JP6436317B2 - Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same - Google Patents

Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same Download PDF

Info

Publication number
JP6436317B2
JP6436317B2 JP2016069908A JP2016069908A JP6436317B2 JP 6436317 B2 JP6436317 B2 JP 6436317B2 JP 2016069908 A JP2016069908 A JP 2016069908A JP 2016069908 A JP2016069908 A JP 2016069908A JP 6436317 B2 JP6436317 B2 JP 6436317B2
Authority
JP
Japan
Prior art keywords
carbonaceous material
ore
granulated particles
powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016069908A
Other languages
Japanese (ja)
Other versions
JP2017179508A (en
Inventor
一洋 岩瀬
一洋 岩瀬
友司 岩見
友司 岩見
山本 哲也
哲也 山本
大山 伸幸
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016069908A priority Critical patent/JP6436317B2/en
Publication of JP2017179508A publication Critical patent/JP2017179508A/en
Application granted granted Critical
Publication of JP6436317B2 publication Critical patent/JP6436317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、高炉などで製鉄原料として使用される焼結鉱の製造技術に関するものであり、具体的には、焼結鉱の製造に用いる焼結原料としての炭材内装造粒粒子とそれを用いた焼結鉱の製造方法に関するものである。   The present invention relates to a technique for producing sintered ore used as a steelmaking raw material in a blast furnace or the like, and specifically, carbonaceous material-containing granulated particles as a sintering raw material used for the production of sintered ore and the same. It is related with the manufacturing method of the used sintered ore.

高炉製鉄法では、現在、鉄源として、鉄鉱石や焼結鉱などの鉄含有原料を主に用いている。ここで、上記焼結鉱は、粒径が10mm以下の鉄鉱石の他に、珪石や蛇紋岩、精錬ニッケルスラグなどからなるSiO含有原料や、石灰石、生石灰などのCaO含有原料などからなる副原料、粉コークスや無煙炭などからなる凝結材である固体燃料(炭材)等から構成された造粒原料に適量の水を添加し、ドラムミキサーなどを用いて混合・造粒して擬似粒子である焼結原料とした後、該焼結原料を焼結機の循環移動するパレット上に装入し、上記擬似粒子中に含まれる炭材を燃焼させて焼結し、得られた焼結ケーキを破砕し、整粒して、一定の粒径以上のものを成品として回収した塊成鉱の一種である。 In the blast furnace iron manufacturing method, iron-containing raw materials such as iron ore and sintered ore are mainly used as iron sources. Here, the sintered ore is composed of an iron ore having a particle size of 10 mm or less, a SiO 2 -containing material made of silica, serpentine, refined nickel slag, or the like, or a CaO-containing material such as limestone or quicklime. Add a suitable amount of water to a granulated raw material consisting of raw material, solid fuel (carbonaceous material), which is a coagulant composed of powdered coke and anthracite, and mix and granulate using a drum mixer, etc. After making a certain sintering raw material, the sintering raw material is charged on a pallet that is circulated and moved by a sintering machine, and the carbon material contained in the pseudo particles is burned and sintered, and the resulting sintered cake Is a kind of agglomerated ore obtained by crushing, sizing and recovering a product having a certain particle size or more as a product.

ところで、近年、上記塊成鉱として、鉄鉱石やダスト等の鉄源と、コークス等の炭材とを近接配置したものが注目を浴びている。その理由は、例えば、鉄鉱石等の鉄源と炭材とを一つの塊成鉱の中で近接配置すると、鉄源側の還元反応(発熱反応)と炭材側のガス化反応(吸熱反応)とが速い速度で繰り返されて起こることから、製鉄効率が向上するとともに、高炉などの炉内温度を低下させることもできるからである。   By the way, in recent years, as the agglomerates, those in which an iron source such as iron ore and dust and a carbonaceous material such as coke are arranged in proximity are attracting attention. The reason is, for example, when an iron source such as iron ore and a carbon material are arranged close together in one agglomerate, the reduction reaction (exothermic reaction) on the iron source side and the gasification reaction (endothermic reaction) on the carbon material side ) Is repeated at a high speed, so that the iron-making efficiency is improved and the temperature in the furnace such as a blast furnace can be lowered.

上記塊成鉱としては、例えば、特許文献1に開示の、高炉・転炉ダスト、圧延スケール、スラッジ、鉄鉱石粉等の製鉄工程で発生する鉄含有粉をそれぞれ単独あるいは混合した原料に、石炭、コークス等の炭材、澱粉を加えて混合、混練し、さらに造粒機で澱粉溶液を供給して造粒したものがある。しかし、上記特許文献1に開示の塊成鉱は、焼結鉱製造時にペレット中の炭材が焼失してしまうため、実際には鉄鉱石等の鉄含有原料と炭材とが近接配置されたものとはなっていない。また、近接配置を目的として、鉄鉱石や炭材の粒径を単に小さくしただけでは、熱を伝搬するガスの移動抵抗が大きくなり過ぎ、却って、反応速度の低下を招いて、製鉄効率を低下させてしまう。   As the agglomerate, for example, as disclosed in Patent Document 1, the raw materials containing iron-containing powder generated in the iron-making process such as blast furnace / converter dust, rolling scale, sludge, iron ore powder or the like, respectively, coal, Some of them are granulated by adding carbonaceous materials such as coke and starch, mixing and kneading, and further supplying a starch solution with a granulator. However, in the agglomerated mineral disclosed in Patent Document 1, the carbonaceous material in the pellets is burned down during the production of the sintered ore, and thus the iron-containing raw material such as iron ore and the carbonaceous material are actually arranged close to each other. It is not a thing. In addition, simply reducing the particle size of iron ore or carbon for the purpose of close placement increases the resistance of gas to propagate heat too much, leading to a decrease in reaction rate and reduced iron production efficiency. I will let you.

そこで、鉄鉱石と炭材との近接配置を目的とした技術が幾つか提案されている(例えば、特許文献2〜5参照)。これらに開示の技術は、基本的には、鉄鉱石等の鉄含有原料とコークス等の炭材とを混合したのち、熱間成形して塊成化したものを、あるいは焼成せずに生粒子のままで、高炉等において製鉄用原料として使用するものである。しかし、これらの塊成物は、均一混合物もしくは多層化造粒物からなる非焼成のものであるため、強度が不足し、粉化が激しいため、これを高炉等に装入すると、脱水粉化や還元粉化を招いて、高炉の通気性を阻害するため、使用量が制限されてしまうという問題点がある。   Then, some techniques aiming at the proximity | contact arrangement | positioning of an iron ore and a carbon material are proposed (for example, refer patent documents 2-5). The technology disclosed in these documents basically consists of mixing raw materials containing iron ore and other iron-containing materials with carbonaceous materials such as coke and then agglomerating them by hot forming or agglomeration without firing. As it is, it is used as a raw material for iron making in a blast furnace or the like. However, these agglomerates are non-fired ones consisting of a uniform mixture or multi-layered granulated material, so that the strength is insufficient and the powdering is intense. Further, there is a problem in that the amount of use is limited because it leads to reduced powdering and hinders the air permeability of the blast furnace.

また、上記特許文献2〜5の技術の問題点を解決する技術として、例えば、特許文献6には、金属鉄を5wt%以上および/または炭素を5wt%以上含有した原料で核を形成し、金属鉄を10wt%以上および炭素を5wt%以下含有した原料で前記核を内包した一層以上の外周層を形成した後、300〜1300℃の酸化雰囲気で焼成して塊成化した製鉄用塊成鉱が提案されている。しかし、特許文献6に開示の塊成鉱も、原料に金属鉄を使用することが必須であり、使用する原料に量的制約があるため、製鉄用塊成鉱として製造できる量に制約があるという問題がある。   In addition, as a technique for solving the problems of the techniques of Patent Documents 2 to 5, for example, Patent Document 6 includes forming a nucleus with a raw material containing 5 wt% or more of metallic iron and / or 5 wt% or more of carbon, An agglomeration for iron making in which at least one outer peripheral layer containing the nucleus is formed from a raw material containing 10 wt% or more of metal iron and 5 wt% or less of carbon and then fired and agglomerated in an oxidizing atmosphere at 300 to 1300 ° C. Mines have been proposed. However, the agglomeration disclosed in Patent Document 6 also requires the use of metallic iron as a raw material, and since there are quantitative restrictions on the raw material used, there are restrictions on the amount that can be produced as agglomeration for iron making. There is a problem.

そこで、上記特許文献1〜6が抱える上記問題点を克服する技術として、炭材内装塊成鉱の技術が提案されている。例えば、特許文献7には、小塊コークスからなる炭材核のまわりに、造粒機を使って、製鉄ダストやミルスケール等の金属鉄含有酸化鉄粉を被覆して低酸化度の酸化鉄殻を被覆形成した後、大気中で200℃以上300℃未満の温度で、0.5〜5時間加熱する酸化処理をすることにより、該酸化鉄殻表面にのみ高酸化度の酸化鉄からなる硬質薄層を形成することにより炭材内装塊成鉱を得る技術が、また、特許文献8には、製鉄ダストやミルスケール等の酸化鉄粉もしくは鉄鉱石粉と炭材とを、造粒機を使って混合造粒し、次いで、その造粒物の外表面に金属鉄含有酸化鉄粉を被覆して低酸化度の酸化鉄殻を被覆形成することで、酸化鉄粉もしくは鉄鉱石粉の中に、3mm以下の大きさのコークス粉を分散状態で含む塊成鉱を得る技術が開示されている。   Thus, as a technique for overcoming the above-mentioned problems of the Patent Documents 1 to 6, a technique for carbonaceous material agglomerated mineral has been proposed. For example, in Patent Document 7, iron oxide containing low iron oxide dust or mill scale is coated around a carbon material core made of small coke and coated with iron oxide powder containing metal iron such as iron dust and mill scale. After the shell is formed, an oxidation treatment is performed by heating in the atmosphere at a temperature of 200 ° C. or higher and lower than 300 ° C. for 0.5 to 5 hours, so that only the surface of the iron oxide shell is made of iron oxide having a high degree of oxidation. A technique for obtaining a carbonaceous material agglomerated mineral by forming a hard thin layer is also disclosed in Patent Document 8, in which iron oxide powder such as iron-making dust or mill scale or iron ore powder and carbonaceous material are combined with a granulator. The mixture is then granulated, and then the outer surface of the granulated material is coated with iron oxide powder containing metallic iron to form a low oxidation iron oxide shell. Technology to obtain agglomerates containing coke powder with a size of 3 mm or less in a dispersed state has been developed. It is.

また、特許文献9には、炭材を鉄鉱石粉とCaO含有原料で被覆した湿潤ペレットを作製し、これを焼結原料に混合後、下方吸引型焼結機において焼成する方法が開示されている。   Patent Document 9 discloses a method in which a wet pellet obtained by coating a carbonaceous material with iron ore powder and a CaO-containing raw material is prepared, mixed with a sintered raw material, and then fired in a lower suction type sintering machine. .

特開2001−348625号公報JP 2001-348625 A 特許第3502008号公報Japanese Patent No. 3502008 特許第3502011号公報Japanese Patent No. 3502011 特開2005−344181号公報JP 2005-344181 A 特開2002−241853号公報JP 2002-241853 A 特開平10−183262号公報JP-A-10-183262 特開2011−195943号公報JP 2011-195943 A 特開2011−225926号公報JP 2011-225926 A 特許第5790966号公報Japanese Patent No. 5790966

上記特許文献7および8に開示の技術によれば、製鉄原料として適当な大きさと十分な強度を有し、しかも、鉄含有原料と炭材とが近接配置され、製鉄反応を起こし易く、低温還元が可能な構造の炭材内装塊成鉱を得ることができる。しかしながら、大気中で200℃以上300℃未満の温度で、0.5〜5時間加熱する酸化処理をする設備が必要であり、生産量に制限があるという問題がある。   According to the techniques disclosed in Patent Documents 7 and 8, the steel material has an appropriate size and sufficient strength, and the iron-containing material and the carbonaceous material are arranged close to each other, easily causing an iron-making reaction, and reduced at low temperature. Can be obtained. However, there is a problem in that there is a need for equipment for performing an oxidation treatment in which heating is performed at a temperature of 200 ° C. or more and less than 300 ° C. in the atmosphere for 0.5 to 5 hours, and production is limited.

また、上記特許文献9に開示の技術では、コークス核の周囲に鉄鉱石粉とCaO含有原料粉の混合粉を被覆造粒した炭材内装ペレットを、従来の焼結原料と一緒に焼結機で焼成することで生産量の制限を解決しているが、焼結機中の1300℃以上の大気雰囲気で焼成することにより、炭材内装塊成鉱内の炭材が燃焼によって一部失われてしまう可能性がある。   Moreover, in the technique disclosed in Patent Document 9 above, a carbonaceous material-containing pellet obtained by coating and granulating a mixed powder of iron ore powder and CaO-containing raw material powder around a coke core is combined with a conventional sintering raw material by a sintering machine. By firing, the production limit is solved, but by firing in an air atmosphere of 1300 ° C or higher in the sintering machine, part of the carbonaceous material in the carbonized material agglomerated ore is lost by combustion. There is a possibility.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、焼結機を用いて炭材内装造粒粒子を含む焼結原料から焼結鉱を製造することで焼結鉱の生産量の制限を回避すること、かつ炭材内装造粒粒子の被覆原料としてFeOを多く含有する原料を用いることで、焼成する間に被覆層中の酸化反応で酸素を消費し、炭材の燃焼を抑制する方法を提供することにある。   This invention is made | formed in view of the said problem which a prior art has, and the objective is to manufacture a sintered ore from the sintering raw material containing a carbonaceous material interior granulated particle using a sintering machine. By avoiding restrictions on the production amount of sintered ore and using raw materials containing a large amount of FeO as coating raw materials for carbonaceous material-containing granulated particles, oxygen is consumed by the oxidation reaction in the coating layer during firing. An object of the present invention is to provide a method for suppressing the combustion of carbonaceous materials.

上述した従来技術が抱えている課題について鋭意検討を重ねた結果、発明者らは、マグネタイト精鉱等のFeOを含有する原料を炭材内装湿造粒粒子の被覆原料として用いることで、焼成中に炭材内装造粒粒子中に拡散する酸素の一部がマグネタイトの酸化反応により消費され、その分炭材の燃焼に消費される酸素濃度が低下するため、焼成後の残留炭素割合を高めることができることを突き止めて、本発明を開発した。   As a result of intensive studies on the problems of the above-described conventional technology, the inventors used a raw material containing FeO, such as magnetite concentrate, as a coating raw material for carbonaceous material-containing wet granulated particles. In addition, part of the oxygen diffusing into the carbonaceous material interior granulated particles is consumed by the oxidation reaction of the magnetite, and the oxygen concentration consumed for the combustion of the carbonaceous material is reduced accordingly, increasing the residual carbon ratio after firing As a result, the present invention was developed.

即ち、本発明は、炭材核とその炭材核の周囲を鉄鉱石粉とCaO源粉とからなる混合粉で被覆した外層とを有する、焼結鉱製造用の炭材内装造粒粒子であって、前記鉄鉱石粉中のFeOの含有量が1.0mass%以上であることを特徴とする焼結鉱製造用の炭材内装造粒粒子にある。   That is, the present invention is a carbonaceous material-containing granulated particle for producing sintered ore having a carbonaceous material core and an outer layer in which the periphery of the carbonaceous material core is covered with a mixed powder composed of iron ore powder and CaO source powder. In addition, the content of FeO in the iron ore powder is 1.0 mass% or more.

なお、前記のように構成される本発明に係る焼結鉱製造用の炭材内装造粒粒子においては、
(1)前記鉄鉱石粉中のFeOが、5.0mass%以上の精鉱微粉、もしくは粉砕した鉱石、もしくはダスト等の製鉄所内発生粉であること、
(2)前記CaO源粉は、生石灰、石灰石、ドロマイト等のCaO含有原料とし、前記混合粉中のCaO含有量が10mass%以下であること、
がより好ましい解決手段となるものと考えられる。
In addition, in the carbonaceous material-containing granulated particles for sinter production according to the present invention configured as described above,
(1) FeO in the iron ore powder is a refined fine powder of 5.0 mass% or more, or a pulverized ore, or a powder generated in a steelworks such as dust,
(2) The CaO source powder is a CaO-containing raw material such as quicklime, limestone, and dolomite, and the CaO content in the mixed powder is 10 mass% or less.
Is considered to be a more preferable solution.

また、本発明は、前記焼結鉱製造用の炭材内装造粒粒子を、その他の焼結用造粒粒子と合流させて両造粒粒子を混在させたのち、混在させた造粒粒子を焼結機に装入して焼結することで、焼結鉱を得ることを特徴とする焼結鉱の製造方法にある。   Further, the present invention is to combine the carbonaceous material-containing granulated particles for the production of sintered ore with other granulated particles for sintering to mix both granulated particles, and then mix the mixed granulated particles. It is in the manufacturing method of the sintered ore characterized by obtaining sintered ore by charging with a sintering machine and sintering.

本発明によれば、マグネタイト精鉱等のFeOを1.0mass%以上含有する原料を炭材内装造粒粒子の被覆原料として用いることで、焼成中に炭材内装造粒粒子中に拡散する酸素の一部がマグネタイトの酸化反応により消費され、その分炭材の燃焼に消費される酸素濃度が低下するため、焼成後の残留炭素割合を高めることができる。   According to the present invention, by using a raw material containing 1.0 mass% or more of FeO such as magnetite concentrate as a coating raw material for carbonaceous material-containing granulated particles, oxygen diffused into the carbonaceous material-containing granulated particles during firing. Part of this is consumed by the oxidation reaction of magnetite, and the oxygen concentration consumed for the combustion of the carbonaceous material is reduced accordingly, so that the residual carbon ratio after firing can be increased.

本発明の炭材内装造粒粒子を焼結原料として用いた焼結鉱の製造方法を実施する設備列の一例を説明するための図である。It is a figure for demonstrating an example of the equipment row | line | column which implements the manufacturing method of the sintered ore using the carbonaceous material interior granulated particle of this invention as a sintering raw material.

図1は、本発明の炭材内装造粒粒子を焼結原料として用いた焼結鉱の製造方法を実施する設備列の一例を説明するための図である。図1に従って本発明で用いる焼結鉱の製造方法を説明する。   FIG. 1 is a diagram for explaining an example of an equipment row for carrying out a method for producing a sintered ore using the carbonaceous material-containing granulated particles of the present invention as a sintering raw material. The manufacturing method of the sintered ore used by this invention according to FIG. 1 is demonstrated.

図1に示す例において、3mm以上の核粒子となるコークス粒子と、150μm以下の精鉱微粉(PF)と、融剤としての生石灰をペレタイザーに装入して混合し、造粒して8mm以上の大きさの炭材内装造粒粒子とする。上記原料は、粒径の大きなコークス粒子が核となって造粒が行われるため、同時に添加しても構わない。また、コークス粒子とPFの装入比率は、核粒子となるコークス粒子に対して外層のPF層の厚みが2mm以上になるように決定する。   In the example shown in FIG. 1, coke particles as core particles of 3 mm or more, concentrate fine powder (PF) of 150 μm or less, and quick lime as a flux are mixed in a pelletizer, granulated, and 8 mm or more. The size of the carbon material is granulated particles. The above raw materials are granulated by using coke particles having a large particle size as nuclei, so they may be added simultaneously. Further, the charging ratio between the coke particles and the PF is determined so that the thickness of the outer PF layer becomes 2 mm or more with respect to the coke particles as the core particles.

次いで、上記のようにして得た炭材内装造粒粒子は、従来の原料をドラムミキサー等で攪拌し、造粒することで得られる通常の焼結用造粒粒子(擬似粒子)と合流させて両造粒粒子を混在させて焼結機のサージホッパーに搬入し、該サージホッパーから焼結機の循環移動するパレット上に装入する。なお、炭材内装造粒粒子は、通常の焼結用造粒粒子(擬似粒子)より粒子径が大きいため、装入時の偏析によって、焼結時の温度が上層側よりも高くなり易い中層および下層側に多く含まれるので、焼結反応を十分に進行させることができる。   Next, the carbonaceous material-containing granulated particles obtained as described above are combined with ordinary granulated particles for sintering (pseudo particles) obtained by stirring and granulating conventional raw materials with a drum mixer or the like. Then, both granulated particles are mixed and carried into a surge hopper of the sintering machine, and loaded from the surge hopper onto a pallet on which the sintering machine circulates. In addition, since the carbonaceous material-containing granulated particles have a larger particle size than ordinary granulated particles for sintering (pseudo particles), the middle layer is likely to have a higher temperature during sintering than the upper layer side due to segregation during charging. And since it is contained in a large amount on the lower layer side, the sintering reaction can sufficiently proceed.

上記のように、本発明の炭材内装造粒粒子(塊成鉱)は、実機焼結機を利用して生産できるため、安価にかつ大量生産することができる。   As described above, the carbonaceous material-containing granulated particles (agglomerated ore) of the present invention can be produced using an actual machine sintering machine, and therefore can be mass-produced at low cost.

上述した設備列により本発明の焼結鉱の製造を実施するが、本発明の特徴は、焼結鉱製造用の焼結原料として、炭材核とその炭材核の周囲を鉄鉱石粉とCaO源粉とからなる混合粉で被覆した外層とを有する、焼結鉱製造用の炭材内装造粒粒子であって、鉄鉱石粉中のFeOの含有量が1.0mass%以上である炭材内装造粒粒子を含む焼結原料を使用する点にある。   Production of the sintered ore of the present invention is carried out by the above-described equipment row, and the feature of the present invention is that, as a sintering raw material for the production of sintered ore, iron ore powder and CaO around the carbon material core and the carbon material core. A carbonaceous material-containing granulated particle for producing sintered ore having an outer layer coated with a mixed powder consisting of a source powder, wherein the content of FeO in the iron ore powder is 1.0 mass% or more It is in the point which uses the sintering raw material containing granulated particles.

本発明の焼結鉱製造用の炭材内装造粒粒子の製造については、被覆層を構成する鉄鉱石粉中のFeOの含有量を1.0mass%以上とすることができれば、従来から知られているような製造方法を用いることができる。   Regarding the production of carbonaceous material-incorporated granulated particles for the production of sintered ore of the present invention, it is conventionally known if the content of FeO in the iron ore powder constituting the coating layer can be 1.0 mass% or more. Such a manufacturing method can be used.

炭材内装造粒粒子においては、造粒物の核をなすコークスが燃焼し、その大部分が消失すると、中空の焼成ペレットが生成し中心部が空隙であるため焼成後の強度が低下するという問題がある。しかし、残留炭素割合が80%以上の場合には、残留コークスが造粒物中の核として充分に機能し、中心部が空隙となることなく焼成ペレットの強度も維持できることが分かった。したがって、本発明では、炭材内装造粒粒子の外層を形成する原料粉中のマグネタイト精鉱の配合割合の下限は、焼結プロセスにおいて一般的な温度と時間で焼成しても、残留炭素割合が80%以上となる最低限の配合割合、すなわちFeO含有量が1.0%となる量とした。   In the carbon material-containing granulated particles, the coke that forms the core of the granulated material burns, and when most of it disappears, hollow fired pellets are formed and the center part is a void, so the strength after firing is reduced. There's a problem. However, it was found that when the residual carbon ratio was 80% or more, the residual coke functioned sufficiently as a nucleus in the granulated product, and the strength of the fired pellets could be maintained without the central portion becoming a void. Therefore, in the present invention, the lower limit of the blending ratio of the magnetite concentrate in the raw material powder forming the outer layer of the carbonaceous material-containing granulated particles is the residual carbon ratio even when firing at a general temperature and time in the sintering process. Is the minimum blending ratio at which 80% or more, that is, the FeO content is 1.0%.

また、鉄鉱石粉としては、FeOの含有量が5.0mass%以上である、精鉱微粉、粉砕した鉱石、もしくはダスト等の製鉄所内発生粉であることが好ましい。その理由は、5.0mass%以上のFeOを含むこれらの原料を用いることで、以下の表1の結果からもわかるように、残留炭素割合が格段に向上するためである。 As the iron ore fines, the content of F eO is equal to or more than 5.0 mass%, concentrate fines, pulverizng ore, or it is preferable that the steelworks occurrence powders such as dust. This is because, by using these raw materials containing 5.0 mass% or more of FeO, as can be seen from the results in Table 1 below, because the residual carbon ratio is remarkably improved.

さらに、炭材を被覆する原料粉中にCaO含有原料を配合するのは鉄鉱石粒子をより低温で溶融させ、焼結を促進するためである。ただし、原料粉中のCaO含有量が10mass%を超えると、焼成中に被覆層が過剰に溶融し、造粒粒子としての形状を保てなくなる。その結果、内包させたコークスが露出し燃焼、消失してしまう場合がある。これを防ぐために原料粉中のCaO含有量は10mass%以下であると好ましい。   Further, the reason why the CaO-containing raw material is blended in the raw material powder covering the carbon material is to melt the iron ore particles at a lower temperature and promote the sintering. However, when the CaO content in the raw material powder exceeds 10 mass%, the coating layer is excessively melted during firing, and the shape as granulated particles cannot be maintained. As a result, the encased coke may be exposed, burned, and lost. In order to prevent this, the CaO content in the raw material powder is preferably 10% by mass or less.

以下に、本発明に係る実施例、および比較例を示す。   Examples according to the present invention and comparative examples are shown below.

本試験では電気炉を用いて炭材内装造粒粒子を焼成し、焼成後に残留した炭素の割合を測定した。以下の表1に本試験条件と結果を示す。   In this test, carbon material-containing granulated particles were fired using an electric furnace, and the proportion of carbon remaining after firing was measured. Table 1 below shows the test conditions and results.

Figure 0006436317
Figure 0006436317

FeO含有量が0.2mass%のヘマタイト精鉱と、FeOが29.5mass%のマグネタイト精鉱の配合比を変更することで、炭材内装造粒粒子の外層となるFeO含有量の異なる原料粉を作成した。FeO含有量が0.2mass%の比較例はヘマタイト精鉱のみ、FeOが29.5mass%の実施例5はマグネタイト精鉱のみを使用した。   Raw material powders with different FeO contents which become the outer layer of carbonaceous material granulated particles by changing the blending ratio of hematite concentrate with 0.2 mass% FeO and magnetite concentrate with 29.5 mass% FeO It was created. The comparative example with FeO content of 0.2 mass% used only hematite concentrate, and Example 5 with FeO 29.5 mass% used only magnetite concentrate.

焼成試験に供する湿潤ペレットの作製には、直径600mmの皿型造粒機(パンペレタイザーともいう)を用いた。該造粒機に直径が3〜5mmのコークスと、ヘマタイト精鉱とマグネタイト精鉱および成分調整CaO源としての生石灰(5mass%)を混合した原料粉を投入し、散水しながら造粒することで、直径12〜14mm、水分含有量が8〜10mass%の炭材内装造粒粒子を作製した。   A dish-type granulator (also referred to as a pan pelletizer) having a diameter of 600 mm was used for producing wet pellets to be subjected to the firing test. By putting coke with a diameter of 3 to 5 mm, raw material powder mixed with hematite concentrate, magnetite concentrate and quick lime (5 mass%) as a component-adjusted CaO source into the granulator, and granulating while sprinkling water Carbonaceous material-containing granulated particles having a diameter of 12 to 14 mm and a water content of 8 to 10 mass% were prepared.

作製した炭材内装造粒粒子を、炉内温度を1300℃に加熱した電気炉に投入し、3分間および5分間焼成した。焼成前後の造粒粒子をそれぞれ化学定量分析し、焼成後に残留していた炭素量と焼成前の炭素量の比から、残留炭素割合を算出した。表1に試験結果を示す。   The produced carbonaceous material-containing granulated particles were put into an electric furnace heated to a furnace temperature of 1300 ° C. and fired for 3 minutes and 5 minutes. The granulated particles before and after firing were subjected to chemical quantitative analysis, and the residual carbon ratio was calculated from the ratio of the amount of carbon remaining after firing and the amount of carbon before firing. Table 1 shows the test results.

ヘマタイト精鉱とCaO含有粉のみで炭材内装造粒粒子の外層を形成した比較例の場合、3分間の焼成で残留炭素割合は72%まで低下した。さらに5分間の焼成だと同55%まで低下し、炭材内装造粒粒子中の炭素の約半分が燃焼により消失したことになることがわかる。   In the comparative example in which the outer layer of the carbonaceous material-containing granulated particles was formed using only hematite concentrate and CaO-containing powder, the residual carbon ratio decreased to 72% after firing for 3 minutes. Furthermore, when it is calcination for 5 minutes, it falls to 55% of the same, and it turns out that about half of the carbon in the carbonaceous material-containing granulated particles has disappeared by combustion.

一方、ヘマタイト精鉱の一部をマグネタイト精鉱に代替することで、焼成中に炭材内装造粒粒子中に拡散する酸素の一部がマグネタイトの酸化反応により消費され、その分炭材の燃焼に消費される酸素濃度が低下するため、焼成後の残留炭素割合を高めることができる。実施例1の場合、3分間の焼成で残留炭素割合は80%まで向上し、5分間の焼成でも65%まで回復した。   On the other hand, by replacing part of the hematite concentrate with magnetite concentrate, part of the oxygen that diffuses into the granulated particles inside the carbonaceous material during firing is consumed by the oxidation reaction of the magnetite, and the combustion of the carbonaceous material Since the concentration of oxygen consumed in the process decreases, the residual carbon ratio after firing can be increased. In the case of Example 1, the residual carbon ratio was improved to 80% after 3 minutes of calcination and recovered to 65% even after calcination for 5 minutes.

通常の焼結プロセスにおいて、焼結原料が1300℃以上の温度にさらされるのは3分間程度である。また、炭材内装造粒粒子においては、造粒物の核をなすコークスが燃焼し、その大部分が消失すると、中空の焼成ペレットが生成し中心部が空隙であるため焼成後の強度が低下するという問題がある。しかし、残留炭素割合が80%以上の場合には、残留コークスが造粒物中の核として充分に機能し、中心部が空隙となることなく焼成ペレットの強度も維持できることが分かった。したがって、炭材内装造粒粒子の外層を形成する原料粉中のマグネタイト精鉱の配合割合の下限は、FeO含有量が1.0%となる量とした。   In a normal sintering process, the sintered raw material is exposed to a temperature of 1300 ° C. or higher for about 3 minutes. In addition, in the carbon material-containing granulated particles, coke that forms the core of the granulated material burns, and when most of it disappears, a hollow baked pellet is formed and the center part is a void, so the strength after calcination is reduced. There is a problem of doing. However, it was found that when the residual carbon ratio was 80% or more, the residual coke functioned sufficiently as a nucleus in the granulated product, and the strength of the fired pellets could be maintained without the central portion becoming a void. Therefore, the lower limit of the blending ratio of the magnetite concentrate in the raw material powder that forms the outer layer of the carbonaceous material-containing granulated particles is set to an amount such that the FeO content is 1.0%.

さらにマグネタイト精鉱の配合量を増やしていくと、焼成後の残留炭素割合は増加していき、マグネタイト精鉱とCaO原料のみでコークス核を被覆した場合は、9割以上の炭素が燃えずに残留した。   If the blending amount of magnetite concentrate is further increased, the ratio of residual carbon after firing will increase, and when coke nuclei are coated only with magnetite concentrate and CaO raw material, 90% or more of carbon will not burn. Remained.

本発明の焼結鉱製造用の炭材内装造粒粒子によれば、本発明に係る炭材内装造粒粒子を含む焼結原料を用いて焼結鉱を製造することで、高い生産性で高品位の焼結鉱を得ることができる。そのため、高炉原料として得られた焼結鉱を利用することで、高い生産性の高炉操業を行うことが可能となる。   According to the carbonaceous material-containing granulated particles for producing sintered ore of the present invention, by producing sintered ore using the sintering raw material containing the carbonized material-containing granulated particles according to the present invention, high productivity is achieved. High quality sintered ore can be obtained. Therefore, by using the sintered ore obtained as a blast furnace raw material, it becomes possible to perform blast furnace operation with high productivity.

Claims (4)

炭材核とその炭材核の周囲を鉄鉱石粉とCaO源粉とからなる混合粉で被覆した外層とを有する、焼結鉱製造用の炭材内装造粒粒子であって、前記鉄鉱石粉中のFeOの含有量が.0mass%以上であり、焼成中に炭材の燃焼に消費される酸素濃度を前記鉄鉱石粉中のマグネタイトの酸化反応により低下させることを特徴とする焼結鉱製造用の炭材内装造粒粒子。 A carbonaceous material-incorporated granulated particle for producing sintered ore, comprising a carbonaceous material core and an outer layer in which the periphery of the carbonaceous material core is coated with a mixed powder composed of iron ore powder and CaO source powder. The FeO content of 5 . More 0Mass% der is, carbonaceous material interior granulated particles for sintering ore production, characterized in that to reduce the oxidation of the oxygen concentration that is consumed in the combustion of carbonaceous materials magnetite in the iron ore fines during firing . 前記鉄鉱石粉は、精鉱微粉、粉砕した鉱石、もしくは製鉄所内発生粉であることを特徴とする請求項1に記載の焼結鉱製造用の炭材内装造粒粒子。 The iron ore powder, concentrate fines, pulverizng ore, Moshiku the carbonaceous material decorated granulated particles for sintering ore preparation according to claim 1, characterized in that the steelmaking plant generating powder. 前記CaO源粉は、前記混合粉中のCaO含有量が10mass%以下であることを特徴とする請求項1または2に記載の焼結鉱製造用の炭材内装造粒粒子。 The CaO Minamotokona is carbonaceous material interior granulated particles for sintering ore preparation according to claim 1 or 2 CaO content before Symbol powder mixture is equal to or less than 10 mass%. 請求項1〜3のいずれか1項に記載の焼結鉱製造用の炭材内装造粒粒子を、その他の焼結用造粒粒子と合流させて両造粒粒子を混在させたのち、混在させた造粒粒子を焼結機に装入して焼結することで、焼結鉱を得ることを特徴とする焼結鉱の製造方法。   The carbonaceous material-containing granulated particles for sinter production according to any one of claims 1 to 3 are mixed with other granulated particles for sintering to mix both granulated particles, and then mixed. A method for producing a sintered ore, wherein the granulated particles are charged into a sintering machine and sintered to obtain a sintered ore.
JP2016069908A 2016-03-31 2016-03-31 Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same Active JP6436317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069908A JP6436317B2 (en) 2016-03-31 2016-03-31 Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069908A JP6436317B2 (en) 2016-03-31 2016-03-31 Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same

Publications (2)

Publication Number Publication Date
JP2017179508A JP2017179508A (en) 2017-10-05
JP6436317B2 true JP6436317B2 (en) 2018-12-12

Family

ID=60005014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069908A Active JP6436317B2 (en) 2016-03-31 2016-03-31 Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same

Country Status (1)

Country Link
JP (1) JP6436317B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555189B2 (en) * 1994-08-12 2004-08-18 株式会社神戸製鋼所 Operating method of iron ore sintering machine
EP1942201A1 (en) * 2007-01-04 2008-07-09 China Steel Corporation Ore sintering composition and ore sintering method
JP5846049B2 (en) * 2012-06-06 2016-01-20 新日鐵住金株式会社 Method for producing sintered ore
CN105308194B (en) * 2013-07-10 2018-11-13 杰富意钢铁株式会社 The manufacturing method of the sinter of interior packet Carbon Materials
JP2015063716A (en) * 2013-09-24 2015-04-09 株式会社神戸製鋼所 Iron ore mini pellet for sintered ore manufacturing

Also Published As

Publication number Publication date
JP2017179508A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6620850B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
KR101145603B1 (en) Process for producing reduced iron pellets, and process for producing pig iron
JP5540859B2 (en) Carbon steel interior agglomerate for iron making and method for producing the same
WO2009125814A1 (en) Agglomerate, containing titanium oxide, for manufacturing granular metallic iron
JP6288462B2 (en) Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore
JP2013209748A (en) Method of manufacturing reduced iron agglomerate
JP5540806B2 (en) Carbon steel interior agglomerate for iron making and method for producing the same
JP6460293B2 (en) Method for producing sintered ore
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
CN108699624B (en) Improved ilmenite smelting process
JP6436317B2 (en) Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP7119856B2 (en) Method for smelting oxide ore
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
JPH0583620B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181030

R150 Certificate of patent or registration of utility model

Ref document number: 6436317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250