JP4797388B2 - Method for producing semi-reduced sintered ore - Google Patents
Method for producing semi-reduced sintered ore Download PDFInfo
- Publication number
- JP4797388B2 JP4797388B2 JP2005022387A JP2005022387A JP4797388B2 JP 4797388 B2 JP4797388 B2 JP 4797388B2 JP 2005022387 A JP2005022387 A JP 2005022387A JP 2005022387 A JP2005022387 A JP 2005022387A JP 4797388 B2 JP4797388 B2 JP 4797388B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon source
- pressure
- iron ore
- molded body
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 110
- 239000002245 particle Substances 0.000 claims description 77
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 60
- 229910052799 carbon Inorganic materials 0.000 claims description 60
- 229910052742 iron Inorganic materials 0.000 claims description 54
- 239000002994 raw material Substances 0.000 claims description 44
- 238000005245 sintering Methods 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 19
- 238000010304 firing Methods 0.000 claims description 10
- 239000000446 fuel Substances 0.000 claims description 9
- 238000006722 reduction reaction Methods 0.000 description 42
- 239000000571 coke Substances 0.000 description 26
- 239000010410 layer Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 11
- 238000002156 mixing Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005469 granulation Methods 0.000 description 6
- 230000003179 granulation Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 5
- 239000003830 anthracite Substances 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 235000012255 calcium oxide Nutrition 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000004484 Briquette Substances 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、焼結プロセスを用いて、高炉原料として使用される、酸化鉄の一部を還元した半還元焼結鉱を製造する方法に関する。 The present invention relates to a method for producing a semi-reduced sintered ore obtained by reducing a part of iron oxide used as a blast furnace raw material by using a sintering process.
従来から高炉原料として、焼結原料である粉鉄鉱石、媒溶材(副原料)、および粉炭材等を混合し、造粒した後、焼結することにより得られる焼結鉱が用いられている。 Conventionally, as a blast furnace raw material, a sintered ore obtained by sintering after mixing granulated iron ore which is a sintering raw material, a solvent medium (subsidiary raw material), a powdered coal material, etc., is used. .
このような焼結鉱に関して、従来、原料配合や造粒工程を調整して通気性を改善することや、擬似粒子の表面に粉コークスを付着させて燃焼性を良好にすること、配合原料や擬似粒子の構造を調整して燃料効率を高めること等、種々の試みがなされている。 With regard to such sintered ore, conventionally, adjusting the raw material blending and granulation process to improve air permeability, adhering powder coke to the surface of the pseudo particles to improve combustibility, Various attempts have been made to improve the fuel efficiency by adjusting the structure of the pseudo particles.
特に、従来高炉で行われてきた還元反応の一部を焼結反応過程で補い、焼結と高炉総計での炭素原単位の低減を図ることができる半還元焼結鉱が注目されている。例えば、特許文献1には、粉鉱石に粉コークス・無煙炭を配合造粒して内層とし、また、粉鉱石、副原料および粉炭材・無煙炭を混合コーティングして外層として2層構造の擬似粒子を形成し、この擬似粒子を焼結原料の一部として混合・造粒したのち焼結機で焼結して焼結鉱を製造する技術が開示されており、この焼結過程で擬似粒子の外層から生成する融液と内層の粉炭材や無煙炭中の固形炭素との直接還元により焼結鉱の一部が還元される。この技術では、1100℃の高温になってから、初めて生成した融液と粉コークス・無煙炭のCが直接還元反応を起こし、焼結鉱の一部に金属鉄が生成される。
In particular, semi-reduced sintered ore that can compensate for part of the reduction reaction conventionally performed in the blast furnace by the sintering reaction process and can reduce the carbon intensity in the sintering and the total blast furnace is attracting attention. For example, in
このような半還元焼結鉱は、還元率が高いほど、また同じ還元率では金属化率すなわち金属鉄含有率が高いほど炭素原単位の低減効果が大きい。 In such a semi-reduced sintered ore, the higher the reduction rate is, and at the same reduction rate, the higher the metallization rate, that is, the metal iron content rate, the greater the effect of reducing the carbon intensity.
しかしながら、上記特許文献1の技術においては、鉄鉱石と炭素源である粉コークスとの接触が不十分となって高い還元率および金属化率が得られない場合がある。
本発明はかかる事情に鑑みてなされたものであって、焼結過程での反応を安定化し、高い還元率および高い金属鉄含有率を達成することができる半還元焼結鉱の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a method for producing a semi-reduced sintered ore that can stabilize a reaction in a sintering process and achieve a high reduction rate and a high content of metallic iron. The purpose is to do.
本発明者らは、上記課題を解決すべく炭素源の粒径を変化させて鉄鉱石の還元性について基礎検討を行った。その結果、炭素源の粒径が鉄鉱石の還元性に大きな影響を及ぼし、鉄鉱石の還元に適した粒径範囲および鉄鉱石の還元に適さない粒径範囲があることを見出した。具体的には、鉄鉱石の還元に適した炭素源の粒径は45μm以上125μm以下であり、実際の操業においてはこの粒度範囲の炭素源が50質量%以上あればよいこと、逆に鉄鉱石の還元に適さない炭素源の粒径は45μm未満であり、実際の操業においてはこの粒度範囲の炭素源が30質量%以下が好ましいことを見出した。 In order to solve the above-mentioned problems, the present inventors have made basic studies on the reducibility of iron ore by changing the particle size of the carbon source. As a result, it was found that the particle size of the carbon source has a great influence on the reducibility of the iron ore, and there are particle size ranges suitable for the reduction of iron ore and particle sizes not suitable for the reduction of iron ore. Specifically, the particle size of the carbon source suitable for the reduction of iron ore is 45 μm or more and 125 μm or less, and in actual operation, it is sufficient that the carbon source in this particle size range is 50% by mass or more. The particle size of the carbon source that is not suitable for the reduction is less than 45 μm, and in actual operation, it was found that the carbon source in this particle size range is preferably 30% by mass or less.
本発明はこのような知見に基づいてなされたものであり、以下の(1)、(2)を提供する。 This invention is made | formed based on such knowledge, and provides the following (1) and (2) .
(1) 焼結原料としての鉄鉱石と炭素源と副原料のうち、鉄鉱石の一部および炭素源の一部、または鉄鉱石の一部、炭素源の一部および副原料の一部を予め加圧成型して加圧成型体とし、これらの残部を造粒して擬似粒子とし、この擬似粒子の上にさらに燃料としての炭素源を被覆して前記加圧成型体と混合し、焼結機に投入して焼成することにより鉄鉱石の一部を炭素源により還元して半還元焼結鉱を製造するにあたり、前記加圧成型体および前記擬似粒子のそれぞれにおいて、それぞれを構成する炭素源のうち、粒径45μm以上125μm以下の範囲の割合を50質量%以上とすることを特徴とする半還元焼結鉱の製造方法。 ( 1 ) Of iron ore as a sintering raw material, carbon source and secondary raw material, part of iron ore and part of carbon source, or part of iron ore, part of carbon source and part of secondary raw material A pressure-molded body is preliminarily molded by pressure, and the remainder is granulated into pseudo-particles. A carbon source as a fuel is further coated on the pseudo-particles and mixed with the above-mentioned pressure-molded body. When producing a semi-reduced sintered ore by reducing a part of iron ore with a carbon source by putting it into a kneading machine and firing it, each of the pressure-molded body and the pseudo-particles constitutes carbon. A method for producing a semi-reduced sintered ore, characterized in that, in the source, the proportion in the range of particle size of 45 μm or more and 125 μm or less is 50 mass% or more.
(2) 上記(1)において、前記加圧成型体および前記擬似粒子のそれぞれを構成する炭素源のうち、粒径45μm未満の範囲の割合を30質量%以下とすることを特徴とする半還元焼結鉱の製造方法。 ( 2 ) In the above ( 1 ), the ratio of particles having a particle size of less than 45 μm is 30% by mass or less in the carbon source constituting each of the pressure-molded body and the pseudo particle. A method for producing sintered ore.
本発明によれば、擬似粒子を構成する炭素源のうち、鉄鉱石の還元に適した粒径45μm以上125μm以下の範囲の割合を50質量%以上とするので、鉄鉱石の還元率および金属化率を高くすることができる。特に、炭素源の粒径を上記範囲とした上で、焼結原料としての鉄鉱石と炭素源と副原料のうち、鉄鉱石の一部および炭材の一部、または鉄鉱石の一部、炭素源の一部および副原料の一部を予め加圧成型して加圧成型体とし、これらの残部を造粒して擬似粒子とし、この擬似粒子の上にさらに燃料としての炭素源を被覆して前記加圧成型体と混合し、焼結機に投入して焼成する方法を採用することにより、鉄鉱石と炭素源との接触面積が増加して焼結過程での還元率をより上昇させることができ、しかも加圧成型体は緻密化しているので外気と遮断され、金属鉄の酸化が抑制されてより高い金属鉄含有率を得ることができる。 According to the present invention, the ratio of the particle size in the range of 45 μm or more and 125 μm or less suitable for the reduction of iron ore among the carbon sources constituting the pseudo particles is 50% by mass or more. The rate can be increased. In particular, with the particle size of the carbon source in the above range, among the iron ore as a sintering raw material, the carbon source and the auxiliary raw material, part of the iron ore and part of the carbonaceous material, or part of the iron ore, A part of the carbon source and a part of the auxiliary material are pre-pressed to form a pressure-molded body, and the remaining part is granulated to form a pseudo particle, and a carbon source as a fuel is further coated on the pseudo particle. Then, by adopting a method of mixing with the above-mentioned pressure-molded body, putting it into a sintering machine and firing it, the contact area between the iron ore and the carbon source is increased, and the reduction rate during the sintering process is further increased. Moreover, since the pressure-molded body is densified, it is blocked from the outside air, and oxidation of metallic iron is suppressed, so that a higher metallic iron content can be obtained.
以下、本発明について詳細に説明する。
半還元焼結鉱の製造における鉄鉱石の還元反応は、高炉内と同様に、鉄鉱石中の酸化鉄は(1)式で示されるコークス等の炭材中の炭素との反応(直接還元)と、(2)式で示されるCOガスとの反応(間接還元)により進行する。なお、間接還元で発生したCO2ガスはソリューション・ロス反応と呼ばれる(3)式で示される反応によりCOガスとなる。
Fe2O3+3/2C=2Fe+3/2CO2 (1)
Fe2O3+3CO=2Fe+3CO2 (2)
CO2+C=2CO
(3)
Hereinafter, the present invention will be described in detail.
In the production of semi-reduced sintered ore, the iron ore reduction reaction is the same as in the blast furnace. The iron oxide in the iron ore reacts with carbon in carbonaceous materials such as coke represented by the formula (1) (direct reduction). And the reaction (indirect reduction) with the CO gas represented by the formula (2). Note that the CO 2 gas generated by indirect reduction becomes CO gas by a reaction represented by the formula (3) called a solution loss reaction.
Fe 2 O 3 + 3 / 2C = 2Fe + 3 / 2CO 2 (1)
Fe 2 O 3 + 3CO = 2Fe + 3CO 2 (2)
CO 2 + C = 2CO
(3)
これらの還元反応は、温度が900〜1100℃では間接還元が支配的であり、1200℃以上では直接還元が支配的である。半還元焼結鉱の製造では原料層温度は1400℃に到達し、900〜1100℃での滞留時間より1200℃以上の滞留時間のほうが長いため、直接還元が支配的となる。したがって、鉄鉱石と還元材としての炭素源との接触面積を増大させることにより焼結鉱の還元が促進される。 In these reduction reactions, indirect reduction is dominant when the temperature is 900 to 1100 ° C., and direct reduction is dominant when the temperature is 1200 ° C. or higher. In the production of the semi-reduced sintered ore, the raw material layer temperature reaches 1400 ° C., and the residence time of 1200 ° C. or more is longer than the residence time at 900 to 1100 ° C. Therefore, direct reduction is dominant. Therefore, the reduction of the sintered ore is promoted by increasing the contact area between the iron ore and the carbon source as the reducing material.
そこで、本発明では、焼結原料としての鉄鉱石と炭素源と副原料とを造粒して擬似粒子とし、この擬似粒子の上にさらに燃料としての炭素源を被覆して焼結機に投入して焼成することにより鉄鉱石の一部を炭素源により還元して半還元焼結鉱を製造するにあたり、擬似粒子を構成する炭素源のうち粒径45μm以上125μm以下の範囲の割合を50質量%以上とする。 Therefore, in the present invention, iron ore as a sintering raw material, a carbon source, and an auxiliary raw material are granulated into pseudo particles, and a carbon source as a fuel is further coated on the pseudo particles, and the resultant is put into a sintering machine. When producing a semi-reduced sintered ore by reducing a part of iron ore with a carbon source by firing, the proportion of the particle size in the range of 45 μm to 125 μm in the carbon source constituting the pseudo particles is 50 mass. % Or more.
このような粒径45μm以上125μm以下の範囲の炭素源は、鉄鉱石の還元に適したものであるため、この範囲の炭素源を50質量%以上用いることにより、高還元率の半還元焼結鉱を得ることが可能となる。好ましくは、80質量%以上である。 Such a carbon source having a particle size of 45 μm or more and 125 μm or less is suitable for reduction of iron ore. Therefore, by using 50% by mass or more of this range of carbon source, high reduction rate semi-reduction sintering is performed. It becomes possible to obtain ore. Preferably, it is 80 mass% or more.
逆に、擬似粒子を構成する炭素源のうち粒径45μm未満のものは、鉄鉱石の還元に適さないものであるため、この範囲の炭素源は30質量%以下とすることが好ましい。さらに好ましくは20質量%以下である。 On the contrary, since the carbon sources constituting the pseudo particles having a particle size of less than 45 μm are not suitable for the reduction of iron ore, the carbon source in this range is preferably 30% by mass or less. More preferably, it is 20 mass% or less.
また、炭素源として粒径45μm以上125μm以下のものが50質量%以上含まれていれば、粒径125μm以上のものが含まれていてもよく、その含有量は必然的に50質量%以下となる。 Moreover, as long as the carbon source contains particles having a particle size of 45 μm or more and 125 μm or less in an amount of 50% by mass or more, those having a particle size of 125 μm or more may be included, and the content is inevitably 50% by mass or less. Become.
本発明において、鉄鉱石としては、反応性を良好に維持する観点から、粒径8mm以下のものが80%以上の粉鉄鉱石が好ましい。また、炭素源としては粉コークスが好適であるが、無煙炭またはコークス冷却設備の集塵粉等他の炭素源を用いることもできる。副原料としては石灰系副原料、例えば石灰石、生石灰が用いられる。 In the present invention, the iron ore is preferably a fine iron ore having a particle size of 8 mm or less and 80% or more from the viewpoint of maintaining good reactivity. Moreover, although powder coke is suitable as a carbon source, other carbon sources, such as anthracite or dust collection powder of coke cooling equipment, can also be used. As auxiliary materials, lime-based auxiliary materials such as limestone and quicklime are used.
造粒して得られる擬似粒子の組成は、鉄鉱石および副原料100質量部に対し還元材としての炭素源が10〜20質量部のものが好適である。副原料の含有量は4〜10質量部であることが好ましい。擬似粒子は、単一層であってもよいし、2層以上の複合層であってもよい。例えば、鉄鉱石、副原料および炭材からなる内層の外側に鉄鉱石からなる外層を形成した2層構造のものであってもよい。さらには、副原料からなる最外層を形成して3層構造にしてもよい。擬似粒子の外側には、燃料(凝結剤)としての炭素源が被覆される。 The composition of the pseudo particles obtained by granulation is preferably 10 to 20 parts by mass of a carbon source as a reducing material with respect to 100 parts by mass of iron ore and auxiliary materials. The content of the auxiliary material is preferably 4 to 10 parts by mass. The pseudo particles may be a single layer or a composite layer of two or more layers. For example, it may have a two-layer structure in which an outer layer made of iron ore is formed on the outer side of an inner layer made of iron ore, auxiliary materials and carbonaceous material. Furthermore, an outermost layer made of auxiliary materials may be formed to form a three-layer structure. A carbon source as a fuel (coagulant) is coated on the outside of the pseudo particles.
ここで、擬似粒子の炭素源量を鉄鉱石および副原料100質量部に対し10〜20質量部としたのは、この範囲であれば、擬似粒子中の鉄鉱石を有効に還元することができ、しかも未反応の炭素源が残存し難いからである。また、擬似粒子に外装される炭素源量を鉄鉱石および副原料のトータル100質量%に対し1〜4質量%とすることにより、鉄鉱石の焼結を適切に進行させることができる。 Here, if the carbon source amount of the pseudo particles is 10 to 20 parts by mass with respect to 100 parts by mass of the iron ore and the auxiliary raw material, the iron ore in the pseudo particles can be effectively reduced within this range. In addition, it is difficult to leave an unreacted carbon source. Moreover, sintering of iron ore can be appropriately advanced by setting the amount of carbon source to be covered by the pseudo particles to 1 to 4% by mass with respect to 100% by mass of iron ore and auxiliary raw materials in total.
造粒方法としては、従来から焼結原料である擬似粒子を製造する方法として知られているドラムミキサーやディスクペレタイザー等による転動造粒を用いることが好適である。造粒する際には、上記原料に、水および/またはバインダーを適宜の量添加し、混合した後に転動造粒を行うことが好ましい。 As the granulation method, it is preferable to use rolling granulation with a drum mixer or a disk pelletizer that has been conventionally known as a method for producing pseudo-particles that are sintering raw materials. When granulating, it is preferable to perform rolling granulation after adding an appropriate amount of water and / or binder to the raw materials and mixing them.
焼結機としては、下方吸引式無端移動型焼結機を用いることが好ましい。この下方吸引式無端移動型焼結機は、無端移動式の移動グレートを有しており、その移動グレート上に、焼結原料を造粒した擬似粒子が供給され、原料層が形成されるようになっている。移動グレートの移動経路に点火炉が設けられ、原料層が点火炉を通過する際に点火されて焼結が行われる。移動グレートの直下には、複数の風箱が配列されており、焼結の際に各風箱を介して原料層上方のガスが下方に吸引される。 As the sintering machine, it is preferable to use a downward suction type endless moving type sintering machine. The lower suction type endless moving type sintering machine has an endless moving type moving grate, and pseudo particles obtained by granulating the sintering raw material are supplied onto the moving grate so that a raw material layer is formed. It has become. An ignition furnace is provided in the moving path of the moving great, and the raw material layer is ignited and sintered when passing through the ignition furnace. A plurality of wind boxes are arranged immediately below the moving grate, and the gas above the raw material layer is sucked downward through each wind box during sintering.
鉄鉱石の還元率および金属化率を一層高めるためには、上述のように炭素源の粒径を規定することに加えて、焼結原料としての鉄鉱石と炭素源と副原料のうち、鉄鉱石の一部および炭材の一部、または鉄鉱石の一部、炭素源の一部および副原料の一部を予め加圧成型して加圧成型体とし、これらの残部を上述のようにして造粒して擬似粒子とし、この擬似粒子の上にさらに燃料としての炭素源を被覆して前記加圧成型体と混合し、焼結機に投入して焼成することが好ましい。この場合に、擬似粒子を構成する炭素源および加圧成型体を構成する炭素源のいずれも上記粒径範囲を満たすものを用いる。 In order to further increase the reduction rate and metallization rate of iron ore, in addition to defining the particle size of the carbon source as described above, among the iron ore as the sintering raw material, the carbon source and the auxiliary raw material, iron ore Part of the stone and part of the carbonaceous material, or part of the iron ore, part of the carbon source, and part of the auxiliary material are pre-press-molded into a pressure-molded body, and the rest of these are as described above. It is preferable to granulate into pseudo particles, coat a carbon source as a fuel on the pseudo particles, mix with the pressure-molded body, and put into a sintering machine to fire. In this case, both the carbon source constituting the pseudo particles and the carbon source constituting the pressure-molded body satisfying the particle size range are used.
このように、鉄鉱石の一部および炭素源の一部、または鉄鉱石の一部、炭素源炭材の一部および副原料の一部を加圧成型することにより、鉄鉱石と炭素源とが圧密されてこれらの接触面積が大きくなるので、このような加圧成型体を原料の一部として焼結機に装入することにより鉄鉱石の還元をより促進させることができる。 In this way, iron ore and carbon source can be obtained by pressure molding part of iron ore and part of carbon source, or part of iron ore, part of carbon source carbonaceous material and part of auxiliary material. Since the contact area becomes larger due to the compaction, it is possible to further promote the reduction of the iron ore by inserting such a pressure-molded body into the sintering machine as a part of the raw material.
また、加圧成型体は原料が加圧により緻密化しているため、焼結鉱となった場合にも擬似粒子と比較して原料が緻密に存在しており、外気と遮断され、直接還元により発生した金属鉄の酸化が抑制される。 In addition, since the raw material of the pressure-molded body is densified by pressurization, even when it becomes a sintered ore, the raw material is present more densely than the pseudo-particles, which is blocked from the outside air and directly reduced. Oxidation of the generated metallic iron is suppressed.
したがって、このような加圧成型体を擬似粒子とともに焼結機に投入して半還元焼結鉱を製造することにより、より高い還元率および金属鉄含有率が実現される。 Therefore, a higher reduction ratio and metallic iron content can be realized by introducing such a pressure-molded body together with pseudo particles into a sintering machine to produce a semi-reduced sintered ore.
本発明において、加圧成型体とは、適宜の加圧成型手段により塊成化され、単一粒子の圧潰強度が4kg以上とされたものをいう。加圧成型方法は特に限定されないが、ブリケットマシンでブリケット化する方法が好適である。 In the present invention, the pressure-molded product refers to a material that has been agglomerated by an appropriate pressure-molding means and that has a single particle crushing strength of 4 kg or more. Although the pressure molding method is not particularly limited, a method of briquetting with a briquette machine is suitable.
加圧成型体の組成は、擬似粒子と同様、鉄鉱石および副原料100質量部に対し還元材としての炭素源が10〜20質量部のものが好適である。副原料の含有量は4〜10質量部であることが好ましい。また、加圧成型体は、最薄部分の幅が8mm以上20mm以下、体積が10cm3以下であることが好ましい。この範囲とすることにより最適な通気性が得られる。これよりもサイズが拡大すると通気性が過剰となる傾向となり、また未焼成部分が発生しやすくなる。 The composition of the pressure-molded body is preferably 10 to 20 parts by mass of the carbon source as the reducing material with respect to 100 parts by mass of the iron ore and the auxiliary raw material, similarly to the pseudo particles. The content of the auxiliary material is preferably 4 to 10 parts by mass. In addition, the pressure-molded body preferably has a width of the thinnest portion of 8 mm or more and 20 mm or less and a volume of 10 cm 3 or less. By setting it within this range, optimum air permeability can be obtained. If the size is larger than this, the air permeability tends to be excessive, and unfired portions are likely to be generated.
また、加圧成型体の外側に燃料としての炭素源を被覆してもよい。この場合、燃料として被覆される炭素源は、鉄鉱石および副原料のトータル100質量部に対し1〜4質量部であることが好ましい。 Moreover, you may coat | cover the carbon source as a fuel on the outer side of a pressure molding body. In this case, the carbon source coated as the fuel is preferably 1 to 4 parts by mass with respect to 100 parts by mass in total of the iron ore and the auxiliary raw materials.
この場合の焼結機への焼結原料の装入は、加圧成型体と造粒物とを混合してから行ってもよいし、両方別々に装入し、原料層を形成する際に混合するようにしてもよい。以下に説明するように加圧成型体の装入に分布を持たせるような場合には、別々に装入するようにすることが好ましい。例えば、図1に示すように、造粒物である擬似粒子1を搬送手段例えばベルトコンベア9により上方から供給するとともに、原料層2の適宜の位置に加圧成型体用ホッパー7から装入位置を調整可能なシュート3を介して加圧成型体4を供給するようにすればよい。なお、符号5は床敷鉱、6は焼結パレット、8は加圧成型体用定量切出装置、10は偏析装入ワイヤーである。
In this case, the charging of the sintering raw material to the sintering machine may be performed after mixing the pressure-molded body and the granulated material, or when both are charged separately and the raw material layer is formed. You may make it mix. As will be described below, it is preferable that the pressure-molded body is charged separately when it is distributed. For example, as shown in FIG. 1,
加圧成型体を焼結機に装入するに際しては、焼結機の原料層下部3/4以下の領域に装入することが好ましい。原料層の表面に近い領域では、焼結時の温度が比較的低く、高温の保持時間も短い。また、この領域へ加圧成型体を装入することにより通気性が改善されるため、この傾向はさらに顕著となる。その結果、成型体の還元反応は、充填層の下層と比べ不十分な状態で終了してしまう。 When the pressure-molded body is charged into the sintering machine, it is preferably charged into the region of the lower part 3/4 of the raw material layer of the sintering machine. In the region close to the surface of the raw material layer, the temperature during sintering is relatively low and the high temperature holding time is short. Moreover, since the air permeability is improved by inserting the pressure-molded body into this region, this tendency becomes more remarkable. As a result, the reduction reaction of the molded body ends in an insufficient state as compared with the lower layer of the packed bed.
加圧成型体を用いる場合は、焼結機に装入される擬似粒子に対する加圧成型体の混合比を1より小さくすることが好ましい。この混合比が1以上、すなわち加圧成型体が造粒物と同じ割合かまたは造粒物より高い割合となると、通気性が過剰となる傾向となり、未焼成部分が発生しやすくなる。 When using a pressure-molded body, it is preferable to make the mixing ratio of the pressure-molded body with respect to the pseudo particles charged into the sintering machine smaller than 1. When the mixing ratio is 1 or more, that is, when the pressure-molded product has the same ratio as the granulated product or a higher ratio than the granulated product, the air permeability tends to be excessive, and an unfired portion tends to occur.
以下に本発明の効果を確認するために実施した試験の結果について説明する。
ここでは、鉄鉱石としてペレットフィードを用い、副原料としてCaO源である石灰石および生石灰を用い、炭素源として粉コークスを用いた。これらの組成を表1に示す。
The results of tests conducted to confirm the effects of the present invention will be described below.
Here, pellet feed was used as iron ore, limestone and quicklime as CaO sources were used as auxiliary materials, and powdered coke was used as a carbon source. These compositions are shown in Table 1.
上記焼結原料を用い焼結鍋試験を行った。原料の事前処理にて表2に示すような原料配合の擬似粒子を、表3のように粉コークス(内装コークス)の粒度を変えて作製した。各擬似粒子とも外側に凝結剤として装入原料の3質量%となるように粉コークスを被覆した(外装コークス)。なお、内装コークスは予め、45μm未満、45〜125μm、125〜1000μmの粒度で篩い分け、所定の割合で配合した。また、外装コークスは上記3つの粒度を1/3ずつ配合した。なお、焼結鍋試験では、原料の事前処理は同一の混合・造粒条件で行い、原料充填層は直径270mm×高さ300mmとし、吸引負圧6kPaにて実施した。試験結果を表3に示す。 The sintering pot test was done using the said sintering raw material. As shown in Table 3, pseudo particles having a raw material composition as shown in Table 2 were prepared by changing the particle size of the powder coke (interior coke) as shown in Table 2. Each quasi-particle was coated with powdered coke on the outside so as to be 3% by mass of the charged raw material as a coagulant (exterior coke). In addition, the interior coke was sieved in advance with a particle size of less than 45 μm, 45 to 125 μm, 125 to 1000 μm, and blended at a predetermined ratio. In addition, the exterior coke was blended 1/3 of the above three particle sizes. In the sintering pot test, the raw material was pretreated under the same mixing and granulation conditions, and the raw material packed layer was 270 mm in diameter and 300 mm in height, and the suction negative pressure was 6 kPa. The test results are shown in Table 3.
表3中、比較例1は、内装コークスとして全て粒度が45μm以下のものを用いた場合であり、本発明の範囲外である。この場合には、焼成中に擬似粒子が溶融し、未燃焼領域も発生し、安定な焼成ができなかったため、生産率および焼結鉱の還元率ともに低かった。 In Table 3, Comparative Example 1 is a case where all of the interior coke has a particle size of 45 μm or less, and is outside the scope of the present invention. In this case, pseudo particles were melted during firing, an unburned region was generated, and stable firing could not be performed, so that both the production rate and the reduction rate of the sintered ore were low.
本発明例1は、内装コークスとして全て粒度が45〜125μmのものを用いた場合であり、本発明の範囲内である。この場合には、安定した焼成により比較的高い生産率と還元率とが得られ、この範囲が還元反応に適していることが確認された。 Invention Example 1 is a case where all of the interior coke has a particle size of 45 to 125 μm and is within the scope of the present invention. In this case, a relatively high production rate and reduction rate were obtained by stable firing, and it was confirmed that this range was suitable for the reduction reaction.
本発明例2は、内装コークスとして45μm以下が20質量%、45〜125μmが80質量%のものを用いた場合であり、本発明の範囲内である。この場合には、焼成が比較的安定し、生産性および焼結鉱の還元率がともに高かった。 Inventive Example 2 is a case where the inner coke having a mass of 45 μm or less is 20% by mass and 45 to 125 μm is 80% by mass, and is within the scope of the present invention. In this case, the firing was relatively stable, and both the productivity and the reduction rate of the sintered ore were high.
比較例2は、内装コークスとして45〜125μmが40質量%、125〜1000μmが60質量%のものを用いた場合であり、本発明の範囲外である。この場合には、45〜125μmの割合が低いため、生産率は高いが還元率が低いという結果となった。 The comparative example 2 is a case where 45 to 125 μm is 40 mass% and 125 to 1000 μm is 60 mass% as the interior coke, which is outside the scope of the present invention. In this case, since the ratio of 45 to 125 μm is low, the production rate is high, but the reduction rate is low.
本発明例3は、内装コークスとして45〜125μmが50質量%、125〜1000μmが50質量%のものを用いた場合であり、本発明の範囲内である。この場合には、比較例2に比べて焼成が安定しており、生産率および焼結鉱の還元率はともに高かった。 Inventive Example 3 is a case in which 45 to 125 μm is 50 mass% and 125 to 1000 μm is 50 mass% as the interior coke, and is within the scope of the present invention. In this case, firing was more stable than in Comparative Example 2, and both the production rate and the reduction rate of the sintered ore were high.
次に、同じ焼結原料を用いて擬似粒子と加圧成型体とを作製し、同様の焼結鍋試験を行った。擬似粒子の配合は上記本発明例3と同じとした。加圧成型体としては、表4に示す原料配合のものを用い、表5のように粉コークスの粒度を変えて作製した。なお、加圧成型体の配合率は擬似粒子および加圧成型体の合計量のうち15質量%とした。試験結果を表5に示す。 Next, pseudo particles and a pressure-molded body were produced using the same sintering raw material, and a similar sintering pot test was performed. The compounding of the pseudo particles was the same as that of the above-mentioned Invention Example 3. As the pressure-molded body, the raw material composition shown in Table 4 was used, and the powder coke was prepared by changing the particle size of the coke as shown in Table 5. In addition, the compounding ratio of the pressure-molded body was 15% by mass in the total amount of the pseudo particles and the pressure-molded body. The test results are shown in Table 5.
表5中、比較例3は、加圧成型体中のコークスとして全て粒度が45μm以下のものを用いた場合であり、本発明の範囲外である。この場合には、加圧成型体が溶融し消失した。 In Table 5, Comparative Example 3 is a case where all the coke in the pressure-molded product has a particle size of 45 μm or less, which is outside the scope of the present invention. In this case, the pressure molded body melted and disappeared.
本発明例4は、加圧成型体中のコークスとして全て粒度が45〜125μmのものを用いた場合であり、本発明の範囲内である。この場合には、安定した焼成により比較的高い還元率が得られ、この粒度域は擬似粒子と同様に還元反応に適していることがわかった。 Invention Example 4 is a case where all the cokes in the pressure-molded product have a particle size of 45 to 125 μm, and are within the scope of the present invention. In this case, it was found that a relatively high reduction rate was obtained by stable firing, and that this particle size range was suitable for the reduction reaction in the same manner as the pseudo particles.
本発明例5は、加圧成型体中のコークスとして45μm未満が20質量%、45〜125μmが80質量%のものを用いた場合であり、本発明の範囲内である。この場合には、還元が比較的安定であり、還元率が高かった。 Invention Example 5 is a case where the coke in the pressure-molded product is less than 45 μm and 20% by mass and 45 to 125 μm is 80% by mass, and is within the scope of the present invention. In this case, the reduction was relatively stable and the reduction rate was high.
比較例4は、加圧成型体中のコークスとして45〜125μmが40質量%、125〜1000μmが60質量%のものを用いた場合であり、本発明の範囲外である。この場合には、45〜125μmの割合が低いため、還元率が低いという結果となった。 The comparative example 4 is a case where 45 to 125 μm is 40% by mass and 125 to 1000 μm is 60% by mass as coke in the press-molded body, which is outside the scope of the present invention. In this case, since the ratio of 45 to 125 μm was low, the reduction rate was low.
本発明例6は、加圧成型体中のコークスとして45〜125μmが50質量%、125〜1000μmが50質量%のものを用いた場合であり、本発明の範囲内である。この場合には、比較例4に比べ還元率は高かった。 Invention Example 6 is a case where the coke in the pressure-molded body is 45 to 125 μm having 50 mass% and 125 to 1000 μm having 50 mass%, and is within the scope of the present invention. In this case, the reduction rate was higher than that of Comparative Example 4.
1 擬似粒子
2 原料層
3 シュート
4 加圧成型体
5 床敷鉱
6 焼結パレット
7 加圧成型体用ホッパー
8 加圧成型体用定量切出装置
9 ベルトコンベア
10 偏析装入ワイヤー
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005022387A JP4797388B2 (en) | 2005-01-31 | 2005-01-31 | Method for producing semi-reduced sintered ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005022387A JP4797388B2 (en) | 2005-01-31 | 2005-01-31 | Method for producing semi-reduced sintered ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006206981A JP2006206981A (en) | 2006-08-10 |
JP4797388B2 true JP4797388B2 (en) | 2011-10-19 |
Family
ID=36964154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005022387A Active JP4797388B2 (en) | 2005-01-31 | 2005-01-31 | Method for producing semi-reduced sintered ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4797388B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014062321A (en) * | 2012-08-28 | 2014-04-10 | Kobe Steel Ltd | Method of manufacturing reduced iron agglomerated product |
JP6330536B2 (en) * | 2014-07-14 | 2018-05-30 | 新日鐵住金株式会社 | Pretreatment method of sintering raw materials |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2704673B2 (en) * | 1990-12-06 | 1998-01-26 | 新日本製鐵株式会社 | Method for producing semi-reduced sintered ore |
JPH10226829A (en) * | 1997-02-17 | 1998-08-25 | Sumitomo Metal Mining Co Ltd | Operation of rotary kiln for reduction roasting iron and steel dust |
JP3642027B2 (en) * | 2001-01-31 | 2005-04-27 | Jfeスチール株式会社 | Blast furnace operation method |
-
2005
- 2005-01-31 JP JP2005022387A patent/JP4797388B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006206981A (en) | 2006-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6620850B2 (en) | Carbonaceous granulated particles for the production of sintered ore and method for producing the same | |
JP4757982B2 (en) | Method for improving the yield of granular metallic iron | |
EP2189546B2 (en) | Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron | |
EP2096181B1 (en) | Briquette iron by hot molding and process for producing the same | |
JP2006265569A (en) | Method for producing sintered ore and pseudo-grain for producing sintered ore | |
JP6102463B2 (en) | Method for producing sintered ore | |
JP4918754B2 (en) | Semi-reduced sintered ore and method for producing the same | |
JP4984488B2 (en) | Method for producing semi-reduced sintered ore | |
AU2017388174B2 (en) | Sintered ore manufacturing method | |
JP3755452B2 (en) | Method for manufacturing raw materials for sintering | |
JP5512205B2 (en) | Strength improvement method of raw material for agglomerated blast furnace | |
JP4797388B2 (en) | Method for producing semi-reduced sintered ore | |
WO2005111248A1 (en) | Semi-reduced sintered ore and method for production thereof | |
JP4972761B2 (en) | Method for producing sintered ore and pseudo particles for producing sintered ore | |
JP2018178148A (en) | Method of producing sintered ore | |
JP3879408B2 (en) | Method for producing sintered ore and sintered ore | |
JP2008019455A (en) | Method for producing half-reduced sintered ore | |
JPH06330198A (en) | Method for recovering zinc in dust | |
JP4462008B2 (en) | Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron | |
JP5042203B2 (en) | Production of granular metallic iron | |
JP6805672B2 (en) | Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate | |
JP6988778B2 (en) | Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter | |
KR101841963B1 (en) | Process method of sintered ore | |
JP4720127B2 (en) | Method for producing sintered ore | |
JP2004292837A (en) | Method for manufacturing raw material for sintering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110705 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110718 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4797388 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |