles, re-oxidation after firing is prevented, and a semi-reduced sintered ore with a high reduction rate can be produced.

このような既存焼結機において粉鉄鉱石に対してその還元に必要な炭材を加え、直接還元反応を利用して半還元焼結鉱を製造する方法は、新規の大規模な設備投資を伴うことなく大量に半還元焼結鉱を製造する方法として実現可能性の高い方法である。そして、このように既存焼結機で得られる半還元焼結鉱は、焼結鉱に含まれる金属Feの比率が低くても、大量に高炉で使用するものであり、かつ還元鉱製造に使われる炭材はCをある程度含有していれば品質に対しての制約が殆どなく、集塵ダスト等も利用できるため、高炉還元材比低減やコークス炉への負荷軽減といったトータルでの効果は大きい。   In such an existing sintering machine, the method of adding semi-reduced sintered ore by using the direct reduction reaction to add carbonaceous materials necessary for the reduction to fine iron ore is a new large-scale capital investment. This is a highly feasible method for producing a semi-reduced sintered ore in large quantities without accompanying it. The semi-reduced sintered ore obtained with the existing sintering machine is used in a large amount in a blast furnace even if the ratio of metallic Fe contained in the sintered ore is low, and is used for reducing ore production. If the carbonaceous material to be contained contains C to some extent, there is almost no restriction on the quality, and dust collection dust etc. can be used, so the total effect such as reducing the blast furnace reducing material ratio and reducing the load on the coke oven is great. .

しかしながら、上記特許文献1および2に示された技術では、通常焼結鉱プロセスの2〜4倍程度の炭材を燃焼させることが必要となるため、上記還元反応が吸熱反応であっても熱過剰になりやすく、原料の粉鉱石がFeやFeから高温でFeOに還元された段階で、鉱石中の脈石や添加したフラックスと反応して大量の融液を発生させる。この融液は、副原料として添加されるCaO系副原料と鉱石との反応により発生するカルシウムフェライト融液および還元により生成したFeOと鉱石中の脈石SiOとの反応によって発生するオリビン系融液である。このようにして大量に発生した融液は、その周囲の粒子同士を急速に融着させると同時に、擬似粒子の外部から内部に向かって溶融を進行させる。原料充填層である焼結ベッド内には擬似粒子の溶融・収縮によって巨大な空隙が形成され、焼結機における吸引ガスは、その部分のみを通過するようになる。その結果として、通常400〜600mmある原料充填層の上層から下層に徐々に燃焼帯が移動すべき焼結反応は妨げられ、焼結ベッドの下層部に未焼部が大量に残り、還元反応の進行が阻止されるとともに生産性が極度に低下するといった問題がある。 However, in the techniques shown in Patent Documents 1 and 2, it is necessary to burn about 2 to 4 times as much carbonaceous material as that of a normal sinter process, so even if the reduction reaction is an endothermic reaction, It tends to be excessive, and when it is reduced from Fe 2 O 3 or Fe 3 O 4 to FeO at high temperature, it reacts with gangue in the ore and added flux to generate a large amount of melt. . This melt is composed of a calcium ferrite melt generated by a reaction between a CaO-based auxiliary material added as an auxiliary material and ore, and an olivine-based melt generated by a reaction between FeO formed by reduction and gangue SiO 2 in the ore. It is a liquid. The melt generated in a large amount in this way rapidly melts the surrounding particles, and at the same time, advances the melting from the outside to the inside of the pseudo particles. A huge void is formed in the sintering bed, which is the raw material packed layer, by melting and shrinking of the pseudo particles, and the suction gas in the sintering machine passes only through that portion. As a result, the sintering reaction in which the combustion zone should move gradually from the upper layer to the lower layer of the raw material packed layer, which is usually 400 to 600 mm, is hindered, and a large amount of unburned portion remains in the lower layer portion of the sintering bed. There is a problem that progress is prevented and productivity is extremely lowered.

このため、既存の焼結機を用いて高炉の主原料として少なくとも日産数千トンの規模で大量に一部が還元された焼結鉱を製造するには問題がある。
特開平4−210432号公報 特開2000−192154号公報
For this reason, there is a problem in producing a sintered ore partially reduced in large quantities on a scale of several thousand tons per day as a main raw material of a blast furnace using an existing sintering machine.
JP-A-4-210432 JP 2000-192154 A

本発明はかかる事情に鑑みてなされたものであって、現状の焼結機の操業を悪化させることなく焼成反応を安定化し、高い還元率および高い金属鉄含有率を達成することが可能な半還元焼結鉱の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to stabilize the firing reaction without deteriorating the operation of the current sintering machine and to achieve a high reduction rate and a high metal iron content. It aims at providing the manufacturing method of a reduction sintered ore.

上記課題を解決するため、本発明は、焼結原料として鉄鉱石と炭材と副原料とを用い、焼結原料のうち鉄鉱石の一部および炭材の一部、または焼結原料のうち鉄鉱石の一部、炭材の一部および副原料の一部を予め圧縮成形して圧縮成形粒子とし、焼結原料の残部を造粒物とし、これらを混合して焼成し、鉄鉱石の一部を炭材により還元してなる半還元焼結鉱を製造するにあたり、
前記圧縮成形粒子において、最も薄い部分の厚さの範囲を6mm以上16mm以下とし、かつその体積を6cm以下とし、前記圧縮成形粒子の混合割合を焼結原料全体の40〜70mass%とすることを特徴とする半還元焼結鉱の製造方法を提供する。
In order to solve the above-mentioned problems, the present invention uses iron ore, a carbon material, and a secondary material as a sintering raw material, and among the sintering raw material, a part of the iron ore and a part of the carbonaceous material, or among the sintering raw material Part of the iron ore, part of the carbonaceous material and part of the auxiliary material are pre-compressed into compression-molded particles, and the remainder of the sintered raw material is granulated, mixed and fired, In producing a semi-reduced sintered ore obtained by reducing a part of it with carbonaceous materials,
In the compression-molded particles , the thickness range of the thinnest part is 6 mm or more and 16 mm or less, the volume is 6 cm 3 or less, and the mixing ratio of the compression-molded particles is 40 to 70 mass% of the entire sintered raw material. The manufacturing method of the semi-reduction sintered ore characterized by these.

本発明において、前記圧縮成形粒子に含有される炭材の量を20mass%以下とすることが好ましい。また、前記圧縮成形粒子に含有される炭材が、45〜125μmの粒径のものが50〜70mass%とすることが好ましい。さらに、前記圧縮成形粒子を焼結機に装入するに際し、原料層下部9/10以下の領域に装入することが好ましい。   In this invention, it is preferable that the quantity of the carbon material contained in the said compression molding particle | grain is 20 mass% or less. Moreover, it is preferable that the carbonaceous material contained in the said compression molding particle | grain is a particle size of 45-125 micrometers, and is 50-70 mass%. Furthermore, when the compression-molded particles are charged into the sintering machine, it is preferable to charge in the region of the raw material layer lower part 9/10 or less.

本発明によれば、鉄鉱石および炭材等を成形して還元鉄製造用粒子または圧縮して圧縮成形粒子とし、これを原料層の一部として装入することにより、鉄鉱石と炭材との接触が強固になるとともにこれらの接触面積が大きくなり、かつ直接還元反応が部分的にのみ生じるため大量の融液を発生させず、さらに、金属Feの酸化を抑制して、金属Fe含有率を高めることができる。また、圧縮成形粒子において、最も薄い部分の厚さの範囲を6mm以上16mm以下とし、かつその体積を6cm以下として、圧縮成形粒子を微細化することにより通気性過剰になることを抑制して、圧縮成形粒子の混合割合を高めることを許容し、その量を焼結原料全体の40〜70mass%と高い値としたので、極めて高い還元率および金属化率を得ることができる。このため、現状の焼結機の操業を悪化させることなく直接還元を進行させて、鉄鉱石の一部が還元され、かつ金属Feを含有した半還元焼結鉱を大量に製造することができる。したがって、この半還元焼結鉱を高炉で使用することにより、製造プロセス全体としての還元材使用量を削減することができ、ひいては製造プロセスからのCO排出量も削減することができる。 According to the present invention, iron ore and carbonaceous materials are molded into reduced iron production particles or compressed into compression-molded particles, and this is charged as part of the raw material layer. These contact areas become larger and the contact area becomes larger, and since the direct reduction reaction occurs only partially, a large amount of melt is not generated, and further, the oxidation of metal Fe is suppressed, and the metal Fe content is reduced. Can be increased. Further, in the compression molded particles , the thickness range of the thinnest part is set to 6 mm or more and 16 mm or less, and the volume thereof is set to 6 cm 3 or less, thereby suppressing excessive breathability by reducing the size of the compression molded particles. Since the mixing ratio of the compression-molded particles is allowed to be increased and the amount is set to a high value of 40 to 70 mass% of the entire sintered raw material, a very high reduction rate and metallization rate can be obtained. For this reason, it is possible to produce a large amount of semi-reduced sintered ore containing part of the iron ore by reducing the direct reduction without deteriorating the operation of the current sintering machine and reducing a part of the iron ore. . Therefore, by using this semi-reduced sintered ore in a blast furnace, it is possible to reduce the amount of reducing material used in the entire manufacturing process, and in turn reduce CO 2 emissions from the manufacturing process.

以下、本発明について詳細に説明する。
本発明では、基本的に、焼結原料として鉄鉱石と炭材と副原料とを用い、これらを焼結機に装入して原料層を構成し、焼成して半還元焼結鉱を製造する。
この際に、焼結原料のうち鉄鉱石の一部および炭材の一部、または焼結原料のうち鉄鉱石の一部、炭材の一部および副原料の一部を予め圧縮成形して圧縮成形粒子とし、焼結原料の残部を造粒物とし、圧縮成形粒子において、最も薄い部分の厚さの範囲を6mm以上16mm以下とし、かつその体積を6cm以下とし、圧縮成形粒子の混合割合を焼結原料全体の40〜70mass%とする。これにより、鉄鉱石の一部が主に直接還元により還元され、金属Feを含有した半還元焼結鉱が得られる。
このような構成は、本発明者らの以下の知見に基づいている。
(1)Cによる鉄鉱石の直接還元反応を効果的に進行させるためのポイントは、C源である炭材と被還元物質である鉄鉱石との接触状態であり、これらが強固に接触し、かつ接触面積が大きいことが重要であること。
(2)このような成形粒子は還元反応を進めるための炭材が多量に存在しており過剰に溶融するおそれがあるが、その部分が過剰に溶融しても成形粒子は焼結原料の一部であるから、大量の融液を発生させるおそれは少なく、焼結ベッド全体の通気へは実質的に影響を与えずに、焼結鉱の生産性はほとんど低下しないこと。
(3)還元された粒子は、吸引ガス中の酸素により再酸化されるおそれがあるが、鉄鉱石および炭材等を成形した粒子は、これらが強固に密着しているため、還元後もその形態を保ち、表面は酸化されても内部は酸化され難く、良好な還元状態を保っていること。
(4)圧縮成形粒子において、最も薄い部分の厚さの範囲を6mm以上16mm以下とし、かつその体積を6cm以下として圧縮成形粒子を微細化することにより通気過剰になることを抑制することによって、圧縮成形粒子の混合割合を焼結原料全体の40〜70mass%と高い値にできること。
Hereinafter, the present invention will be described in detail.
In the present invention, basically, iron ore, carbonaceous materials and auxiliary materials are used as sintering raw materials, and these are charged into a sintering machine to form a raw material layer, which is then fired to produce a semi-reduced sintered ore. To do.
At this time, a part of the iron ore and a part of the carbonaceous material among the sintered raw materials, or a part of the iron ore, a part of the carbonaceous material and a part of the auxiliary raw material among the sintered raw materials are compression-molded in advance. Mix the compression-molded particles with the compression-molded particles, the remainder of the sintered raw material as granulated material, and the thickness range of the thinnest part of the compression-molded particles between 6 mm and 16 mm and the volume of 6 cm 3 or less. The ratio is 40 to 70 mass% of the entire sintered raw material. Thereby, a part of iron ore is mainly reduced by direct reduction, and a semi-reduced sintered ore containing metal Fe is obtained.
Such a configuration is based on the following findings of the present inventors.
(1) The point for effectively advancing the direct reduction reaction of iron ore by C is the contact state between the carbon material that is the C source and the iron ore that is the substance to be reduced. And it is important that the contact area is large.
(2) Such molded particles contain a large amount of carbonaceous material for proceeding the reduction reaction and may be excessively melted. However, even if the portion is excessively melted, the molded particles are one of the sintering raw materials. Therefore, there is little risk of generating a large amount of melt, and the productivity of the sintered ore is hardly reduced without substantially affecting the ventilation of the entire sintered bed.
(3) Although the reduced particles may be re-oxidized by oxygen in the suction gas, the particles formed from iron ore and carbonaceous materials are in close contact with each other. Maintain the form, and even if the surface is oxidized, the inside is not easily oxidized, and a good reduced state is maintained.
(4) By reducing the thickness of the thinnest part in the compression molded particles from 6 mm to 16 mm and reducing the volume to 6 cm 3 or less, and reducing the compression molded particles from excessive ventilation. The mixing ratio of the compression-molded particles can be as high as 40 to 70 mass% of the entire sintered raw material.

以下、本発明について具体的に説明する。
鉄鉱石の還元反応は、高炉内と同様に、(1)式で示されるコークス等の炭材中の炭素との反応(直接還元)と、(2)式で示されるCOガスとの反応(間接還元)により進行する。間接還元で発生したCOガスはソリューション・ロス反応と呼ばれる(3)式で示される反応によりCOガスとなる。
Fe+3/2C=2Fe+3/2CO (1)
Fe+3CO=2Fe+3CO (2)
CO+C=2CO (3)
Hereinafter, the present invention will be specifically described.
As in the blast furnace, the reduction reaction of iron ore is carried out by reaction with carbon in carbonaceous materials such as coke represented by formula (1) (direct reduction) and reaction with CO gas represented by formula (2) ( It proceeds by indirect reduction. The CO 2 gas generated by the indirect reduction becomes CO gas by a reaction expressed by the equation (3) called a solution loss reaction.
Fe 2 O 3 + 3 / 2C = 2Fe + 3 / 2CO 2 (1)
Fe 2 O 3 + 3CO = 2Fe + 3CO 2 (2)
CO 2 + C = 2CO (3)

これらの還元反応は、温度が900〜1100℃では間接還元が支配的であり、1200℃以上では直接還元が支配的である。本発明では、半還元焼結鉱の製造に際し、原料層温度を1400℃程度に到達させ、1200℃以上の滞留時間を長くして直接還元を進行させることを指向する。   In these reduction reactions, indirect reduction is dominant when the temperature is 900 to 1100 ° C., and direct reduction is dominant when the temperature is 1200 ° C. or higher. In the present invention, when producing the semi-reduced sintered ore, the raw material layer temperature reaches about 1400 ° C., and the residence time of 1200 ° C. or more is lengthened to directly proceed the reduction.

この場合に、圧縮成形粒子は、被還元物質である鉄鉱石と還元剤である炭材とが強固に接触し、かつ接触面積が大きいので、還元鉄製造用粒子において鉄鉱石の直接還元反応を効果的に進行させることができる。また、還元鉄製造用粒子は原料層の一部として装入するので、上記反応は局部的に生じ、過剰に溶融するのは還元鉄製造用粒子の部分のみであり大量の融液を発生させるおそれが少ない。さらに、還元鉄製造用粒子は鉄鉱石および炭材とが強固に密着しており、還元後もその形態を保っているため、吸引ガス中の酸素によっても内部の再酸化が妨げられ、良好な還元状態を保っている。このため、現状の焼結機の操業を悪化させることなく直接還元を進行させることができ、鉄鉱石の一部が還元され、金属Feを含有した半還元焼結鉱を大量に製造することができる。   In this case, the compression-molded particles have a strong contact between the iron ore as the substance to be reduced and the carbonaceous material as the reducing agent, and the contact area is large. It can be effectively advanced. Moreover, since the particles for producing reduced iron are charged as a part of the raw material layer, the above reaction occurs locally, and only the portion of the particles for producing reduced iron is melted excessively, generating a large amount of melt. There is little fear. Furthermore, since the particles for producing reduced iron are in close contact with iron ore and carbonaceous material, and maintain their form after reduction, the internal reoxidation is prevented even by oxygen in the suction gas, which is good. The reduced state is maintained. For this reason, reduction can proceed directly without deteriorating the operation of the current sintering machine, a part of iron ore can be reduced, and a large amount of semi-reduced sintered ore containing metal Fe can be produced. it can.

このような鉄鉱石の一部が還元され、かつ金属Feを含有した半還元焼結鉱を高炉で使用することにより、製銑プロセス全体としての還元材使用量(還元材比)を削減することができ、ひいては製銑プロセスからのCO排出量も削減することができる。特に、金属Feを優先的に析出させることにより、製銑プロセスからのCO排出量削減効果を大きくすることができる。 Reduce the amount of reducing material used (reducing material ratio) as a whole of the ironmaking process by using semi-reduced sintered ore containing metal Fe in part of such iron ore in a blast furnace. As a result, CO 2 emissions from the ironmaking process can also be reduced. In particular, the effect of reducing CO 2 emission from the ironmaking process can be increased by preferentially precipitating metal Fe.

この点について、さらに詳細に説明する。
図1は、横軸に焼結鉱の還元率をとり、縦軸に高炉還元材比をとって、これらの関係を示す図であり、微粉炭吹き込み量を131kg/thm(溶銑1トンあたり131kg)とした場合を示す。この図に示すように、焼結鉱の還元率が上昇することにより、高炉の還元材比が低下し、還元率が30%を超えることによりその低下率が急激になる。通常の焼結鉱は還元率が2%程度であるから、本実施形態に従って還元率が30%以上の半還元焼結鉱を得ることにより、高炉の還元材比を大幅に低下させることができる。
This point will be described in more detail.
FIG. 1 is a graph showing the relationship between the sinter ore reduction rate on the horizontal axis and the blast furnace reductant ratio on the vertical axis. The amount of pulverized coal injected is 131 kg / thm (131 kg per ton of hot metal). ). As shown in this figure, when the reduction rate of sintered ore increases, the reducing material ratio of the blast furnace decreases, and when the reduction rate exceeds 30%, the reduction rate becomes abrupt. Since the normal sintered ore has a reduction rate of about 2%, by obtaining a semi-reduced sintered ore having a reduction rate of 30% or more according to this embodiment, the reducing material ratio of the blast furnace can be greatly reduced. .

高炉の還元材比はこのように焼結鉱の還元率を上げることにより低下させることができるが、上述したように、CO排出量をより効果的に低減する観点からは、焼結鉱全体の還元率を一様に上げるより、金属Feを析出させるほうが好ましい。このことを図2を参照して説明する。図2は、横軸に焼結鉱の高炉装入時の平均部分還元率をとり、縦軸に製銑工程からのC排出量をとって、均一に部分還元した焼結鉱と金属Feが優先的に発生した焼結鉱とでC排出量を比較して示す図である。ライン(a)は均一に部分還元した焼結鉱の場合であり、ライン(b)はメタルが優先的に発生した焼結鉱の場合であって、実際の半還元焼結鉱は、ライン(a)とライン(b)の間に存在することになる。なお、図中の「ベース」は部分還元していない焼結鉱を使用した場合のC排出量を示す。この図から明らかなように、均一に部分還元するよりも、金属Feを多く含有させたほうがC排出量、すなわちCO排出量をより低減することができることがわかる。また、均一に部分還元した半還元焼結鉱の場合には、還元率が30%まではむしろC排出量が増加しており、ある程度金属Feが存在していても同様の傾向があると考えられることから、CO排出量を削減するためには、還元率が30%以上であることが好ましいことがわかる。 Although the reducing material ratio of the blast furnace can be lowered by increasing the reduction rate of the sinter in this way, as described above, from the viewpoint of more effectively reducing the CO 2 emission amount, It is preferable to deposit metal Fe rather than to uniformly increase the reduction rate of the metal. This will be described with reference to FIG. In FIG. 2, the horizontal axis represents the average partial reduction rate of the sinter during blast furnace charging, and the vertical axis represents the amount of C discharged from the ironmaking process. It is a figure which compares and shows C discharge | emission amount with the sintered ore which generate | occur | produced preferentially. The line (a) is a case of a sintered ore that has been partially partially reduced uniformly, and the line (b) is a case of a sintered ore in which metal is preferentially generated. There will be between a) and line (b). In addition, "base" in a figure shows C discharge | emission amount when using the sintered ore which is not partially reduced. As is clear from this figure, it can be understood that the amount of C emission, that is, the amount of CO 2 emission, can be further reduced by containing a larger amount of metal Fe than when the partial reduction is uniformly performed. In addition, in the case of semi-reduced sintered ore that has been partially partially reduced uniformly, the amount of C emission increases rather than the reduction rate up to 30%, and it seems that there is a similar tendency even if metal Fe is present to some extent. Therefore, it is understood that the reduction rate is preferably 30% or more in order to reduce the CO 2 emission amount.

半還元焼結鉱に含有する金属Feの量は、全体の平均値として3mass%以上であることが好ましい。これにより、高炉における還元材比削減、製銑工程全体でのCO排出量の低減や、コークス炉への負荷軽減の効果を有効に発揮することができる。 The amount of metallic Fe contained in the semi-reduced sintered ore is preferably 3 mass% or more as an overall average value. Thus, reducing reducing agent ratio in blast furnace, reduction and CO 2 emissions in the entire ironmaking process, it is possible to effectively exhibit the effect of load reduction to coke oven.

本発明では、焼結原料として鉄鉱石と炭材と副原料とを焼結機に装入して焼成し、鉄鉱石の一部を炭材により還元してなる半還元焼結鉱を製造するにあたり、焼結原料のうち鉄鉱石の一部および炭材の一部、または焼結原料のうち鉄鉱石の一部、炭材の一部および副原料の一部を、予め圧縮成形して圧縮成形粒子とし、焼結原料の残部を造粒物とし、これらを混合して焼成する。   In the present invention, iron ore, carbonaceous material and auxiliary raw material are charged into a sintering machine as a sintering raw material and fired to produce a semi-reduced sintered ore obtained by reducing a part of iron ore with carbonaceous material. At this time, a part of the iron ore and a part of the carbonaceous material among the sintered raw materials, or a part of the iron ore, a part of the carbonaceous material and a part of the auxiliary raw material among the sintered raw materials are compressed and compressed in advance. Molded particles are formed, and the remainder of the sintering raw material is formed into a granulated product, which are mixed and fired.

このように、焼結原料のうち鉄鉱石の一部、炭材の一部および副原料の一部を圧縮成形することにより、鉄鉱石と炭材とが圧密されてこれらの接触面積が大きくなるので、このような圧縮成形粒子を原料の一部として焼結機に装入することにより焼結鉱の還元を促進させることができる。   In this way, by compressing a part of the iron ore, a part of the carbonaceous material, and a part of the auxiliary raw material among the sintered raw materials, the iron ore and the carbonaceous material are consolidated to increase their contact area. Therefore, the reduction of the sintered ore can be promoted by charging such compression-molded particles into a sintering machine as a part of the raw material.

すなわち、焼結原料のうち鉄鉱石の一部、炭材の一部および副原料の一部を圧縮成形した圧縮成形粒子を焼結原料の造粒物とともに焼結機に投入して半還元焼結鉱を製造することにより、高い還元率および高い金属Fe含有率が実現される。このような焼結鉱を高炉で使用することにより、製造プロセス全体としての還元材使用量(還元材比)をより削減することができ、ひいては製造プロセスからのCO排出量もより削減することができる。 That is, compression-molded particles obtained by compression-molding a part of iron ore, a part of carbonaceous material and a part of auxiliary materials among the sintered raw materials are put into a sintering machine together with a granulated product of the sintered raw materials, and semi-reduction firing By producing the ore, a high reduction rate and a high metal Fe content are realized. By using such sintered ore in a blast furnace, the amount of reducing material used (reducing material ratio) in the entire manufacturing process can be further reduced, and as a result CO 2 emissions from the manufacturing process can be further reduced. Can do.

ここで、圧縮成形粒子とはロール成形機における圧縮成形手段により所定形状に成形されたブリケット、またはロール成形機で板状、シート状、もしくは棒状に成形した後に所定の大きさに粉砕したもので、単一粒子の圧潰強度が39.2N以上とされたものをいう。   Here, the compression-molded particles are briquettes molded into a predetermined shape by a compression molding means in a roll molding machine, or are formed into a plate shape, a sheet shape, or a rod shape by a roll molding machine and then pulverized to a predetermined size. , Which means that the crushing strength of a single particle is 39.2 N or more.

このような圧縮成形された圧縮成形粒子は、通常の焼結原料で造粒した造粒物に比べて高密度であり、造粒物よりも焼結した際の還元率が高く、かつ焼結後の金属Feの含有率が高くなる。   Such compression-molded compression-molded particles have a higher density than granulated products granulated with ordinary sintering raw materials, have a higher reduction rate when sintered than granulated products, and are sintered. The content rate of subsequent metal Fe becomes high.

本発明において、鉄鉱石としては、反応性を良好に維持する観点から、粒径8mm以下の粉鉄鉱石が好ましく、炭材としては、粒径5mm以下の粉コークス、さらには粒径3mm以下の粉コークスが好ましい。また、副原料としてはCaO系副原料、例えば石灰石、生石灰が用いられる。   In the present invention, the iron ore is preferably a fine iron ore having a particle size of 8 mm or less from the viewpoint of maintaining good reactivity, and the carbonaceous material is a fine coke having a particle size of 5 mm or less, and further having a particle size of 3 mm or less. Powder coke is preferred. As the auxiliary material, CaO-based auxiliary materials such as limestone and quicklime are used.

本発明においては、最適な通気性を得る観点および反応性の観点から、圧縮成形粒子において、最も薄い部分の厚さの範囲を6mm以上16mm以下とし、かつ圧縮成形粒子の体積を6cm以下とする。これにより通気性を適度に制御することができ、圧縮成形粒子の割合が増加しても通気性が過剰になることが防止される。このため、圧縮成形粒子の混合割合を増加させることができる。 In the present invention, from the viewpoint of obtaining optimum air permeability and reactivity, in the compression molded particles , the thickness range of the thinnest portion is 6 mm or more and 16 mm or less, and the volume of the compression molded particles is 6 cm 3 or less. To do. Thereby, the air permeability can be appropriately controlled, and the air permeability is prevented from becoming excessive even if the ratio of the compression molded particles is increased. For this reason, the mixing ratio of the compression molded particles can be increased.

このため、本発明では、圧縮成形粒子の混合割合を焼結原料全体の40〜70mass%と高く設定することができ、鉄鉱石の高還元率化および高金属率化を著しく促進することができる。   For this reason, in the present invention, the mixing ratio of the compression-molded particles can be set as high as 40 to 70 mass% of the entire sintered raw material, and the high reduction rate and high metal rate of iron ore can be significantly promoted. .

本発明において、圧縮成形粒子としては、炭材の量が20mass%以下のものが好適である。上限を設定することにより焼成のさらなる安定化を図ることができる。ここで、圧縮成形粒子に含有される炭材の量を20mass%以下としたのは、この範囲であれば、造粒物の鉄鉱石を有効に還元することができ、しかも未反応のコークスが残存し難いからである。   In the present invention, the compression-molded particles preferably have a carbonaceous material content of 20 mass% or less. By setting the upper limit, the firing can be further stabilized. Here, if the amount of the carbonaceous material contained in the compression-molded particles is 20 mass% or less, the iron ore of the granulated product can be effectively reduced within this range, and unreacted coke is produced. It is because it is hard to remain.

圧縮成形粒子に含有される炭材は、45μm以上125μm以下の粒径のものが50〜70mass%となるようにすることが好ましい。このように炭材を微細化することにより、鉄鉱石との間の還元反応の反応性が高まり、鉄鉱石の還元率をより高くすることができる。   It is preferable that the carbonaceous material contained in the compression-molded particles has a particle diameter of 45 μm or more and 125 μm or less to be 50 to 70 mass%. By refining the carbonaceous material in this way, the reactivity of the reduction reaction with the iron ore is increased, and the reduction rate of the iron ore can be further increased.

焼結原料の残部として用いる造粒物としては、鉄鉱石と炭材とCaO系副原料を主体とする焼結原料を、ドラムミキサーやディスクペレタイザー等により転動造粒して成形したものを用いる。この場合に、鉄鉱石としては通常の粉鉄鉱石を用い、炭材としては粉コークスを用い、CaO系副原料としては石灰石または生石灰を用いる。配合割合は、鉄鉱石およびCaO系副原料を100mass%とした場合に炭材を外数で2〜6mass%とすることが好ましい。また、CaO系副原料は、鉄鉱石およびCaO系副原料の合計量の内数で4〜10mass%程度が好ましい。   As the granulated material used as the remainder of the sintered raw material, a material formed by rolling and granulating a sintered raw material mainly composed of iron ore, carbonaceous material and CaO-based auxiliary raw material with a drum mixer, a disk pelletizer or the like is used. . In this case, ordinary iron ore is used as the iron ore, powder coke is used as the carbon material, and limestone or quick lime is used as the CaO-based auxiliary material. The blending ratio is preferably 2 to 6 mass% in terms of the number of carbonaceous materials when the iron ore and CaO-based auxiliary material is 100 mass%. The CaO-based auxiliary material is preferably about 4 to 10 mass% in the total amount of the iron ore and the CaO-based auxiliary material.

焼結機としては、下方吸引式無端移動型焼結機を用いることが好ましい。具体的には、その無端移動式の移動グレート上に、焼結原料を造粒した造粒物および圧縮成形粒子を供給し、原料層を形成し、移動グレートの移動経路に設けられた点火炉により、原料層が点火されて焼結が行われる。移動グレートの直下には、複数の風箱が配列されており、焼結の際に各風箱を介して原料層上方のガスが下方に吸引される。   As the sintering machine, it is preferable to use a downward suction type endless moving type sintering machine. Specifically, an ignition furnace provided on the moving path of the moving grate by supplying a granulated product and a compression-molded particle obtained by granulating the sintered raw material onto the endless moving type moving grate to form a raw material layer. Thus, the raw material layer is ignited and sintered. A plurality of wind boxes are arranged immediately below the moving grate, and the gas above the raw material layer is sucked downward through each wind box during sintering.

焼結機への焼結原料の装入は、圧縮成形粒子と造粒物とを混合してから行ってもよいし、両方別々に装入して原料層を形成する際に混合するようにしてもよい。   The sintering raw material may be charged into the sintering machine after mixing the compression-molded particles and the granulated material, or mixed when forming both raw materials separately to form the raw material layer. May be.

圧縮成形粒子を焼結機に装入するに際しては、焼結機の原料層下部9/10以下の領域に装入することが好ましい。原料層の表面に近い領域では、焼結時の温度が比較的低く、高温の保持時間も短い。また、原料層の表面に近い領域へ圧縮成形粒子を装入することにより通気性が上がるため、この傾向はさらに顕著となる。その結果、圧縮成形粒子の還元反応が充填層の下層と比べ不十分な状態で終了してしまう。   When the compression-molded particles are charged into the sintering machine, it is preferable to charge in the region below 9/10 of the raw material layer of the sintering machine. In the region close to the surface of the raw material layer, the temperature during sintering is relatively low and the high temperature holding time is short. Further, since the air permeability is increased by inserting the compression-molded particles into a region close to the surface of the raw material layer, this tendency becomes more remarkable. As a result, the reduction reaction of the compression-molded particles ends in an insufficient state as compared with the lower layer of the packed bed.

次に、本実施形態に係る半還元焼結鉱の製造方法の具体例について説明する。
図3は、本実施形態に係る半還元焼結鉱を製造する設備の一例を示す模式図である。この設備は、成形粒子製造設備100と、造粒物製造設備200と、下方吸引式無端移動型焼結機300とを備えている。
Next, a specific example of the method for producing the semi-reduced sintered ore according to the present embodiment will be described.
FIG. 3 is a schematic diagram showing an example of equipment for producing the semi-reduced sintered ore according to the present embodiment. This facility includes a molded particle manufacturing facility 100, a granulated material manufacturing facility 200, and a downward suction type endless moving sintering machine 300.

成形粒子製造設備100は、鉄鉱石、媒溶材、還元剤およびバインダー等が供給可能な原料ホッパー群101と、原料とバインダー(例えば、デンプン、タール、糖蜜)を混合する混合機102と、混合物から圧縮成形粒子を得るための圧縮成形機103とを有し、原料ホッパー群101からの原料は混合機102に搬送され、混合機102で混合された混合物は圧縮成形機103に搬送され、圧縮成形機103で製造された圧縮成形粒子は造粒機202に搬送される。   The molded particle manufacturing facility 100 includes a raw material hopper group 101 that can supply iron ore, a solvent, a reducing agent, a binder, and the like, a mixer 102 that mixes the raw material and a binder (for example, starch, tar, molasses), and a mixture. A compression molding machine 103 for obtaining compression molded particles, the raw material from the raw material hopper group 101 is conveyed to the mixer 102, and the mixture mixed in the mixer 102 is conveyed to the compression molding machine 103, and compression molding is performed. The compression-molded particles produced by the machine 103 are conveyed to the granulator 202.

造粒物製造設備200は、鉄鉱石混合物、固体燃料および媒溶剤等が供給可能な原料ホッパー群201と、これらを混合し、原料を造粒するための造粒機202とを有し、原料ホッパー群201からの原料は、混合・調湿されて造粒機202に搬送され、造粒機202で製造された造粒物と、圧縮成形機103で製造された圧縮成形粒子は造粒機202で混合され、焼結機300に搬送される。   The granulated product manufacturing facility 200 includes a raw material hopper group 201 capable of supplying an iron ore mixture, a solid fuel, a medium solvent, and the like, and a granulator 202 for mixing these and granulating the raw material. The raw material from the hopper group 201 is mixed and conditioned and conveyed to the granulator 202, and the granulated product produced by the granulator 202 and the compression molded particles produced by the compression molding machine 103 are granulated. It is mixed in 202 and conveyed to the sintering machine 300.

下方吸引式無端移動型焼結機300は、無端移動式の移動グレート301を有しており、その移動グレート301上に、適宜の装入システムにより造粒物と圧縮成形粒子との混合物が供給され、原料層303が形成されるようになっている。   The downward suction type endless moving type sintering machine 300 has an endless moving type moving grate 301, and a mixture of granulated material and compression-molded particles is supplied onto the moving grate 301 by an appropriate charging system. Thus, the raw material layer 303 is formed.

移動グレート301の移動経路には点火炉302が設けられており、移動グレート301上の造粒物がその点火炉302を通過する際に点火されて原料層303の焼結が開始され、焼結ケーキ303aが形成される。移動グレート301の出口側には、図示しない破砕機が設けられており、この破砕機により移動グレート301から落下した焼結鉱が粉砕されてコンベア304に供給され、高炉へ供給される。   An ignition furnace 302 is provided in the movement path of the moving great 301, and when the granulated material on the moving great 301 passes through the ignition furnace 302, it is ignited and sintering of the raw material layer 303 is started. A cake 303a is formed. A crusher (not shown) is provided on the exit side of the moving grate 301, and the sintered ore dropped from the moving grate 301 is crushed by this crusher, supplied to the conveyor 304, and supplied to the blast furnace.

移動グレート301の直下には、移動グレート301の進行方向に沿って、複数の風箱305が配列されており、各風箱305には垂直ダクト306が接続されている。これにより、原料層303の上方のガスが風箱305および垂直ダクト306により原料層303を通過して吸引されるようになっている。   A plurality of wind boxes 305 are arranged immediately below the moving grate 301 along the traveling direction of the moving grate 301, and a vertical duct 306 is connected to each wind box 305. Thereby, the gas above the raw material layer 303 is sucked through the raw material layer 303 by the wind box 305 and the vertical duct 306.

上記垂直ダクト306は、水平に配置された主排ガスダクト307に接続され、ガスが主排ガスダクト307を経て排出されるようになっている。主排ガスダクト307には、電気集塵機308、メインブロア309が接続されており、メインブロア309により原料層303の上方のガスを吸引し、風箱305、垂直ダクト306、主排ガスダクト307、電気集塵機308等を経て煙突310から排出される。   The vertical duct 306 is connected to a main exhaust gas duct 307 arranged horizontally, and gas is discharged through the main exhaust gas duct 307. An electric dust collector 308 and a main blower 309 are connected to the main exhaust gas duct 307, and the gas above the material layer 303 is sucked by the main blower 309, and the wind box 305, the vertical duct 306, the main exhaust gas duct 307, the electric dust collector. It is discharged from the chimney 310 via 308 and the like.

なお、原料層303上方の点火炉302の下流側部分にガス供給フードを設け、垂直ダクト306からこのフードに繋がる排ガス循環ダクトを設けて排ガス循環を行うようにしてもよい。このような排ガス循環方式を採用することによって原料層303中の雰囲気(酸素濃度)を適正に制御することが容易となり、金属Feの生成および再酸化防止に更に効果的である。   Note that a gas supply hood may be provided in the downstream portion of the ignition furnace 302 above the raw material layer 303, and an exhaust gas circulation duct connected to the hood from the vertical duct 306 may be provided to perform exhaust gas circulation. By adopting such an exhaust gas circulation system, it becomes easy to appropriately control the atmosphere (oxygen concentration) in the raw material layer 303, which is more effective for the generation of metal Fe and the prevention of reoxidation.

このように構成される設備においては、成形粒子製造設備100により圧縮成形粒子を製造し、造粒物製造設備200により造粒物を製造し、これを適宜の手段により混合し、この混合物を下方吸引式無端移動型焼結機300の移動グレート301上に供給して原料層303を形成する。このとき、原料層303は、造粒物のマトリックス中に圧縮成形粒子が分散した状態となっている。   In the equipment configured as described above, the compression-molded particles are produced by the shaped particle production equipment 100, the granulated product is produced by the granulated product production equipment 200, and this is mixed by an appropriate means. The raw material layer 303 is formed by supplying on the moving grate 301 of the suction type endless moving type sintering machine 300. At this time, the raw material layer 303 is in a state where the compression-molded particles are dispersed in the matrix of the granulated product.

そして、点火炉302により原料層303表面に点火して、風箱305を介して下向きにガスを吸引しながら焼成し、原料層303を構成する造粒物を焼結させ、焼結鉱とする。このようにして焼結して得られた焼結鉱は、移動グレート301から落下し、出口側の破砕機により落下した焼結鉱が粉砕されてコンベア304に供給され、さらに高炉へ供給される。この場合に、上述したように、原料層303の圧縮成形粒子中では、鉄鉱石と炭材とで直接還元が生じ、鉄鉱石が部分的に還元され、一部金属Feとなった半還元焼結鉱が製造される。   Then, the surface of the raw material layer 303 is ignited by the ignition furnace 302 and fired while sucking the gas downward through the wind box 305 to sinter the granulated material constituting the raw material layer 303 to obtain a sintered ore. . The sintered ore obtained by sintering in this manner falls from the moving great 301, and the sintered ore dropped by the crusher on the outlet side is crushed and supplied to the conveyor 304, and further supplied to the blast furnace. . In this case, as described above, in the compression-molded particles of the raw material layer 303, direct reduction occurs between the iron ore and the carbonaceous material, and the iron ore is partially reduced and partially reduced to a metal Fe. The ore is produced.

また、焼結機300への焼結原料の装入は、圧縮成形粒子と造粒物とを両方別々に装入し、原料層303を形成する際に混合するようにしてもよい。このように装入するためには、例えば、図4に示すように、造粒物401を搬送手段、例えばベルトコンベア409により上方から供給するとともに、原料層402の適宜の位置に圧縮成形粒子用ホッパー407から装入位置を調整可能なシュート403を介して圧縮成形粒子404を供給するようにすればよい。なお、符号405は床敷鉱、406は焼結パレット、408は圧縮成形粒子用定量切出装置、410は偏析装入装置である。このような装置構成にすることにより、圧縮成形粒子の分布を任意に変えることができ、例えば、上述のように、焼結機の原料層下部9/10以下の領域に装入することが可能となる。   In addition, the sintering raw material may be charged into the sintering machine 300 by separately charging the compression-molded particles and the granulated material and mixing them when forming the raw material layer 303. In order to charge in this way, for example, as shown in FIG. 4, the granulated material 401 is supplied from above by a conveying means, for example, a belt conveyor 409, and at the appropriate position of the raw material layer 402 for compression molding particles. The compression-molded particles 404 may be supplied from the hopper 407 through a chute 403 whose charging position can be adjusted. Reference numeral 405 is a floor covering, 406 is a sintered pallet, 408 is a quantitative cutting device for compression-molded particles, and 410 is a segregation charging device. By adopting such an apparatus configuration, the distribution of the compression-molded particles can be arbitrarily changed. For example, as described above, the material can be charged in the area below the raw material layer 9/10 of the sintering machine. It becomes.

以下、本発明の実施例について比較例と比較しつつ説明する。
ここでは、焼結原料としての鉄鉱石混合物、微粉鉱石、石灰石、生石灰および粉コークスは表1に示す化学成分を有するものを使用した。これら焼結原料を用い、表2に示す配合で造粒粒子を作製し、表3に示す配合で圧縮成形粒子を作製した。圧縮成形粒子のサイズとしては表4に示すA〜Dのものを用いた。
Examples of the present invention will be described below in comparison with comparative examples.
Here, the iron ore mixture, fine ore, limestone, quicklime and powder coke as the sintering raw materials having chemical components shown in Table 1 were used. Using these sintered raw materials, granulated particles were prepared according to the formulation shown in Table 2, and compression molded particles were prepared according to the formulation shown in Table 3. As the size of the compression-molded particles, those A to D shown in Table 4 were used.

これら造粒物および圧縮成形粒子を用いて表5の比較例1〜3、実施例1〜12に示すように圧縮成形粒子およびその添加割合を調整して焼結鍋試験を行った。なお、比較例1〜3は本発明の範囲外の条件、実施例1〜12は本発明の範囲内の条件である。焼結鍋試験では原料の事前処理は同一の混合、造粒条件で行い、原料充填層は直径270mm×高さ300mmとし、吸引負圧6kPaにて実施した。その試験結果を表5に併記する。
なお、比較例1〜3、実施例1〜12のいずれにおいても凝結材として装入原料の3mass%の粉コークスを造粒物に被覆した。
Using these granulated products and compression molded particles, compression molding particles and their addition ratios were adjusted as shown in Comparative Examples 1 to 3 and Examples 1 to 12 in Table 5, and a sintering pot test was performed. Comparative Examples 1 to 3 are conditions outside the scope of the present invention, and Examples 1 to 12 are conditions within the scope of the present invention. In the sintering pot test, the raw material was pretreated under the same mixing and granulation conditions, and the raw material packed layer was 270 mm in diameter × 300 mm in height, and the suction negative pressure was 6 kPa. The test results are also shown in Table 5.
In any of Comparative Examples 1 to 3 and Examples 1 to 12, the granulated material was coated with 3 mass% of powdered coke as a raw material as a coagulant.

表5のうち比較例1は圧縮成形粒子中のコークス含有量を12.5mass%、圧縮成形粒子に含有したコークスの粒径45〜125μmの割合を40mass%、圧縮成形粒子のサイズを表4のAに示すように寸法を36mm×26mm×20mm、体積を本発明から外れる範囲10cmとし、圧縮成形粒子を焼結機装入原料として本発明の範囲より低い30mass%添加し、焼結原料充填層内の全体に装入して焼成した場合である。焼成は良好に行われ、圧縮成形粒子部分の還元率は48%であった。 Of Table 5, Comparative Example 1 shows that the coke content in the compression molded particles is 12.5 mass%, the ratio of the coke particle size of 45 to 125 μm contained in the compression molded particles is 40 mass%, and the size of the compression molded particles is as shown in Table 4. As shown in A, the dimensions are 36 mm × 26 mm × 20 mm, the volume is out of the range of 10 cm 3 from the present invention, and 30 mass% lower than the range of the present invention is added as a raw material charged with the compression molding to fill the sintered raw material. This is a case where the entire layer is charged and fired. Firing was carried out satisfactorily, and the reduction rate of the compression molded particles was 48%.

比較例2は、比較例1に対して、圧縮成形粒子の添加量を増加させて40mass%添加した場合である。生産率は1.26T/m/hrで比較例1の1.20T/m/hrに比べ上昇するが、還元率は35%であり、比較例1の48%に比べ圧縮成形粒子の添加量の増加により、還元率は大幅に低下した。 Comparative Example 2 is a case where the amount of compression-molded particles is increased and 40 mass% is added to Comparative Example 1. Although the production rate is increased compared to 1.20T / m 2 / hr in Comparative Example 1 at 1.26T / m 2 / hr, the reduction rate was 35%, the compression molding particles compared with 48% of Comparative Example 1 The reduction rate decreased significantly with the increase in the amount added.

比較例3は、比較例2に対して、圧縮成形粒子の添加量をさらに増加させ70mass%添加した場合である。生産率は比較例1に比べ上昇するが、還元率は18%であり、比較例1の48%に比べ圧縮成形粒子の添加量の増加により、大幅に低下した。比較例2に比べても還元率はさらに低下した。   Comparative Example 3 is a case where the amount of compression-molded particles added is further increased with respect to Comparative Example 2 and 70 mass% is added. The production rate increased compared to Comparative Example 1, but the reduction rate was 18%, which was significantly lower than the 48% of Comparative Example 1 due to an increase in the amount of compression molded particles added. Compared to Comparative Example 2, the reduction rate further decreased.

実施例1は、比較例2に対して、圧縮成形粒子のサイズを縮小し表4のBとした場合である。生産率は比較例2に比べわずかに低下したが、比較例1よりは高かった。還元率は55%であり、比較例1の48%および比較例2の35%に比べて著しく向上した。   Example 1 is a case where the size of the compression-molded particles is reduced to B in Table 4 with respect to Comparative Example 2. The production rate was slightly lower than that of Comparative Example 2, but higher than that of Comparative Example 1. The reduction rate was 55%, which was significantly improved as compared with 48% in Comparative Example 1 and 35% in Comparative Example 2.

実施例2は、比較例3に対して、圧縮成形粒子のサイズを縮小し表4のBとした場合である。生産率は比較例3に比べわずかに低下したが、比較例1よりは高かった。還元率は46%であり、比較例1の48%より低いが比較例3の18%よりも著しく向上した。   Example 2 is a case where the size of the compression-molded particles is reduced to B in Table 4 with respect to Comparative Example 3. The production rate was slightly lower than that of Comparative Example 3, but higher than that of Comparative Example 1. The reduction rate was 46%, which was lower than 48% in Comparative Example 1 but significantly improved from 18% in Comparative Example 3.

実施例3は、実施例1に対して、圧縮成形粒子のサイズをさらに縮小し表4のCとした場合である。生産率は実施例1に比べほぼ同等であったが、還元率は58%であり、実施例1の55%に比べさらに向上した。   Example 3 is a case in which the size of the compression-molded particles is further reduced to C in Table 4 with respect to Example 1. The production rate was almost the same as that in Example 1, but the reduction rate was 58%, which was further improved from 55% in Example 1.

実施例4は、実施例2に対して、圧縮成形粒子のサイズをさらに縮小し表4のCとした場合である。生産率は実施例2とほぼ同等であったが、還元率は48%であり実施例2の46%に比べ向上した。   Example 4 is a case where the size of the compression-molded particles is further reduced to C in Table 4 with respect to Example 2. The production rate was almost the same as that of Example 2, but the reduction rate was 48%, which was improved from 46% of Example 2.

実施例5は、実施例1および実施例3に対して、圧縮成形粒子のサイズをさらに縮小し表4のDとした場合である。生産率は実施例1及び実施例3に比べて低下したが、還元率は60%であり実施例1の55%及び実施例3の58%に比べて向上した。なお、焼成も良好に行われた。   Example 5 is a case where the size of the compression molded particles is further reduced to D in Table 4 with respect to Example 1 and Example 3. The production rate decreased compared to Example 1 and Example 3, but the reduction rate was 60%, which was improved compared to 55% in Example 1 and 58% in Example 3. In addition, baking was also performed satisfactorily.

実施例6は、実施例2および実施例4に対して、圧縮成形粒子のサイズをさらに縮小し表4のDとした場合である。生産率は実施例2および実施例4に比べて低下したが、還元率は54%であり実施例2の46%及び実施例4の48%に比べて向上した。なお、焼成も良好に行われた。   Example 6 is a case where the size of the compression-molded particles is further reduced to D in Table 4 with respect to Example 2 and Example 4. Although the production rate decreased compared to Example 2 and Example 4, the reduction rate was 54%, which was improved compared to 46% in Example 2 and 48% in Example 4. In addition, baking was also performed satisfactorily.

実施例7は、実施例1に対して、圧縮成形粒子中のコークスの含有量を増加して20.0mass%とした場合である。生産率は実施例1とはほぼ同等の結果となり、還元率も54%であり実施例1の55%とほぼ同等であった。なお、焼成も良好に行われた。   Example 7 is a case where the content of coke in the compression-molded particles is increased to 20.0 mass% with respect to Example 1. The production rate was almost the same as that in Example 1, and the reduction rate was 54%, which was almost the same as 55% in Example 1. In addition, baking was also performed satisfactorily.

実施例8は、実施例2に対して、圧縮成形粒子中のコークスの含有量を増加して20.0mass%とした場合である。生産率は実施例2とほぼ同等の結果となり、還元率も47%であり実施例2の46%とほぼ同等であった。なお、焼成も良好に行われた。   Example 8 is a case where the content of coke in the compression-molded particles is increased to 20.0 mass% with respect to Example 2. The production rate was almost the same as in Example 2, and the reduction rate was 47%, which was almost the same as 46% in Example 2. In addition, baking was also performed satisfactorily.

実施例9は、実施例1に対して、圧縮成形粒子中のコークスの45〜125μmの割合を増加して50mass%とした場合である。実施例1に比べ生産率は低下するが、還元率は59%であり実施例1の55%に比べて向上した。なお、焼成も良好に行われた。   Example 9 is a case where the proportion of coke in the compression-molded particles in the compression-molded particles is increased from 45 to 125 μm to 50 mass% with respect to Example 1. Although the production rate is lower than that of Example 1, the reduction rate is 59%, which is an improvement over 55% of Example 1. In addition, baking was also performed satisfactorily.

実施例10は、実施例2に対して、圧縮成形粒子中のコークスの45〜125μmの割合を大幅に増加して70mass%とした場合である。実施例2に比べ生産率は低下するが、還元率は55%であり実施例2の46%に比べて大幅に向上した。なお、焼成も良好に行われた。   Example 10 is a case where the proportion of coke in the compression-molded particles in the compression-molded particles is significantly increased to 70 mass% with respect to Example 2. Although the production rate is lower than that of Example 2, the reduction rate is 55%, which is a significant improvement compared to 46% of Example 2. In addition, baking was also performed satisfactorily.

実施例11は、実施例1に対して、圧縮成形粒子を焼結機原料充填層内の原料層下部9/10以下の領域に装入して焼成した場合である。実施例1に比べ生産率は向上し、還元率も58%であり実施例1の55%に比べて向上した。なお、焼成も良好に行われた。   Example 11 is a case where the compression-molded particles are charged into the region below 9/10 of the raw material layer in the sintering machine raw material packed layer and fired as compared with Example 1. The production rate was improved as compared with Example 1, and the reduction rate was 58%, which was improved as compared with 55% of Example 1. In addition, baking was also performed satisfactorily.

実施例12は、実施例2に対して、圧縮成形粒子を焼結機原料充填層内の原料層下部9/10以下の領域に装入して焼成した場合である。実施例2に比べ生産率は向上し、還元率も49%であり実施例2の46%に比べて向上した。なお、焼成も良好に行われた。   Example 12 is a case where the compression-molded particles are charged into the region below 9/10 of the raw material layer in the sintering machine raw material packed layer and fired as compared with Example 2. The production rate was improved as compared with Example 2, and the reduction rate was 49%, which was improved compared with 46% of Example 2. In addition, baking was also performed satisfactorily.

Figure 0004984488
Figure 0004984488

Figure 0004984488
Figure 0004984488

Figure 0004984488
Figure 0004984488

Figure 0004984488
Figure 0004984488

Figure 0004984488
Figure 0004984488

焼結鉱の還元率と高炉還元材比との関係を示す図。The figure which shows the relationship between the reduction rate of a sintered ore, and a blast furnace reducing material ratio. 焼結鉱の高炉装入時の平均部分還元率と製銑工程からのC排出量との関係を、均一に部分還元した焼結鉱と金属Feが優先的に発生した焼結鉱とで比較して示す図。Comparison of the relationship between the average partial reduction rate of sinter during blast furnace charging and the amount of C discharged from the ironmaking process between the sinter with uniform partial reduction and the sinter with the preferential generation of metallic Fe FIG. 本発明の実施形態に係る半還元焼結鉱の製造方法を実施するための設備の一例を示す模式図。The schematic diagram which shows an example of the equipment for enforcing the manufacturing method of the semi-reduction sintered ore which concerns on embodiment of this invention. 本発明の実施形態に係る半還元焼結鉱の製造方法における焼結原料の装入方法の一例を説明するための図。The figure for demonstrating an example of the charging method of the sintering raw material in the manufacturing method of the semi-reduction sintered ore which concerns on embodiment of this invention.

符号の説明Explanation of symbols

100 成形粒子製造設備
200 造粒物製造設備
300 下方吸引式無端移動型焼結機
401 造粒物
402 原料層
403 シュート
404 圧縮成形粒子
405 床敷鉱
406 焼結パレット
407 圧縮成形粒子用ホッパー
408 圧縮成形粒子用定量切出装置
409 ベルトコンベア
DESCRIPTION OF SYMBOLS 100 Molded particle manufacturing equipment 200 Granulated product manufacturing equipment 300 Downward suction type endless moving type sintering machine 401 Granulated product 402 Raw material layer 403 Chute 404 Compression molding particle 405 Floor covering 406 Sintering pallet 407 Compression molding particle hopper 408 Compression Quantitative cutting device for molded particles 409 Belt conveyor

Claims (4)

焼結原料として鉄鉱石と炭材と副原料とを用い、焼結原料のうち鉄鉱石の一部および炭材の一部、または焼結原料のうち鉄鉱石の一部、炭材の一部および副原料の一部を予め圧縮成形して圧縮成形粒子とし、焼結原料の残部を造粒物とし、これらを混合して焼成し、鉄鉱石の一部を炭材により還元してなる半還元焼結鉱を製造するにあたり、
前記圧縮成形粒子において、最も薄い部分の厚さの範囲を6mm以上16mm以下とし、かつその体積を6cm以下とし、前記圧縮成形粒子の混合割合を焼結原料全体の40〜70mass%とすることを特徴とする半還元焼結鉱の製造方法。
Using iron ore, carbonaceous material, and auxiliary raw materials as sintering raw materials, part of iron ore and part of carbonaceous material among sintered raw materials, part of iron ore, part of carbonaceous material among sintered raw materials And a part of the auxiliary raw material is compression-molded in advance to form compression-molded particles, the remainder of the sintered raw material is granulated, mixed and fired, and a part of iron ore is reduced with carbonaceous material. In producing reduced sintered ore,
In the compression-molded particles , the thickness range of the thinnest part is 6 mm or more and 16 mm or less, the volume is 6 cm 3 or less, and the mixing ratio of the compression-molded particles is 40 to 70 mass% of the entire sintered raw material. A method for producing a semi-reduced sintered ore characterized by the above.
前記圧縮成形粒子に含有される炭材の量を20mass%以下とすることを特徴とする請求項1に記載の半還元焼結鉱の製造方法。   The method for producing a semi-reduced sintered ore according to claim 1, wherein the amount of the carbonaceous material contained in the compression-molded particles is 20 mass% or less. 前記圧縮成形粒子に含有される炭材が、45〜125μmの粒径のものが50〜70mass%となるようにすることを特徴とする請求項1または請求項2に記載の半還元焼結鉱の製造方法。   3. The semi-reduced sintered ore according to claim 1, wherein a carbonaceous material contained in the compression-molded particles has a particle diameter of 45 to 125 μm and is 50 to 70 mass%. Manufacturing method. 前記圧縮成形粒子を焼結機に装入するに際し、原料層下部9/10以下の領域に装入することを特徴とする請求項1から請求項3のいずれか1項に記載の半還元焼結鉱の製造方法。   The semi-reduction sintering according to any one of claims 1 to 3, wherein when the compression-molded particles are charged into a sintering machine, the particles are charged into a region below 9/10 of the raw material layer. Production method of ore.
JP2005313101A 2005-10-27 2005-10-27 Method for producing semi-reduced sintered ore Active JP4984488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005313101A JP4984488B2 (en) 2005-10-27 2005-10-27 Method for producing semi-reduced sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005313101A JP4984488B2 (en) 2005-10-27 2005-10-27 Method for producing semi-reduced sintered ore

Publications (2)

Publication Number Publication Date
JP2007119841A JP2007119841A (en) 2007-05-17
JP4984488B2 true JP4984488B2 (en) 2012-07-25

Family

ID=38143986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313101A Active JP4984488B2 (en) 2005-10-27 2005-10-27 Method for producing semi-reduced sintered ore

Country Status (1)

Country Link
JP (1) JP4984488B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330536B2 (en) * 2014-07-14 2018-05-30 新日鐵住金株式会社 Pretreatment method of sintering raw materials
JP6988778B2 (en) * 2018-11-30 2022-01-05 Jfeスチール株式会社 Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter
CN110484714B (en) * 2019-05-17 2021-04-23 宝钢湛江钢铁有限公司 Method for improving quality of sinter by improving proportion of sinter materials
CN114350940A (en) * 2021-12-25 2022-04-15 深圳市考拉生态科技有限公司 Method for producing alkaline iron ore concentrate by reducing weakly magnetic iron ore
CN116144921B (en) * 2022-12-07 2024-07-02 中冶长天国际工程有限责任公司 Material distribution method for composite agglomeration of sintering machine and composite agglomerate ore

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232238A (en) * 1983-06-14 1984-12-27 Nippon Kokan Kk <Nkk> Production of sintered ore
JPS62211329A (en) * 1986-03-12 1987-09-17 Nippon Kokan Kk <Nkk> Non-groud briquetted ore and its manufacture
EP1253207A4 (en) * 1999-09-06 2003-05-28 Nippon Kokan Kk Method and facilities for metal smelting

Also Published As

Publication number Publication date
JP2007119841A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
EP1027461B1 (en) Method and apparatus for making metallic iron
RU2447164C2 (en) Method of producing pellets from recovered iron and method of producing cast iron
JP4757982B2 (en) Method for improving the yield of granular metallic iron
US20020005089A1 (en) Method of and apparatus for manufacturing the metallic iron
JP2004285399A (en) Method for producing granular metallic iron
JP4984488B2 (en) Method for producing semi-reduced sintered ore
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JP2014214334A (en) Method for manufacturing sintered ore
JP4470490B2 (en) Method for producing semi-reduced agglomerate
CN106414778A (en) Production method of granular metallic iron
WO2005111248A1 (en) Semi-reduced sintered ore and method for production thereof
JPH06330198A (en) Method for recovering zinc in dust
JP3879408B2 (en) Method for producing sintered ore and sintered ore
JP2008019455A (en) Method for producing half-reduced sintered ore
JP2003301205A (en) Method for charging blast furnace material
JP4797388B2 (en) Method for producing semi-reduced sintered ore
JP5729256B2 (en) Non-calcined hot metal dephosphorization method and hot metal dephosphorization method using non-fired hot metal dephosphorization material
JP3732024B2 (en) Method for producing reduced iron pellets
JP4379083B2 (en) Method for producing semi-reduced agglomerate
JP2701472B2 (en) Method for producing sintered ore excellent in reducibility and resistance to reduction powdering
JP3379360B2 (en) Hot metal production method
JP7227053B2 (en) Method for producing sintered ore
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
KR101841963B1 (en) Process method of sintered ore
JP2000290709A (en) Method for charging raw material into blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250