JP6887717B2 - Charcoal interior granulated particles for sinter production and sinter production method using them - Google Patents

Charcoal interior granulated particles for sinter production and sinter production method using them Download PDF

Info

Publication number
JP6887717B2
JP6887717B2 JP2016061936A JP2016061936A JP6887717B2 JP 6887717 B2 JP6887717 B2 JP 6887717B2 JP 2016061936 A JP2016061936 A JP 2016061936A JP 2016061936 A JP2016061936 A JP 2016061936A JP 6887717 B2 JP6887717 B2 JP 6887717B2
Authority
JP
Japan
Prior art keywords
sinter
particles
granulated particles
carbonaceous
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016061936A
Other languages
Japanese (ja)
Other versions
JP2017172020A (en
Inventor
一洋 岩瀬
一洋 岩瀬
友司 岩見
友司 岩見
山本 哲也
哲也 山本
大山 伸幸
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016061936A priority Critical patent/JP6887717B2/en
Publication of JP2017172020A publication Critical patent/JP2017172020A/en
Application granted granted Critical
Publication of JP6887717B2 publication Critical patent/JP6887717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉などで製鉄原料として使用される焼結鉱の製造技術に関するものであり、具体的には、焼結鉱の製造に用いる焼結原料としての炭材内装造粒粒子とそれを用いた焼結鉱の製造方法に関するものである。 The present invention relates to a technique for producing a sinter used as a raw material for iron making in a blast furnace or the like, and specifically, a carbonaceous material interior granulated particles as a raw material for sinter used in the production of the sinter and the granulated particles thereof. It relates to the method for producing the sinter used.

高炉製鉄法では、現在、鉄源として、鉄鉱石や焼結鉱などの鉄含有原料を主に用いている。ここで、上記焼結鉱は、粒径が10mm以下の鉄鉱石の他に、珪石や蛇紋岩、精錬ニッケルスラグなどからなるSiO含有原料や、石灰石、生石灰などのCaO含有原料などからなる副原料、粉コークスや無煙炭などからなる凝結材である固体燃料(炭材)等から構成された造粒原料に適量の水を添加し、ドラムミキサーなどを用いて混合・造粒して擬似粒子である焼結原料とした後、該焼結原料を焼結機の循環移動するパレット上に装入し、上記擬似粒子中に含まれる炭材を燃焼させて焼結し、得られた焼結ケーキを破砕し、整粒して、一定の粒径以上のものを成品として回収した塊成鉱の一種である。 Currently, the blast furnace ironmaking method mainly uses iron-containing raw materials such as iron ore and sinter as an iron source. Here, the sinter is a secondary material composed of a SiO 2- containing raw material such as siliceous stone, serpentine, refined nickel slag, and a CaO-containing raw material such as limestone and fresh lime, in addition to iron ore having a particle size of 10 mm or less. An appropriate amount of water is added to a granulation raw material composed of a solid fuel (charcoal material), which is a coagulant made of raw materials, powdered coke, smokeless charcoal, etc., and mixed and granulated using a drum mixer, etc. to form pseudo-particles. After making a certain sintering raw material, the sintering raw material is charged on a pallet that circulates and moves in a sintering machine, and the carbonaceous material contained in the pseudo particles is burned and sintered, and the obtained sintered cake is obtained. It is a kind of agglomerate ore that is crushed, sized, and recovered as a product with a certain particle size or larger.

ところで、近年、上記塊成鉱として、鉄鉱石やダスト等の鉄源と、コークス等の炭材とを近接配置したものが注目を浴びている。その理由は、例えば、鉄鉱石等の鉄源と炭材とを一つの塊成鉱の中で近接配置すると、鉄源側の還元反応(発熱反応)と炭材側のガス化反応(吸熱反応)とが速い速度で繰り返して起こることから、製鉄効率が向上するとともに、高炉などの炉内温度を低下させることもできるからである。 By the way, in recent years, as the above-mentioned agglomerate ore, one in which an iron source such as iron ore or dust and a charcoal material such as coke are arranged in close proximity has attracted attention. The reason is that, for example, when an iron source such as iron ore and a carbonaceous material are placed close to each other in one agglomerate ore, a reduction reaction (exothermic reaction) on the iron source side and a gasification reaction (endothermic reaction) on the carbonaceous material side are performed. ) And repeatedly occur at a high speed, so that the iron making efficiency can be improved and the temperature inside the blast furnace can be lowered.

上記塊成鉱としては、例えば、特許文献1に開示の、高炉・転炉ダスト、圧延スケール、スラッジ、鉄鉱石粉等の製鉄工程で発生する鉄含有粉をそれぞれ単独あるいは混合した原料に、石炭、コークス等の炭材、澱粉を加えて混合、混練し、さらに造粒機で澱粉溶液を供給して造粒したものがある。しかし、上記特許文献1に開示の塊成鉱は、焼結鉱製造時にペレット中の炭材が焼失してしまうため、実際には鉄鉱石等の鉄含有原料と炭材とが近接配置されたものとはなっていない。また、近接配置を目的として、鉄鉱石や炭材の粒径を単に小さくしただけでは、熱を伝搬するガスの移動抵抗が大きくなり過ぎ、却って、反応速度の低下を招いて、製鉄効率を低下させてしまう。 Examples of the agglomerate ore include coal, which is a raw material in which iron-containing powder generated in the iron-making process such as blast furnace / converter dust, rolling scale, sludge, and iron ore powder, which is disclosed in Patent Document 1, is used alone or mixed. Some products are granulated by adding charcoal material such as coke and starch, mixing and kneading, and then supplying a starch solution with a granulator. However, in the agglomerate ore disclosed in Patent Document 1, since the carbonaceous material in the pellet is burned during the production of the sintered ore, the iron-containing raw material such as iron ore and the coal material are actually arranged in close proximity to each other. It's not a thing. In addition, if the particle size of iron ore or carbonaceous material is simply reduced for the purpose of close placement, the movement resistance of the gas that propagates heat becomes too large, which in turn causes a decrease in the reaction rate and a decrease in iron making efficiency. I will let you.

そこで、鉄鉱石と炭材との近接配置を目的とした技術が幾つか提案されている(例えば、特許文献2〜5参照)。これらに開示の技術は、基本的には、鉄鉱石等の鉄含有原料とコークス等の炭材とを混合したのち、熱間成形して塊成化したものを、あるいは焼成せずに生粒子のままで、高炉等において製鉄用原料として使用するものである。しかし、これらの塊成物は、均一混合物もしくは多層化造粒物からなる非焼成のものであるため、強度が不足し、粉化が激しいため、これを高炉等に装入すると、脱水粉化や還元粉化を招いて、高炉の通気性を阻害するため、使用量が制限されてしまうという問題点がある。 Therefore, some techniques have been proposed for the purpose of arranging iron ore and carbonaceous material in close proximity (see, for example, Patent Documents 2 to 5). The technology disclosed in these is basically a mixture of an iron-containing raw material such as iron ore and a charcoal material such as coke, and then hot-molded and agglomerated, or raw particles without firing. As it is, it is used as a raw material for iron making in blast furnaces and the like. However, since these agglomerates are non-fired ones composed of a homogeneous mixture or a multi-layered granulated product, their strength is insufficient and pulverization is intense. Therefore, when they are charged into a blast furnace or the like, they are dehydrated and pulverized. There is a problem that the amount of use is limited because the air permeability of the blast furnace is hindered by causing reduction powdering.

また、上記特許文献2〜5の技術の問題点を解決する技術として、例えば、特許文献6には、金属鉄を5wt%以上および/または炭素を5wt%以上含有した原料で核を形成し、金属鉄を10wt%以上および炭素を5wt%以下含有した原料で前記核を内包した一層以上の外周層を形成した後、300〜1300℃の酸化雰囲気で焼成して塊成化した製鉄用塊成鉱が提案されている。しかし、特許文献6に開示の塊成鉱も、原料に金属鉄を使用することが必須であり、使用する原料に量的制約があるため、製鉄用塊成鉱として製造できる量に制約があるという問題がある。 Further, as a technique for solving the problems of the techniques of Patent Documents 2 to 5, for example, in Patent Document 6, a nucleus is formed from a raw material containing 5 wt% or more of metallic iron and / or 5 wt% or more of carbon. After forming one or more outer layers containing the nucleus with a raw material containing 10 wt% or more of metallic iron and 5 wt% or less of carbon, the lumps for iron making were agglomerated by firing in an oxidizing atmosphere at 300 to 1300 ° C. Mines have been proposed. However, also in the agglomerate ore disclosed in Patent Document 6, it is essential to use metallic iron as a raw material, and there is a quantitative restriction on the raw material used, so that the amount that can be produced as an agglomerate for iron making is limited. There is a problem.

そこで、上記特許文献1〜6が抱える上記問題点を克服する技術として、炭材内装塊成鉱の技術が提案されている。例えば、特許文献7には、小塊コークスからなる炭材核のまわりに、造粒機を使って、製鉄ダストやミルスケール等の金属鉄含有酸化鉄粉を被覆して低酸化度の酸化鉄殻を被覆形成した後、大気中で200℃以上300℃未満の温度で、0.5〜5時間加熱する酸化処理をすることにより、該酸化鉄殻表面にのみ高酸化度の酸化鉄からなる硬質薄層を形成することにより炭材内装塊成鉱を得る技術が、また、特許文献8には、製鉄ダストやミルスケール等の酸化鉄粉もしくは鉄鉱石粉と炭材とを、造粒機を使って混合造粒し、次いで、その造粒物の外表面に金属鉄含有酸化鉄粉を被覆して低酸化度の酸化鉄殻を被覆形成することで、酸化鉄粉もしくは鉄鉱石粉の中に、3mm以下の大きさのコークス粉を分散状態で含む塊成鉱を得る技術が開示されている。 Therefore, as a technique for overcoming the above-mentioned problems of Patent Documents 1 to 6, a technique for carbonaceous interior agglomerate ore has been proposed. For example, in Patent Document 7, iron oxide having a low degree of oxidation is coated with iron oxide containing metallic iron such as iron-making dust and mill scale around a carbon core made of small coke by using a granulator. After the shell is coated and formed, it is oxidized by heating it in the air at a temperature of 200 ° C. or higher and lower than 300 ° C. for 0.5 to 5 hours, so that only the surface of the iron oxide shell is composed of iron oxide having a high degree of oxidation. A technique for obtaining a carbonaceous interior agglomerate by forming a hard thin layer, and in Patent Document 8, iron oxide powder such as iron-making dust and mill scale or iron ore powder and carbonaceous material are used as a granulator. It is mixed and granulated using it, and then the outer surface of the granulated product is coated with iron oxide powder containing metallic iron to form a low-oxidation iron oxide shell, thereby forming iron oxide powder or iron ore powder. A technique for obtaining agglomerates containing coke powder having a size of 3 mm or less in a dispersed state is disclosed.

また、特許文献9には、炭材を鉄鉱石粉とCaO含有原料で被覆した湿潤ペレットを作製し、これを焼結原料に混合後、下方吸引型焼結機において焼成する方法が開示されている。 Further, Patent Document 9 discloses a method of preparing wet pellets in which a carbonaceous material is coated with iron ore powder and a CaO-containing raw material, mixing the wet pellets with the sintering raw material, and then firing in a downward suction type sintering machine. ..

特開2001−348625号公報Japanese Unexamined Patent Publication No. 2001-348625 特許第3502008号明細書Japanese Patent No. 3502008 特許第3502011号明細書Japanese Patent No. 3502011 特開2005−344181号公報Japanese Unexamined Patent Publication No. 2005-344181 特開2002−241853号公報Japanese Unexamined Patent Publication No. 2002-241853 特開平10−183262号公報Japanese Unexamined Patent Publication No. 10-183262 特開2011−195943号公報Japanese Unexamined Patent Publication No. 2011-195943 特開2011−225926号公報Japanese Unexamined Patent Publication No. 2011-225926 特許第5790966号明細書Japanese Patent No. 5790966

上記特許文献7および8に開示の技術によれば、製鉄原料として適当な大きさと十分な強度を有し、しかも、鉄含有原料と炭材とが近接配置され、製鉄反応を起こし易く、低温還元が可能な構造の炭材内装塊成鉱を得ることができる。しかしながら、上記技術は、金属鉄が多いと炭材との濡れ性が悪くなるため、炭材核表面への金属鉄含有酸化鉄粉の被覆形成が難しく、低酸化度の酸化鉄殻を形成するため、造粒後、酸化処理が必要であることから製造コストが嵩むこと、また、製鉄ダストやミルスケール等の金属鉄含有酸化鉄粉は発生量が少ないことから、生産量に制限があるという問題がある。 According to the techniques disclosed in Patent Documents 7 and 8, it has an appropriate size and sufficient strength as an iron-making raw material, and the iron-containing raw material and the charcoal material are arranged close to each other, so that an iron-making reaction is likely to occur, and low-temperature reduction is performed. It is possible to obtain a carbonaceous material interior mass ore with a structure capable of However, in the above technique, if the amount of metallic iron is large, the wettability with the carbonaceous material deteriorates, so that it is difficult to form a coating of metallic iron-containing iron oxide powder on the surface of the carbonaceous material core, and an iron oxide shell having a low degree of oxidation is formed. Therefore, it is said that the production amount is limited because the production cost increases because the oxidation treatment is required after granulation, and the amount of metallic iron-containing iron oxide powder such as iron-making dust and mill scale is small. There's a problem.

また、上記特許文献9に開示の技術では、粒径が10〜1000μmのペレットフィードを用いるとの記述があるが、「粒径」という言葉が個々粒子の代表径を指すのか、あるいは粒子群の算術平均径、調和平均径、またはメジアン径を指すのか、曖昧である。また、仮にメジアン径が100μm以上の精鉱微粉を用いるとすると、粒径が大きいため粒子同士の接触点数あるいはバインダーである水による液架橋数が不足し、十分な強度をもつ湿潤ペレットを作ることは困難である。これではベルトコンベアでの搬送等のハンドリングで該ペレットが摩耗あるいは崩壊し、焼結機に装入して焼成する際に通気を悪化させ、生産量の低下を招いてしまう恐れがある。 Further, in the technique disclosed in Patent Document 9, there is a description that a pellet feed having a particle size of 10 to 1000 μm is used, but the word “particle size” refers to the representative diameter of each particle, or the particle group. It is ambiguous whether it refers to the arithmetic mean diameter, harmonic mean diameter, or median diameter. Further, if a concentrate fine powder having a median diameter of 100 μm or more is used, the number of contact points between the particles or the number of liquid crosslinks with water as a binder is insufficient due to the large particle size, and a wet pellet having sufficient strength is produced. It is difficult. In this case, the pellets may be worn or disintegrated due to handling such as transportation on a belt conveyor, and the air flow may be deteriorated when the pellets are charged into a sintering machine and fired, resulting in a decrease in production amount.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、発生量が限られる製鉄ダストやミルスケール等の金属鉄含有酸化鉄粉を最小限もしくは用いることなく、かつ搬送等のハンドリングにも十分耐えうる強度を有する炭材内装造粒粒子を得るための原料条件を規定し、該造粒粒子を含む焼結原料を焼結機に装入して焼成する際の通気悪化を抑制し、生産量を低下させずに焼結鉱を製造することができる炭材内装造粒粒子を提供することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to minimize or without using metallic iron-containing iron oxide powder such as iron-making dust and mill scale, which generate a limited amount. When the raw material conditions for obtaining the carbonaceous interior granulated particles having sufficient strength to withstand handling such as transportation are specified, and the sintered raw material containing the granulated particles is charged into a sintering machine and fired. It is an object of the present invention to provide carbonaceous material interior granulated particles capable of producing sinter without reducing the production amount by suppressing deterioration of aeration.

上述した従来技術が抱えている課題について鋭意検討を重ねた結果、発明者らは、鉄鉱石粉の比表面積で規定した原料を炭材内装造粒粒子の被覆原料として用いることで、該炭材内装造粒粒子を含む焼結原料を焼結機に装入して焼成する際の通気悪化を抑制し、焼結鉱の生産量を低下させずに焼結鉱を製造できることを突き止め、本発明を開発した。 As a result of diligent studies on the problems of the above-mentioned prior art, the inventors have used a raw material defined by the specific surface area of iron ore powder as a coating raw material for granulated particles in the carbon material interior. It has been found that the sinter can be produced without reducing the production amount of the sinter by suppressing the deterioration of aeration when the sinter raw material containing the granulated particles is charged into the sinter and fired. developed.

即ち、本発明は、炭材核とその炭材核の周囲を鉄鉱石粉とCaO源粉とからなる混合粉で被覆した外層とを有する、焼結鉱製造用の炭材内装造粒粒子であって、前記鉄鉱石粉の比表面積が1000cm/g以上であることを特徴とする焼結鉱製造用の炭材内装造粒粒子にある。 That is, the present invention is a carbonaceous material interior granulated particle for producing sinter, which has a carbonaceous material core and an outer layer in which the periphery of the carbon material core is coated with a mixed powder composed of iron ore powder and CaO source powder. The iron ore powder has a specific surface area of 1000 cm 2 / g or more, and is a carbonaceous material interior granulated particle for producing sinter.

なお、前記のように構成される本発明に係る焼結鉱製造用の炭材内装造粒粒子においては、
(1)前記CaO源粉は、生石灰、石灰石、ドロマイト等のCaO含有原料とし、前記混合粉中のCaO含有量が10mass%以下であること、
がより好ましい解決手段となるものと考えられる。
In addition, in the carbonaceous material interior granulated particles for the production of sinter according to the present invention configured as described above,
(1) The CaO source powder is a CaO-containing raw material such as quicklime, limestone, and dolomite, and the CaO content in the mixed powder is 10 mass% or less.
Is considered to be a more preferable solution.

また、本発明は、前記焼結鉱製造用の炭材内装造粒粒子を、その他の焼結用造粒粒子と合流させて両造粒粒子を混在させたのち、混在させた造粒粒子を焼結機に装入して焼結することで、焼結鉱を得ることを特徴とする焼結鉱の製造方法にある。 Further, in the present invention, the carbonaceous interior granulated particles for sinter production are merged with other granulated particles for sintering to mix both granulated particles, and then the mixed granulated particles are produced. A method for producing sinter is characterized in that sinter is obtained by charging the particles into a sinter and sintering the particles.

本発明によれば、鉄鉱石粉の比表面積が1000cm/g以上の原料を炭材内装造粒粒子の外層形成用被覆原料として用いることで、炭材内装造粒粒子を含む焼結原料を焼結機に装入して焼成する際の通気悪化を抑制し、焼結鉱の生産量を低下させずに焼結鉱を製造することができる。 According to the present invention, by using a raw material having a specific surface area of 1000 cm 2 / g or more of iron ore powder as a coating raw material for forming an outer layer of carbonaceous interior granulated particles, a sintered raw material containing carbonaceous interior granulated particles is baked. It is possible to suppress deterioration of aeration when charging into a knot and firing, and to produce sinter without reducing the amount of sinter produced.

本発明の炭材内装造粒粒子を焼結原料として用いた焼結鉱の製造方法を実施する設備列の一例を説明するための図である。It is a figure for demonstrating an example of the equipment line which carries out the manufacturing method of the sinter using the carbonaceous material interior granulation particles of this invention as a sinter raw material. 実施例1における炭材内装造粒粒子の配合比率と比生産率との関係を示すグラフである。It is a graph which shows the relationship between the compounding ratio of the carbonaceous material interior granulation particles and the specific productivity ratio in Example 1. FIG.

図1は、本発明の炭材内装造粒粒子を焼結原料として用いた焼結鉱の製造方法を実施する設備列の一例を説明するための図である。図1に従って本発明で用いる焼結鉱の製造方法を説明する。 FIG. 1 is a diagram for explaining an example of an equipment line for carrying out a method for producing a sinter using the carbonaceous material interior granulated particles of the present invention as a sinter raw material. A method for producing the sinter used in the present invention will be described with reference to FIG.

図1に示す例において、3mm以上の核粒子となるコークス粒子と、150μm以下の精鉱微粉(PF)と、融剤としての生石灰をペレタイザーに装入して混合し、造粒して8mm以上の大きさの炭材内装造粒粒子とする。上記原料は、粒径の大きなコークス粒子が核となって造粒が行われるため、同時に添加しても構わない。また、コークス粒子とPFの装入比率は、核粒子となるコークス粒子に対して外層のPF層の厚みが2mm以上になるように決定する。 In the example shown in FIG. 1, coke particles as core particles of 3 mm or more, concentrate fine powder (PF) of 150 μm or less, and quicklime as a flux are charged into a pelletizer, mixed, granulated, and granulated to 8 mm or more. The size of the carbonaceous material interior granulation particles shall be. Since the above raw materials are granulated with coke particles having a large particle size as nuclei, they may be added at the same time. Further, the charging ratio of the coke particles and the PF is determined so that the thickness of the PF layer of the outer layer is 2 mm or more with respect to the coke particles to be the core particles.

次いで、上記のようにして得た炭材内装造粒粒子は、従来の原料をドラムミキサー等で攪拌し、造粒することで得られる通常の焼結用造粒粒子(擬似粒子)と合流させて両造粒粒子を混在させて焼結機のサージホッパーに搬入し、該サージホッパーから焼結機の循環移動するパレット上に装入する。なお、炭材内装造粒粒子は、通常の焼結用造粒粒子(擬似粒子)より粒子径が大きいため、装入時の偏析によって、焼結時の温度が上層側よりも高くなり易い中層および下層側に多く含まれるので、焼結反応を十分に進行させることができる。 Next, the carbonaceous interior granulated particles obtained as described above are mixed with ordinary sintering granulated particles (pseudo-particles) obtained by stirring the conventional raw material with a drum mixer or the like and granulating. Both granulated particles are mixed and carried into the surge hopper of the sintering machine, and charged from the surge hopper onto a pallet that circulates and moves in the sintering machine. Since the grain size of the carbonaceous material interior granulated particles is larger than that of ordinary granulated particles for sintering (pseudo-particles), the temperature at the time of sintering tends to be higher than that on the upper layer side due to segregation at the time of charging. And since it is contained in a large amount on the lower layer side, the sintering reaction can be sufficiently advanced.

上記のように、本発明の炭材内装造粒粒子(塊成鉱)は、実機焼結機を利用して生産できるため、安価にかつ大量生産することができる。 As described above, since the carbonaceous material interior granulated particles (aggregate ore) of the present invention can be produced by using an actual sintering machine, they can be mass-produced at low cost.

上述した設備列により本発明の焼結鉱の製造を実施するが、本発明の特徴は、焼結鉱製造用の焼結原料として、炭材核とその炭材核の周囲を鉄鉱石粉とCaO源粉とからなる混合粉で被覆した外層とを有する、焼結鉱製造用の炭材内装造粒粒子であって、前記鉄鉱石粉の比表面積が1000cm/g以上である炭材内装造粒粒子を含む焼結原料を使用する点にある。 The sinter of the present invention is produced by the above-mentioned equipment line, and the feature of the present invention is that iron ore powder and CaO surround the sinter core and the sinter core as a sinter raw material for sinter production. Carbon material interior granulation particles for sinter production, which have an outer layer coated with a mixed powder composed of the source powder, and the specific surface area of the iron ore powder is 1000 cm 2 / g or more. The point is that a sintered raw material containing particles is used.

本発明の焼結鉱製造用の炭材内装造粒粒子の製造については、被覆層を構成する鉄鉱石粉の比表面積を1000cm/g以上とすることができれば、従来から知られているような製造方法を用いることができる。 Regarding the production of carbonaceous interior granulated particles for the production of sinter of the present invention, it is conventionally known if the specific surface area of the iron ore powder constituting the coating layer can be 1000 cm 2 / g or more. A manufacturing method can be used.

本発明では、炭材内装造粒粒子の原料となる精鉱微粉の大きさを表す指標として、JIS R 5201に規定されるブレーン空気透過法で測定される比表面積を用いることが好ましい。本法はセメント業や鉱業において、粉末状個体の粉末度あるいは粉砕度を表す指標として広く用いられ、本発明に係る技術においても、選鉱の過程で粉砕された鉄鉱石粉の大きさ、つまり粉砕の度合いが湿潤ペレットの強度を決定する重要な因子であることから、該比表面積を、原料粉の大きさを表す指標として用いた。 In the present invention, it is preferable to use the specific surface area measured by the brain air permeation method specified in JIS R 5201 as an index showing the size of the concentrate fine powder which is a raw material of the carbonaceous interior granulated particles. This method is widely used in the cement industry and the mining industry as an index showing the degree of powdering or crushing of powdered solids, and also in the technique according to the present invention, the size of iron ore powder crushed in the process of beneficiation, that is, crushing. Since the degree is an important factor that determines the strength of the wet pellet, the specific surface area was used as an index showing the size of the raw material powder.

さらにいえば、粉砕した鉱石のように広い粒度分布をもつ紛体の場合、粒径をもって該紛体の大きさを表そうとすると、算術平均径を用いるのか、あるいは調和平均径やメジアン径を用いるかで値が大きく異なるうえ、同一の粒径であっても粒度分布が一意に定まるとは限らない。その点上述の比表面積は粉砕の度合いを直接定量化できる指標であり、測定法も極めて簡便である。 Furthermore, in the case of a powder having a wide particle size distribution such as crushed ore, when trying to express the size of the powder by the particle size, whether to use the arithmetic mean diameter, or the harmonic mean diameter or median diameter. The values differ greatly, and even if the particle size is the same, the particle size distribution is not always uniquely determined. In that respect, the above-mentioned specific surface area is an index that can directly quantify the degree of pulverization, and the measurement method is extremely simple.

また、炭材を被覆する原料粉中にCaO含有原料を配合するのは鉄鉱石粒子をより低温で溶融させ、焼結を促進するためである。ただし、原料粉中のCaO含有量が10mass%を超えると、焼成中に被覆層が過剰に溶融し、ペレットとしての形状を保てなくなる。その結果、内包させたコークスが露出し燃焼、消失してしまう。これを防ぐために原料粉中のCaO含有量は10mass%以下であると好ましい。 Further, the reason why the CaO-containing raw material is blended in the raw material powder for coating the carbonaceous material is to melt the iron ore particles at a lower temperature and promote sintering. However, if the CaO content in the raw material powder exceeds 10 mass%, the coating layer is excessively melted during firing, and the shape as pellets cannot be maintained. As a result, the contained coke is exposed, burned, and disappears. In order to prevent this, the CaO content in the raw material powder is preferably 10 mass% or less.

以下に、本発明に係る実施例、および比較例を示す。 Examples and comparative examples according to the present invention are shown below.

<実施例1:炭材内装造粒粒子の外層を構成する鉄鉱石粉の比表面積と比生産率との関係>
本試験では、直径300mm、高さ600mmの鍋試験装置を用い、焼結鉱製造試験を実施した。表1に試験条件を示す。比表面積は、JIS R 5201に規定されるブレーン空気透過法に従って測定した。
<Example 1: Relationship between the specific surface area and the specific productivity of iron ore powder constituting the outer layer of the carbonaceous interior granulated particles>
In this test, a sinter production test was carried out using a pot tester having a diameter of 300 mm and a height of 600 mm. Table 1 shows the test conditions. The specific surface area was measured according to the brain air permeation method specified in JIS R 5201.

Figure 0006887717
Figure 0006887717

比表面積の異なる試料には、一種類の粉鉱石を粉砕し、比表面積を所定の値に調整したものを用意した。直径5mmの粉コークス周囲に、厚さが5mmとなるように、比表面積を調整した鉄鉱石粉を用いて被覆層を形成し、炭材内装造粒粒子を作製した。 For samples having different specific surface areas, one type of powder ore was crushed and the specific surface area was adjusted to a predetermined value. A coating layer was formed around the powder coke having a diameter of 5 mm using iron ore powder whose specific surface area was adjusted so as to have a thickness of 5 mm, and carbonaceous interior granulated particles were produced.

全原料に対して、5〜30mass%の範囲で炭材内装造粒粒子の配合量を変更し、焼結鉱製造試験を実施した。炭材内装造粒粒子を配合しない条件を基準とし、それに対する比生産率を求めた。また、層高さ方向での炭材内装造粒粒子の偏析については、事前に調査した実機の偏析挙動に合わせた。図2に試験結果を示す。尚、比生産率は図2に示すように炭材内装造粒粒子の配合比率が0の場合を1.0として求めた値である。 The blending amount of the carbonaceous interior granulated particles was changed in the range of 5 to 30 mass% with respect to all the raw materials, and the sinter production test was carried out. Based on the condition that the carbonaceous interior granulated particles are not mixed, the specific production rate was calculated. In addition, the segregation of the carbonaceous interior granulated particles in the layer height direction was adjusted to the segregation behavior of the actual machine investigated in advance. FIG. 2 shows the test results. As shown in FIG. 2, the specific production rate is a value obtained as 1.0 when the blending ratio of the carbonaceous interior granulated particles is 0.

比表面積が500cm/g、800cm/gの鉄鉱石粉の外層を有する炭材内装造粒粒子では、その配合量に伴いベース条件よりも比生産率が低下し、30mass%まで配合した場合、500cm/gで約10%、800cm/gで約5%生産性が低下した。一方、本発明の実施例である1000cm/g、1500cm/g、2200cm/gでは、生産率の低下はほとんど見られず、2200cm/gの実施例3では、炭材内装造粒粒子30mass%を配合したにもかかわらず、生産率が約5%上昇していた。 When the specific surface area is 500 cm 2 / g, the carbonaceous material decorated granulated particles having an outer layer of iron ore fines of 800 cm 2 / g, also decreases the specific production rate than the base conditions due to the amount thereof, formulated to 30 mass%, 500cm about 10% 2 / g, 800 cm to about 5% productivity 2 / g was reduced. On the other hand, in the example of 1000 cm 2 / g of the present invention, 1500 cm 2 / g, 2200 cm 2 / g, almost no decrease in the production rate was observed , and in Example 3 of 2200 cm 2 / g, the carbonaceous material interior granulation was performed. Despite blending 30 mass% of particles, the production rate increased by about 5%.

<実施例2:炭材内装造粒粒子の外層を構成する鉄鉱石粉の比表面積と落下強度および圧壊強度との関係>
本試験では、比表面積の異なる精鉱微粉を用いて炭材内装造粒粒子を作製し、該造粒粒子の強度を測定した。表2に用いた精鉱微粉の比表面積の値と強度試験結果を示す。比表面積は、JIS R 5201に規定されるブレーン空気透過法に従って測定した。
<Example 2: Relationship between the specific surface area of iron ore powder constituting the outer layer of the carbonaceous interior granulated particles and the drop strength and crush strength>
In this test, carbonaceous interior granulated particles were prepared using concentrate fine particles having different specific surface areas, and the strength of the granulated particles was measured. Table 2 shows the values of the specific surface area and the strength test results of the concentrate fine powder used. The specific surface area was measured according to the brain air permeation method specified in JIS R 5201.

Figure 0006887717
Figure 0006887717

強度試験に供する炭材内装造粒粒子の作製には、直径600mmの皿型造粒機(パンペレタイザーともいう)を用いた。該造粒機に直径が3〜5mmのコークスと、比表面積の異なる精鉱微粉およびCaO源としての生石灰(5mass%)を混合した原料粉を投入し、散水しながら造粒することで、直径12〜14mm、水分含有量が8〜10mass%の炭材内装湿潤ペレットを作製した。 A dish-type granulator (also referred to as a pan pelletizer) having a diameter of 600 mm was used to prepare the carbonaceous interior granulation particles to be used for the strength test. A raw material powder obtained by mixing coke having a diameter of 3 to 5 mm, concentrate fine powder having a different specific surface area, and quicklime (5 mass%) as a CaO source is put into the granulator, and granulated while sprinkling water to achieve a diameter. Wet pellets made of carbonaceous material having a water content of 12 to 14 mm and a water content of 8 to 10 mass% were prepared.

該炭材内装造粒粒子を湿潤状態のまま、落下強度試験と圧壊強度試験に供した。落下強度試験とは、搬送する際のベルトコンベアの乗継ぎ等、落下衝撃に対する耐性を試験するものであり、鉄鉱石粉を主体とした炭材内装造粒粒子の強度測定法として広く行われているものである。試験方法は、対象となる炭材内装造粒粒子を45cmの高さから鉄板上に自由落下させ、落下の衝撃で該炭材内装造粒粒子の表面の亀裂が目視で確認できるか、あるいは該炭材内装造粒粒子が破壊されるまでに要した落下回数を数え、その回数を落下強度とする。本試験では、10個の炭材内装造粒粒子の落下強度試験を実施し、その平均回数をもって落下強度とした。 The carbonaceous material interior granulated particles were subjected to a drop strength test and a crush strength test in a wet state. The drop strength test is a test of resistance to drop impact such as transfer of a belt conveyor during transportation, and is widely used as a method for measuring the strength of carbonaceous interior granulated particles mainly composed of iron ore powder. It is a thing. The test method is to freely drop the target carbonic material interior granulated particles from a height of 45 cm onto an iron plate, and visually confirm the cracks on the surface of the carbonaceous material interior granulated particles by the impact of the drop, or the said. The number of drops required for the granulated particles inside the carbonaceous material to be destroyed is counted, and the number of drops is taken as the drop strength. In this test, the drop strength test of 10 carbonaceous interior granulated particles was carried out, and the average number of drops was taken as the drop strength.

また、圧壊強度試験とは、オートグラフ試験機を用いて炭材内装造粒粒子の上方から徐々に荷重を加え、該炭材内装造粒粒子が破壊された時点の荷重(kgf)を圧壊強度としたもので、該炭材内装造粒粒子を敷き詰め充填層を形成した際に、該炭材内装造粒粒子に掛かる荷重に対する耐性を試験するためのものである。 In the crushing strength test, a load is gradually applied from above the carbonaceous interior granulated particles using an autograph tester, and the load (kgf) at the time when the carbonaceous interior granulated particles are destroyed is the crushing strength. This is for testing the resistance to the load applied to the carbon material interior granulation particles when the packed layer is formed by laying the carbon material interior granulation particles.

炭材内装造粒粒子が、造粒後の搬送や焼成工程で充填層を形成した際の荷重に耐えるために具備すべき強度の基準は、鉄鉱石ペレットプラントの長年に亘る運転経験から、落下強度で5回以上、圧壊強度で1kgf以上というのが一般的である。本試験の結果、精鉱微粉の比表面積が54cm/gの場合はすべての炭材内装造粒粒子が1回の落下で崩壊し、圧壊強度は測定不能であった。比表面積が391cm/gおよび518cm/gの場合は落下強度、圧壊強度ともに上述の基準値未満であるが、1009cm/gの場合に落下強度5.5回、圧壊強度1.04kgfと基準値以上の強度を得た。さらに比表面積1527cm/gおよび2127cm/gの場合、落下強度、圧壊強度ともに向上した。 The strength standard that the carbonaceous interior granulated particles should have in order to withstand the load when forming the packed bed in the transport and firing process after granulation is based on the many years of operation experience of the iron ore pellet plant. Generally, the strength is 5 times or more, and the crushing strength is 1 kgf or more. As a result of this test, when the specific surface area of the concentrate fine powder was 54 cm 2 / g, all the carbonaceous material interior granulated particles collapsed in one drop, and the crushing strength could not be measured. When the specific surface area is 391 cm 2 / g and 518 cm 2 / g, both the drop strength and the crush strength are less than the above standard values, but when the specific surface area is 1009 cm 2 / g, the drop strength is 5.5 times and the crush strength is 1.04 kgf. Strength above the standard value was obtained. Further, when the specific surface areas were 1527 cm 2 / g and 2127 cm 2 / g, both the drop strength and the crush strength were improved.

上述した実施例1および実施例2の結果から、炭材内装造粒粒子の外層を構成する鉄鉱石粉の比表面積を1000cm/g以上とすることで、比生産率、落下強度および圧壊強度のいずれも良好になることがわかる。 From the results of Examples 1 and 2 described above, by setting the specific surface area of the iron ore powder constituting the outer layer of the carbonaceous interior granulated particles to 1000 cm 2 / g or more, the specific productivity, drop strength and crush strength can be determined. It can be seen that both are good.

本発明の焼結鉱製造用の炭材内装造粒粒子によれば、本発明に係る炭材内装造粒粒子を含む焼結原料を用いて焼結鉱を製造することで、高い生産性で高品位の焼結鉱を得ることができる。そのため、高炉原料として得られた焼結鉱を利用することで、高い生産性の高炉操業を行うことが可能となる。 According to the sinter interior granulated particles for producing the sinter of the present invention, high productivity is achieved by producing the sinter using the sinter raw material containing the sinter interior granulated particles according to the present invention. High-grade sinter can be obtained. Therefore, by using the sinter obtained as a raw material for the blast furnace, it is possible to operate the blast furnace with high productivity.

Claims (3)

炭材核とその炭材核の周囲を鉄鉱石粉とCaO源粉とからなる混合粉で被覆した外層とを有する、焼結鉱製造用の炭材内装造粒粒子であって、前記鉄鉱石粉の、JIS R 5201に規定されるブレーン空気透過法で測定される比表面積が1000cm/g以上であることを特徴とする焼結鉱製造用の炭材内装造粒粒子。 It is a carbonaceous material interior granulated particle for sinter production, which has a carbonaceous material core and an outer layer in which the periphery of the coal material core is coated with a mixed powder composed of iron ore powder and CaO source powder, and is the iron ore powder. , The carbonaceous interior granulated particles for sinter production, characterized in that the specific surface area measured by the brain air permeation method specified in JIS R 5201 is 1000 cm 2 / g or more. 前記CaO源粉は、生石灰、石灰石、ドロマイト等のCaO含有原料とし、前記混合粉中のCaO含有量が10mass%以下であることを特徴とする請求項1に記載の焼結鉱製造用の炭材内装造粒粒子。 The charcoal for producing sinter according to claim 1, wherein the CaO source powder is a CaO-containing raw material such as quicklime, limestone, or dolomite, and the CaO content in the mixed powder is 10 mass% or less. Material Interior granulated particles. 請求項1または2に記載の焼結鉱製造用の炭材内装造粒粒子を、その他の焼結用造粒粒子と合流させて両造粒粒子を混在させたのち、混在させた造粒粒子を焼結機に装入して焼結することで、焼結鉱を得ることを特徴とする焼結鉱の製造方法。
The carbonaceous interior granulated particles for producing sinter according to claim 1 or 2 are merged with other granulated particles for sintering to mix both granulated particles, and then the mixed granulated particles. A method for producing sinter, which is characterized in that sinter is obtained by charging the particles into a sinter and sintering the particles.
JP2016061936A 2016-03-25 2016-03-25 Charcoal interior granulated particles for sinter production and sinter production method using them Active JP6887717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016061936A JP6887717B2 (en) 2016-03-25 2016-03-25 Charcoal interior granulated particles for sinter production and sinter production method using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061936A JP6887717B2 (en) 2016-03-25 2016-03-25 Charcoal interior granulated particles for sinter production and sinter production method using them

Publications (2)

Publication Number Publication Date
JP2017172020A JP2017172020A (en) 2017-09-28
JP6887717B2 true JP6887717B2 (en) 2021-06-16

Family

ID=59970624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061936A Active JP6887717B2 (en) 2016-03-25 2016-03-25 Charcoal interior granulated particles for sinter production and sinter production method using them

Country Status (1)

Country Link
JP (1) JP6887717B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6988778B2 (en) * 2018-11-30 2022-01-05 Jfeスチール株式会社 Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543442B2 (en) * 1973-12-31 1979-02-23
JPH02228428A (en) * 1989-03-02 1990-09-11 Sumitomo Metal Ind Ltd Charging material for blast furnace and its production
JP3944340B2 (en) * 2000-02-28 2007-07-11 株式会社神戸製鋼所 Method for producing sintered ore and sintered ore
JP4627236B2 (en) * 2005-09-16 2011-02-09 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
KR102110643B1 (en) * 2013-07-10 2020-05-13 제이에프이 스틸 가부시키가이샤 Carbon material-containing granulated particles in production of sintered ore, method for producing the same

Also Published As

Publication number Publication date
JP2017172020A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6620850B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
JP4808819B2 (en) Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP2013209748A (en) Method of manufacturing reduced iron agglomerate
JP6288462B2 (en) Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP6273957B2 (en) Sinter ore manufacturing method
CN106414778A (en) Production method of granular metallic iron
JP4781807B2 (en) Manufacturing method of dephosphorizing agent for steel making using sintering machine
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP6460293B2 (en) Method for producing sintered ore
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP4867394B2 (en) Non-calcined agglomerate for iron making
JP5517501B2 (en) Method for producing sintered ore
JP6436317B2 (en) Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same
JP2007277684A (en) Nonfired agglomerated ore for iron manufacture
JP2019116684A (en) Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore
JP2009019241A (en) Method for operating blast furnace using non-fired agglomerated ore
JP2020084258A (en) Method for producing carbonaceous material-containing particles and method for producing carbonaceous material-containing sintered ore
JP2007302956A (en) Nonfired agglomerated ore for iron manufacture
JPS6286128A (en) Method for briquetting manganese ore-based starting material
JP2007284728A (en) Method of granulating raw material for iron manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190313

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190320

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190531

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20190605

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200205

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200701

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200923

C19 Decision taken to dismiss amendment

Free format text: JAPANESE INTERMEDIATE CODE: C19

Effective date: 20201006

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201006

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201222

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210126

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210126

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210517

R150 Certificate of patent or registration of utility model

Ref document number: 6887717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250