JP4972761B2 - Method for producing sintered ore and pseudo particles for producing sintered ore - Google Patents
Method for producing sintered ore and pseudo particles for producing sintered ore Download PDFInfo
- Publication number
- JP4972761B2 JP4972761B2 JP2005242607A JP2005242607A JP4972761B2 JP 4972761 B2 JP4972761 B2 JP 4972761B2 JP 2005242607 A JP2005242607 A JP 2005242607A JP 2005242607 A JP2005242607 A JP 2005242607A JP 4972761 B2 JP4972761 B2 JP 4972761B2
- Authority
- JP
- Japan
- Prior art keywords
- ore
- sintered ore
- sintered
- mass
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、焼結鉱の製造方法および焼結鉱の製造用擬似粒子に関し、特に金属鉄を含有する焼結鉱を製造する方法に関する。 The present invention relates to a method for producing sintered ore and pseudo particles for producing sintered ore, and more particularly to a method for producing sintered ore containing metallic iron.
従来から、粉鉄鉱石、粉炭材、およびその他の副原料を混合し、造粒して擬似粒子を製造した後、焼結することにより得られる焼結鉱が、高炉原料として用いられている。鉄鉱石粉と、コークス粉、無煙炭などの炭材と、および石灰石、ドロマイトなどの含CaO原料(以下CaO含有副原料と記載する。)、製鉄所内回収粉、焼結鉱篩下粉、生石灰等の副原料とを所定の割合でドラムミキサー等により混合しながら、適量の水を加え調湿した後、ドラムミキサーやディスクペレタイザー等により造粒し、擬似粒子を製造する。 Conventionally, sintered ore obtained by mixing and granulating iron ore, pulverized coal, and other auxiliary materials to produce pseudo particles and then sintering has been used as a blast furnace raw material. Iron ore powder, carbonaceous materials such as coke powder and anthracite, and CaO-containing raw materials such as limestone and dolomite (hereinafter referred to as CaO-containing auxiliary raw materials), steel mill recovered powder, sintered ore sieving powder, quick lime, etc. A suitable amount of water is mixed with the auxiliary material at a predetermined ratio, and after adjusting the humidity by adding an appropriate amount of water, the mixture is granulated with a drum mixer or a disk pelletizer to produce pseudo particles.
近年、高炉内で行われてきた還元反応の一部を焼結反応過程で補い、焼結と高炉の総計で還元材原単位の低減を図ることができる半還元焼結鉱が注目されている。 In recent years, semi-reduced sintered ore has attracted attention because it can compensate for part of the reduction reaction that has been carried out in the blast furnace by the sintering reaction process, and can reduce the basic unit of reducing material by the total of sintering and blast furnace. .
例えば、5〜20mass%の炭材を含む原料を造粒して内層とし、外層に2〜5mass%の炭材を含む原料を形成しこの2層擬似粒子を焼結原料の一部とする半還元焼結鉱の製造方法(特許文献1参照。)、生ペレット表面にCaO分を25mass%以上含有する被覆層を備えた部分還元ペレットの製造方法(特許文献2参照。)が提案されている。
焼結鉱の焼成過程では凝結材であるコークス(炭材)の燃焼による発熱により、鉱石と石灰等の副原料が反応しカルシウムフェライト(CaO・nFe2O3、CaO・nFe3O4)やオリビン(SiO2・Fe2O3)等の融体が発生する。上記のような、従来の半還元、部分還元技術では、いずれも擬似粒子中の炭材燃焼による高温化のため内層部分が溶融し、焼成過程において融体の発生量が過度に増加するとともに、融液が流動し溶け落ち再酸化してしまうため金属鉄を得ることは困難であった。 In the sintering process of sintered ore, heat is generated by the combustion of coke, which is a coagulation material, and ore and auxiliary materials such as lime react to react with calcium ferrite (CaO · nFe 2 O 3 , CaO · nFe 3 O 4 ) Melts such as olivine (SiO 2 · Fe 2 O 3 ) are generated. In the conventional semi-reduction and partial reduction techniques as described above, the inner layer portion melts due to the high temperature caused by the combustion of the carbonaceous material in the pseudo particles, and the amount of melt generated excessively increases during the firing process. It was difficult to obtain metallic iron because the melt flows and melts and re-oxidizes.
このとき融体の発生量が過剰な部分では吸引ガスの流れが妨げられ、その下側の焼結原料層には空気が供給されないためコークスの燃焼が起こらず、未焼成の擬似粒子が残留してしまうため、高い還元率及び金属鉄含有率の達成が困難となると同時に、焼結鉱の歩留も低下する。 At this time, the flow of suction gas is hindered in the portion where the amount of melt generated is excessive, and since no air is supplied to the lower sintering material layer, coke does not burn and unfired pseudo particles remain. Therefore, it is difficult to achieve a high reduction rate and metal iron content, and at the same time, the yield of sintered ore is reduced.
本発明は、かかる事情に鑑みてなされたものであって、焼結鉱の製造用擬似粒子に内装される炭材の燃焼を抑制し、焼結過程での融体発生量の過不足に起因する燃焼不足やばらつきを防止して、焼成後の成品の歩留を維持しつつ、金属鉄の再酸化を防止し、高い還元率を達成し、金属鉄含有率の高い、焼結鉱の製造方法および焼結鉱の製造用擬似粒子を提供することを目的とする。 The present invention has been made in view of such circumstances, and suppresses the combustion of the carbonaceous material embedded in the pseudo-particles for the production of sintered ore, resulting from the excess or deficiency of the amount of melt generated in the sintering process. Manufacturing of sintered ore with high content of metallic iron, preventing re-oxidation of metallic iron, achieving high reduction rate The object is to provide a method and pseudo-particles for the production of sintered ore.
本発明者等は、焼結鉱の製造に関し焼成反応を安定化し、再酸化を防止して高い還元率及び金属鉄含有率を達成させるべく、焼成時の融体発生量や擬似粒子の形状保持性に着目した。そして、還元用炭材を多量に含有する擬似粒子の密度を上げることが、焼結過程での過剰な融体発生に起因する燃焼不足やばらつきの防止および再酸化防止に効果があることを見出し、以下の本発明に想到した。 In order to stabilize the firing reaction and prevent reoxidation and achieve a high reduction rate and metallic iron content in the production of sintered ore, the present inventors maintain the amount of melt generated and the shape of pseudo particles during firing. Focused on sex. Further, it has been found that increasing the density of pseudo particles containing a large amount of reducing carbonaceous material is effective in preventing combustion shortage and dispersion due to excessive melt generation in the sintering process and preventing reoxidation. The inventors have conceived the following present invention.
即ち、本発明は、焼結鉱の配合原料のうち、粉鉄鉱石と炭材とを混合して成形体を、該成形体の炭材含有量が10mass%以上となるように製造し、前記成形体と前記配合原料の残部とを混合して造粒した後、焼結機に供給し焼結することを特徴とする焼結鉱の製造方法であり、SiO2含有量が3.6mass%以下である粉鉄鉱石を用いて成形体を製造すること、粉鉄鉱石と炭材とCaO含有副原料とを混合して成形体を製造すること、ブリケットマシンで加圧成形して成形体を製造することが好ましい。 That is, the present invention is to produce a compact by mixing fine iron ore and carbonaceous material among the blended raw materials of sintered ore so that the carbonaceous material content of the green compact is 10 mass% or more, After mixing and granulating the molded body and the remainder of the blended raw material, it is a method for producing a sintered ore characterized in that it is supplied to a sintering machine and sintered, and the SiO 2 content is 3.6 mass% or less To produce a compact using powdered iron ore, to produce a compact by mixing powdered iron ore, carbonaceous material and CaO-containing auxiliary materials, and to produce a compact by pressing with a briquette machine It is preferable to do.
さらに、焼結鉱の配合原料のうち、粉鉄鉱石と炭材との一部から形成された成形体の表面に前記配合原料の残部を外装した擬似粒子であって、前記成形体の炭材含有量が10mass%以上であることを特徴とする焼結鉱の製造用擬似粒子であり、成形体が、焼結鉱の配合原料のうち、粉鉄鉱石と炭材とCaO含有副原料との一部から形成されたことが好ましい。 Furthermore, among the blended raw materials of sintered ore, pseudo-particles in which the rest of the blended raw material is sheathed on the surface of a molded body formed from a part of fine iron ore and carbonaceous material, the carbonaceous material of the molded body It is a pseudo particle for producing sintered ore characterized in that the content is 10 mass% or more, and among the blended raw materials of sintered ore, the compact is composed of fine iron ore, carbonaceous material and CaO-containing auxiliary raw material. It is preferably formed from a part.
本発明によれば、焼結鉱製造用擬似粒子における還元用炭材の燃焼を抑制し、焼結過程での融体発生量の過不足に起因する燃焼不足やばらつきを防止して、焼成後の成品の歩留を維持しつつ、再酸化を防止し、高い還元率及び金属鉄含有率を有する焼結鉱を製造することが可能となる。 According to the present invention, the combustion of the reducing carbonaceous material in the pseudo-particles for the production of sintered ore is suppressed, and the shortage and dispersion due to the excessive and insufficient amount of melt generated in the sintering process are prevented. While maintaining the yield of the product, it is possible to prevent reoxidation and to produce a sintered ore having a high reduction rate and metal iron content.
一般に、高炉の燃料比を低減する方法の1つとして、高炉装入原料として金属鉄を使用するという考え方がある。そこで、その金属鉄を焼結鉱中に含有させておけば、上記と同様の作用効果、即ち高炉燃料比の低減に有効に作用すると考えられる。ただし、通常の焼結鉱は、金属鉄をほとんど含有していないのが実情である。その理由は、配合原料中の鉄源が、炭材等の作用による還元雰囲気によって、一時的に還元されて金属鉄を生成するものの、生成した融液が流動化し、擬似粒子の形状を保てないため焼結反応終了後の高温酸化性雰囲気において、再酸化されてしまうからである。 In general, as one method for reducing the fuel ratio of a blast furnace, there is a concept of using metallic iron as a raw material for charging a blast furnace. Therefore, if the metallic iron is contained in the sintered ore, it is considered that the same function and effect as described above, that is, effective in reducing the blast furnace fuel ratio. However, the actual condition is that ordinary sintered ore contains almost no metallic iron. The reason for this is that although the iron source in the blended raw material is temporarily reduced by the reducing atmosphere due to the action of the carbonaceous material, etc. to produce metallic iron, the generated melt is fluidized and the shape of the pseudo particles can be maintained. This is because reoxidation occurs in a high-temperature oxidizing atmosphere after completion of the sintering reaction.
そこで本発明では、焼結鉱の配合原料である焼結原料の内、粉鉄鉱石の一部と炭材の一部とを混合して、炭材含有量が10mass%以上となるような成形体を加圧成形して擬似粒子の内層とすることで擬似粒子を強固なものとし、酸素の通気による還元用炭材の燃焼を防止し、融液の流動化を抑制し再酸化を防止するとともに、形状を安定化させ焼成を安定化する。 Therefore, in the present invention, among the sintered raw materials that are the blended raw materials of the sintered ore, a part of the fine iron ore and a part of the carbon material are mixed to form a carbon material content of 10 mass% or more. Forming the body into a pseudo-particle inner layer by pressure molding strengthens the pseudo-particle, prevents combustion of the reducing carbon material due to oxygen aeration, suppresses fluidization of the melt, and prevents reoxidation At the same time, the shape is stabilized and the firing is stabilized.
以下、本発明を開発するに至った経緯とともに、本発明の最良の実施形態について説明する。 Hereinafter, the best embodiment of the present invention will be described together with the background to the development of the present invention.
焼結鉱は、粉鉄鉱石を、フラックス(CaOやSiO2等のスラグ成分)と反応―溶融させた後、冷却して塊成化したものである。ところが、半還元焼結鉱は通常の焼結鉱に比べ、コークスを還元材及び凝結材として2〜5倍添加しているため、還元材として添加した炭材が燃焼発熱すると焼成過程において融体の発生量が過度に増加する場合がある。 The sintered ore is obtained by reacting and melting powder iron ore with a flux (slag components such as CaO and SiO 2 ) and then agglomerating by cooling. However, the semi-reduced sinter ore is added with coke as a reducing material and a coagulating material 2 to 5 times as compared with ordinary sinter, so if the carbon material added as a reducing material burns and generates heat, it will melt in the firing process. The amount of generation may increase excessively.
そこで、発明者らは、焼結機装入原料として多層擬似粒子を用いる場合、内層として内装した還元用炭材の燃焼を抑える方法を種々試みた。その検討の中で、擬似粒子中の通気度を低減することにより内装した炭材の燃焼が抑制されることが明らかとなった。その結果、焼結機装入原料として、配合原料の粉鉄鉱石の一部を用い、炭材と予め混合したのち、加庄成形して成形体としたものと、残りの配合原料を混合・造粒して擬似粒子を製造し、これを焼結機装入原料として焼結鉱を製造すると金属鉄含有焼結体が得られることを見出し、本発明を完成させた。 Therefore, the inventors have tried various methods for suppressing combustion of the reducing carbon material incorporated as the inner layer when the multilayer pseudo particles are used as the raw material charged in the sintering machine. During the study, it became clear that combustion of the interior carbonaceous material was suppressed by reducing the air permeability in the pseudo particles. As a result, as a raw material charged with the sintering machine, a part of the blended raw iron ore was mixed in advance with the carbonaceous material, and then formed into a compact by molding and the remaining blended raw material. Pulverized particles were produced by granulation, and when a sintered ore was produced using this as a raw material charged with a sintering machine, a metal iron-containing sintered body was found and the present invention was completed.
すなわち、配合原料の粉鉄鉱石の一部を用い、かつ炭材を含有した加圧成形した成形体を用いると、成形体が緻密であることから炭材のガス化に伴ない成形体の内圧が上昇して還元雰囲気が強化され、酸化性ガスの侵入を抑制するように作用して内装する炭材の燃焼を抑制するため、過度の融液の発生を防止できるとともに、再酸化抑止効果を生じる。 That is, when using a compacted compact that contains part of the powdered iron ore of the raw material and contains the carbonaceous material, the internal pressure of the compact is associated with the gasification of the carbonaceous material because the compact is dense. As a result, the reducing atmosphere is strengthened, and it acts to suppress the invasion of oxidizing gas to suppress the combustion of the carbonaceous material contained in the interior. Arise.
次に、発明者らは、上述した所定の効果を有する焼結鉱を得るために、前記成形体中への炭材添加量の好適範囲についても検討した。その結果、成形体中の炭材添加量が10mass%未満では、金属鉄が得られない場合があったので、10mass%を下限とした。なお、この炭材添加量の上限は、製造上の要請や経済性等により決定すればよく、特に上限を設ける必要はないが、例えば25mass%程度とすることが好ましい。より好ましくは成形体中の炭材添加量を10〜20mass%とする。 Next, in order to obtain the sintered ore which has the predetermined effect mentioned above, inventors examined also the suitable range of the carbon material addition amount in the said molded object. As a result, when the amount of carbonaceous material added in the compact is less than 10 mass%, metallic iron may not be obtained, so 10 mass% was set as the lower limit. Note that the upper limit of the amount of carbon material added may be determined according to demands on manufacturing, economy, and the like, and it is not necessary to set an upper limit in particular, but it is preferably about 25 mass%, for example. More preferably, the amount of carbon material added in the molded body is 10 to 20 mass%.
さらに、加庄成形して成形体とする際に、SiO2含有量が3.6mass%以下である粉鉄鉱石を用い、かつ成形体中の炭材添加量を10mass%以上とすると、オリビン系融液の生成量が少なくなり、ウスタイト系融液由来のミクロ組織が多くなって、高強度と高被還元性を両立する焼結体が得られ、金属鉄の残留も観察された。したがって、加庄成形して成形体にするとともにSiO2含有量が3.6mass%以下である粉鉄鉱石を用いことがより好ましい。 Furthermore, when forming into a compact by calcining, using pulverized iron ore with a SiO 2 content of 3.6 mass% or less and a carbon material addition amount in the compact of 10 mass% or more, The production amount of the liquid decreased, the microstructure derived from the wustite melt increased, and a sintered body having both high strength and high reducibility was obtained, and the residual metal iron was also observed. Therefore, it is more preferable to use powdered iron ore having a SiO 2 content of 3.6 mass% or less while being formed into a compact by pressure forming.
SiO2含有量が3.6mass%以下である粉鉄鉱石を用い、かつ炭材を添加して加圧成形した成形体を用いると、成形体が緻密であることから炭材のガス化に伴ない成形体の内圧が上昇して還元雰囲気が強化され、酸化性ガスの侵入を抑制するように作用して再酸化抑止効果を生じる。その結果として、焼結鉱中(成形体部分)には金属鉄が多く安定して残留し、高強度と高被還元性の両特性を有し、かつ金属鉄含有の焼結鉱が得られる。 Using fine iron ore SiO 2 content is less 3.6Mass%, and the use of pressure molded shaped bodies with the addition of carbonaceous material, not accompanied the gasification of carbonaceous material because the molded body is a dense The internal pressure of the molded body rises and the reducing atmosphere is strengthened, and acts to suppress the invasion of oxidizing gas, thereby producing a reoxidation inhibiting effect. As a result, a large amount of metallic iron remains stably in the sintered ore (molded body portion), and both high strength and high reducibility characteristics are obtained, and a sintered iron containing metallic iron is obtained. .
また、本発明では、上記の成形体を成形する際に、粉鉄鉱石と炭材に加えて、CaO含有副原料(例えば石灰石、焼石灰)も添加することができる。成形体のCaOの含有量を8mass%以下と比較的少ない含有量に留めることが有効である。その理由は、この成形体のCaO含有量が8mass%以下であれば、CaOが含まれていても、過剰な融液の発生は生じないからである。加圧して成形する成形体としての使用においては、CaO含有副原料の添加を行わずとも実施可能である。成形体のCaOの含有量は、好ましくは4mass%以下とする。 Moreover, in this invention, when shape | molding said molded object, in addition to a fine iron ore and a carbonaceous material, CaO containing auxiliary | assistant raw materials (for example, limestone, calcined lime) can also be added. It is effective to keep the CaO content of the molded body at a relatively low content of 8 mass% or less. The reason is that, if the CaO content of this molded body is 8 mass% or less, even if CaO is contained, no excessive melt is generated. Use as a molded body to be molded by pressurization can be carried out without adding a CaO-containing auxiliary material. The CaO content of the molded body is preferably 4 mass% or less.
次に図1を用いて、本発明の焼結鉱の製造方法の一実施形態を説明する。図1は本発明に係る焼結鉱の製造工程例を説明するフロー図である。 Next, an embodiment of a method for producing a sintered ore according to the present invention will be described with reference to FIG. FIG. 1 is a flowchart for explaining an example of a manufacturing process of sintered ore according to the present invention.
(A)まず、所定の化学成分を有する焼結鉱を製造するに当たり、粉鉄鉱石、CaO含有副原料、炭材の原料配合を決定する。現状の高炉装入用焼結鉱のSiO2含有量は4.6〜5.2mass%、CaO含有量は8.8〜12.0mass%程度である。 (A) First, in producing a sintered ore having a predetermined chemical component, the raw material composition of fine iron ore, CaO-containing auxiliary material, and carbonaceous material is determined. The current blast furnace charging sintered ore has a SiO 2 content of 4.6 to 5.2 mass% and a CaO content of about 8.8 to 12.0 mass%.
(B、C)引き続き、成形に供する粉鉄鉱石量を決定し、これに対するCaO含有副原料および炭材の量を決定し、粉鉄鉱石にCaO含有副原料および炭材を添加して混合する。 (B, C) Subsequently, the amount of powdered iron ore to be used for molding is determined, the amount of CaO-containing auxiliary material and carbonaceous material for this is determined, and the CaO-containing auxiliary material and carbonaceous material are added to and mixed with the powdered iron ore. .
(D)粉鉄鉱石にCaO含有副原料、および炭材を混合した後は、水を加え加圧成形して成形体とする。なお、この成形体は残りの他の焼結原料との混合・造粒時に崩壊しない強度を有しておれば良く、バインダーとして水、あるいは必要に応じベントナイト、糖蜜などを使用すればよい。加圧成形機としては、ブリケットマシンを用いることができる。 (D) After mixing CaO-containing auxiliary materials and carbonaceous materials with fine iron ore, water is added and pressure-molded to form a compact. The molded body only needs to have strength that does not collapse during mixing and granulation with the remaining other sintering raw materials, and water, bentonite, molasses, or the like may be used as a binder. A briquetting machine can be used as the pressure molding machine.
(E)成形体の製造に用いなかった、残りの焼結原料である粉鉄鉱石、CaO含有副原料、炭材と、上記(D)で製造した成形体とを混合して造粒する。成形体と、残りの焼結原料の混合・造粒にはドラムミキサーを用いることができる。残りの粉鉄鉱石、CaO含有副原料および、炭材に、さらに必要に応じSiO2原料を加え、ドラムミキサーの入り側から成形体とともに装入し、混合そして転動による造粒操作を加えることで、成形体の表面に粉状原料が外装化された擬似粒子を製造する。 (E) The powdered iron ore, the CaO-containing auxiliary material, and the carbonaceous material, which are the remaining sintered raw materials, not used for the production of the molded body, are mixed and granulated. A drum mixer can be used for mixing and granulating the formed body and the remaining sintered raw materials. The remaining fine iron ore, CaO-containing auxiliary raw material and the carbonaceous material, further if necessary the SiO 2 raw material added, was charged with the molded body from the inlet side of the drum mixer, mixing and adding the granulation operation by rolling Thus, pseudo particles having a powdery raw material packaged on the surface of the molded body are produced.
(F)焼結機パレット上に上記(E)で製造した擬似粒子を装入して、焼結する。 (F) The quasi-particles produced in (E) above are charged on the sintering machine pallet and sintered.
次に、本発明の焼結鉱製造用擬似粒子について説明する。上記のようにして製造される本発明の焼結鉱の製造用擬似粒子は、粉鉄鉱石と炭材とを含有する成形体からなる内層と、成形体を形成した残部の焼結原料を外層として内層の周囲に付着させて被覆した2層擬似粒子である。内層は、焼結原料の内、粉鉄鉱石および炭材の一部からなるものである。外層は、成形体の製造に用いなかった、焼結原料の残部であり、粉鉄鉱石、炭材、CaO含有副原料、及びその他の副原料からなるものである。成形体は焼結原料の内、CaO含有副原料の一部を含有することもできる。 Next, the pseudo particles for producing sinter according to the present invention will be described. The pseudo-particles for producing sintered ore of the present invention produced as described above are composed of an inner layer composed of a molded body containing fine iron ore and a carbonaceous material, and the remaining sintered raw material forming the molded body as an outer layer. Are two-layer pseudo-particles that are adhered and coated around the inner layer. An inner layer consists of a part of a sintered iron raw material ore and a carbonaceous material. The outer layer is the remainder of the sintered raw material that was not used in the production of the molded body, and consists of fine iron ore, carbonaceous material, CaO-containing auxiliary raw material, and other auxiliary raw materials. The molded body can also contain a part of the CaO-containing auxiliary raw material among the sintered raw materials.
図2は、本発明に係る焼結鉱製造用の擬似粒子の説明図であり、核粒子として少なくとも粉鉄鉱石と炭材とを含有する成形体(内層)1を有し、その周囲が残りの焼結原料の付着部(外層)2からなるものである。上記(E)で製造された擬似粒子の場合は、成形体(内層)1は粉鉄鉱石と炭材とCaO含有副原料からなり、付着部(外層)2は焼結原料の残部であり、焼結原料のうち成形体の製造に用いなかった粉鉄鉱石と炭材とCaO含有副原料からなるものである。 FIG. 2 is an explanatory view of pseudo particles for producing sintered ore according to the present invention, which has a molded body (inner layer) 1 containing at least fine iron ore and carbonaceous material as core particles, and the periphery remains. It consists of the adhesion part (outer layer) 2 of the sintering raw material. In the case of the pseudo particles produced in (E) above, the compact (inner layer) 1 is composed of fine iron ore, carbonaceous material, and CaO-containing auxiliary material, and the adhering part (outer layer) 2 is the remainder of the sintered raw material, Among sintered raw materials, it consists of fine iron ore, carbonaceous material, and CaO-containing auxiliary raw materials that were not used in the production of the compact.
成形体の表面に焼結原料の残部である粉状原料が外装化され擬似粒子化された焼結鉱の製造用擬似粒子を焼結すると、焼結鉱中の成形体だった部分に金属鉄が多く安定して残留する、金属鉄含有の焼結鉱を得ることができる。 When the powdery raw material, which is the remainder of the sintered raw material, is packaged on the surface of the compact and the pseudo-particles for manufacturing the sintered ore, which is pseudo-particles, are sintered, metallic iron is added to the part that was the compact in the sintered ore. As a result, it is possible to obtain a sintered iron-containing sinter that remains in a stable state.
本発明の焼結鉱の製造方法を本発明例1〜5に基づいて説明するとともに、本発明の範囲外の方法で焼結鉱を製造した比較例1、2を用いて本発明の効果を確認した。なお、これらの焼結鉱を製造するに際しては、表1に示す組成を有する9銘柄の粉鉄鉱石を原料として使用し、表1に示す鉱石配合割合で配合した。また、副原料の内訳と化学成分を表2に、配合の基準とする鉱石A〜Iの鉄鉱石原料と各副原料との配合割合を表3に示す。 While explaining the manufacturing method of the sintered ore of this invention based on this invention example 1-5, the effect of this invention is used using the comparative examples 1 and 2 which manufactured the sintered ore by the method outside the range of this invention. confirmed. In addition, when manufacturing these sintered ores, 9 brand iron ores having the composition shown in Table 1 were used as raw materials, and were blended in the ore blending ratio shown in Table 1. Table 2 shows the breakdown and chemical components of the auxiliary raw materials, and Table 3 shows the mixing ratios of the iron ore raw materials of ores A to I and the respective auxiliary raw materials.
(本発明例1)
この実施例において、配合原料を調整するに当っては、焼結鉱中のSiO2含有量が5.0mass%となるようにNi−スラグを、焼結鉱中のCaO含有量が9.4mass%となるように石灰石を配合した。また、製品とならない5mm未満の焼結鉱は原料中に返鉱として戻されるが、その返鉱を新原料に対し20mass%となるように配合した。ここで新原料とは鉄鉱石原料及び副原料の和のことである。
(Invention Example 1)
In this example, in adjusting the blending raw material, Ni-slag was adjusted so that the SiO 2 content in the sintered ore was 5.0 mass%, and the CaO content in the sintered ore was 9.4 mass%. Limestone was blended so that In addition, the sintered ore of less than 5mm, which is not a product, is returned to the raw material as return ore, but the return ore is blended so that it becomes 20 mass% with respect to the new raw material. Here, the new raw material is the sum of the iron ore raw material and the auxiliary raw material.
そして、焼結鉱の製造に当っては、
(a)まず、鉱石A、B、Fに対し、炭材(粉コークス)の含有量が10mass%となるように添加・混合した後、水分を添加しブリケットマシンにて加圧成形して成形体を得た。ブリケットマシンにて加圧成形して得られた成形体は、アーモンド状の形状であり、10ccの体積を有する粒径に成形した。従って、表1の鉱石銘柄のうち、上記鉱石A、B、F以外のものは加圧成形されない、残りの配合用原料である。ここで配合原料とは新原料と返鉱の和のことである。
(b)次に、上述した残りの配合原料(C、D、E、H、I、副原料、返鉱、これらについての量は配合計算で予め定めることができる。)を(a)で得られた成形体とともにドラムミキサーに投入し、水分を添加しながら混合、造粒して造粒物(擬似粒子)を得た。
And in the production of sintered ore,
(A) First, after adding and mixing the ores A, B and F so that the carbonaceous material (powder coke) content is 10 mass%, water is added and pressure molding is performed with a briquette machine. Got the body. The molded body obtained by pressure molding with a briquette machine had an almond-like shape and was molded into a particle size having a volume of 10 cc. Therefore, among the ore brands in Table 1, those other than the above ores A, B, and F are the remaining raw materials for blending that are not pressure-molded. Here, the blended raw material is the sum of new raw material and return ore.
(B) Next, the remaining blended raw materials described above (C, D, E, H, I, auxiliary raw materials, return mineral, and the amounts of these can be determined in advance by blending calculation) are obtained in (a). The molded product was put into a drum mixer, mixed and granulated while adding water to obtain a granulated product (pseudo particles).
なお、配合した前記混合物中の全炭材量は、新原料に対し7.0mass%(全配合原料に対し、5.8mass%)とした。これらの製造条件を整理して表4に示す。 The total amount of carbon in the blended mixture was 7.0 mass% with respect to the new raw material (5.8 mass% with respect to the total blended raw material). These manufacturing conditions are organized and shown in Table 4.
次に、上記のように製造された造粒物を、焼結機のパレット上に装入し、通常操業に従う空気吸引下で焼結した。得られた焼結鉱の歩留と金属鉄含有量を表5に示す。 Next, the granulated material produced as described above was placed on a pallet of a sintering machine and sintered under air suction according to normal operation. Table 5 shows the yield and metal iron content of the obtained sintered ore.
焼結鉱の歩留は成品焼結鉱の質量を焼成後シンターケーキの質量で除し値を100分率で表したものである。また金属鉄含有量は、通常の化学分析により求めた。その結果、歩留が82%と高く、金属鉄を安定して7.9mass%含有した焼結鉱が得られた。 The yield of sintered ore is obtained by dividing the mass of the product sintered ore by the mass of the sintered cake after firing, and expressing the value in terms of 100 minutes. The metallic iron content was determined by ordinary chemical analysis. As a result, the yield was as high as 82%, and a sintered ore containing 7.9 mass% of metallic iron stably was obtained.
(本発明例2)
成形体を製造する際にCaOを含有する副原料を混合したこと以外は本発明例1と同様の方法で焼結鉱を製造した。鉱石銘柄A、B、Fの粉鉄鉱石、炭材およびCaOを含有する副原料を混合して、成形体を得るとき、この成形体中のCaO添加量が8mass%となるように石灰石を添加すると共に、炭材含有量が10mass%となるようにを配合し、これらを混合した後、水分を添加しブリケットマシンにて加圧成形して成形体を得た。その結果、歩留が80%と高く、金属鉄を安定して6.4mass%含有した焼結鉱が得られた。製造条件及び結果を表4、表5に併せて示す。
(Invention Example 2)
Sintered ore was produced in the same manner as in Invention Example 1 except that the auxiliary material containing CaO was mixed when the formed body was produced. Add ore brand A, B, F fine iron ore, carbonaceous materials and auxiliary materials containing CaO to mix to obtain a compact, add limestone so that the amount of CaO in the compact is 8 mass% At the same time, blended so that the carbonaceous material content was 10 mass%, and after mixing these, water was added and pressure molded with a briquette machine to obtain a molded body. As a result, a sintered ore containing a high yield of 80% and containing 6.4 mass% of metallic iron stably was obtained. Production conditions and results are also shown in Tables 4 and 5.
(本発明例3)
成形体を製造する際に鉱石に対する炭材の含有量が12mass%となるように混合したこと以外は本発明例1と同様の方法で焼結鉱を製造した。鉱石A、B、Fに対し炭材を12mass%となるように配合し、さらにこれらを混合後、水分を添加しブリケットマシンにて加圧成形して成形体を得た。配合した全炭材量は、新原料に対し8・0mass%となった。その結果、歩留が85%と高く、金属鉄を安定して10.8mass%含有した焼結鉱が得られた。製造条件及び結果を表4、表5に併せて示す。
(Invention Example 3)
Sintered ore was produced in the same manner as in Example 1 of the present invention, except that the carbonaceous material content relative to the ore was 12 mass% when the molded body was produced. Carbonaceous materials were blended to ores A, B and F so as to have a mass of 12 mass%, and after mixing these, moisture was added and pressure-molded with a briquette machine to obtain a compact. The total amount of coal blended was 8.0 mass% relative to the new raw material. As a result, the yield was as high as 85%, and a sintered ore containing 10.8 mass% of metallic iron stably was obtained. Production conditions and results are also shown in Tables 4 and 5.
(本発明例4)
鉱石C、D、Gを用いて成形体を成形し、鉱石C、D、G以外のものは加圧成形されない、残りの配合用原料としたこと以外は本発明例1と同様の方法で焼結鉱を製造した。鉱石銘柄C、D、Gに対し炭材を10mass%となるように配合し、さらにこれらを混合後、水分を添加しブリケットマシンにて加圧成形して成形体を得た。その結果、歩留が83%と高く、金属鉄を安定して7.0mass%含有した焼結鉱が得られた。製造条件及び結果を表4、表5に併せて示す。
(Invention Example 4)
A molded body is formed using ores C, D, and G, and materials other than ores C, D, and G are not subjected to pressure molding. The ore was produced. Carbonaceous materials were blended with respect to ore brands C, D, and G so as to have a mass of 10 mass%, and after mixing these, moisture was added and pressure-molded with a briquette machine to obtain a compact. As a result, the yield was as high as 83%, and a sintered ore containing 7.0 mass% of metallic iron stably was obtained. Production conditions and results are also shown in Tables 4 and 5.
(本発明例5)
鉱石銘柄B、D、Gに対し炭材を10mass%となるように配合し、CaOを含有する副原料を混合して成形体を成形し、鉱石B、D、G以外のものは加圧成形されない、残りの配合用原料としたたこと以外は本発明例1と同様の方法で焼結鉱を製造した。鉱石銘柄B、D、Gに対し炭材を10mass%となるように配合し、CaOを含有する副原料を4.0mass%を混合後、水分を添加しブリケットマシンにて加圧成形して成形体を得た。その結果、歩留が84%と高く、金属鉄を安定して10.3mass%含有した焼結鉱が得られた。製造条件及び結果を表4、表5に併せて示す。
(Invention Example 5)
Carbonaceous materials are blended to 10 mass% with respect to ore brands B, D, and G, and auxiliary materials containing CaO are mixed to form a compact, and other than ores B, D, and G are pressure molded. A sintered ore was produced in the same manner as in Example 1 except that the remaining raw material for blending was not used. Carbonaceous material is blended to 10 mass% with respect to ore brands B, D, and G, and after adding 4.0 mass% of the auxiliary material containing CaO, water is added and pressure molded with a briquette machine. Got. As a result, the yield was as high as 84%, and a sintered ore containing 10.3 mass% of metallic iron stably was obtained. Production conditions and results are also shown in Tables 4 and 5.
(比較例1)
本発明例1のすべての配合原料を、ドラムミキサーに投入し、水分を添加しながら混合・造粒した。配合した全炭材量は、新原料に対し7.0mass%とした。上記造粒物を焼結機に装入し、焼結後に得られた焼結鉱の歩留と金属鉄含有量を本発明例と同様に求めた。その結果、得られた焼結鉱は歩留が70%と低く、金属鉄もほとんど含有していなかった。
(Comparative Example 1)
All the raw materials of Invention Example 1 were put into a drum mixer and mixed and granulated while adding water. The total amount of charcoal blended was 7.0 mass% with respect to the new raw material. The granulated material was charged into a sintering machine, and the yield of sintered ore and the content of metallic iron obtained after sintering were determined in the same manner as in the present invention example. As a result, the obtained sintered ore had a low yield of 70% and contained almost no metallic iron.
(比較例2)
予め鉱石銘柄A、B、Fの粉鉄鉱石に対し炭材を10mass%となるように配合し、これらを混合した後、水分を添加して混合・造粒した。すなわち、ブリケットマシンにて加圧成形したこと以外は本発明例1と同様の方法で焼結鉱を製造した。その結果、得られた焼結鉱は歩留が75%と低く、金属鉄もほとんど含有していなかった。
(Comparative Example 2)
Carbonaceous materials were preliminarily blended with the iron ore brands A, B, and F so as to be 10 mass%, mixed, and then mixed with water and granulated. That is, the sintered ore was manufactured by the same method as Example 1 of this invention except having pressure-formed with the briquette machine. As a result, the obtained sinter had a low yield of 75% and contained almost no metallic iron.
1 成形体(内層)
2 付着部(外層)
1 Molded body (inner layer)
2 Adhering part (outer layer)
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005242607A JP4972761B2 (en) | 2005-08-24 | 2005-08-24 | Method for producing sintered ore and pseudo particles for producing sintered ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005242607A JP4972761B2 (en) | 2005-08-24 | 2005-08-24 | Method for producing sintered ore and pseudo particles for producing sintered ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007056306A JP2007056306A (en) | 2007-03-08 |
JP4972761B2 true JP4972761B2 (en) | 2012-07-11 |
Family
ID=37920038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005242607A Expired - Fee Related JP4972761B2 (en) | 2005-08-24 | 2005-08-24 | Method for producing sintered ore and pseudo particles for producing sintered ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4972761B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101581572B1 (en) | 2014-07-29 | 2015-12-30 | 현대제철 주식회사 | Methods of manufacturing pellet for blast furnace |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008146734A1 (en) * | 2007-05-28 | 2008-12-04 | Kabushiki Kaisha Kobe Seiko Sho | Method for production of carbon composite metal oxide briquette |
JP6295783B2 (en) * | 2014-03-31 | 2018-03-20 | 新日鐵住金株式会社 | Method for producing sintered ore |
JP6988778B2 (en) * | 2018-11-30 | 2022-01-05 | Jfeスチール株式会社 | Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2704673B2 (en) * | 1990-12-06 | 1998-01-26 | 新日本製鐵株式会社 | Method for producing semi-reduced sintered ore |
JP4241285B2 (en) * | 2003-09-22 | 2009-03-18 | Jfeスチール株式会社 | Method for producing semi-reduced sintered ore |
JP2005194543A (en) * | 2003-12-26 | 2005-07-21 | Jfe Steel Kk | Method for manufacturing partially reduced agglomerated ore |
JP4470490B2 (en) * | 2003-12-26 | 2010-06-02 | Jfeスチール株式会社 | Method for producing semi-reduced agglomerate |
JP2005213593A (en) * | 2004-01-29 | 2005-08-11 | Jfe Steel Kk | Method for manufacturing partially reduced agglomerate |
-
2005
- 2005-08-24 JP JP2005242607A patent/JP4972761B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101581572B1 (en) | 2014-07-29 | 2015-12-30 | 현대제철 주식회사 | Methods of manufacturing pellet for blast furnace |
Also Published As
Publication number | Publication date |
---|---|
JP2007056306A (en) | 2007-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6620850B2 (en) | Carbonaceous granulated particles for the production of sintered ore and method for producing the same | |
JP4808819B2 (en) | Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same | |
JP2006265569A (en) | Method for producing sintered ore and pseudo-grain for producing sintered ore | |
JP4972761B2 (en) | Method for producing sintered ore and pseudo particles for producing sintered ore | |
JP5598399B2 (en) | Method for producing reduced iron | |
JP6102463B2 (en) | Method for producing sintered ore | |
JP6288462B2 (en) | Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore | |
CN105899690A (en) | Method for producing manganese containing ferroalloy | |
JP4918754B2 (en) | Semi-reduced sintered ore and method for producing the same | |
JP3708981B2 (en) | Agglomerate for iron making | |
JP4462008B2 (en) | Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron | |
JP4241285B2 (en) | Method for producing semi-reduced sintered ore | |
JP2008196027A (en) | Method for manufacturing sintered ore | |
JP4797388B2 (en) | Method for producing semi-reduced sintered ore | |
JP4720127B2 (en) | Method for producing sintered ore | |
JP2008088533A (en) | Method for manufacturing sintered ore | |
JP6988778B2 (en) | Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter | |
JP7424339B2 (en) | Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron | |
JP2001262241A (en) | Method for producing sintered ore containing carbon | |
JP4415690B2 (en) | Method for producing sintered ore | |
JP2007277684A (en) | Nonfired agglomerated ore for iron manufacture | |
JP6436317B2 (en) | Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same | |
JP4816119B2 (en) | Method for producing sintered ore | |
JP2007291455A (en) | Method for manufacturing sintered ore | |
JP2009114537A (en) | Method for producing low slag-based sintered ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080811 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120306 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120319 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150420 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |