JP2009019241A - Method for operating blast furnace using non-fired agglomerated ore - Google Patents
Method for operating blast furnace using non-fired agglomerated ore Download PDFInfo
- Publication number
- JP2009019241A JP2009019241A JP2007183134A JP2007183134A JP2009019241A JP 2009019241 A JP2009019241 A JP 2009019241A JP 2007183134 A JP2007183134 A JP 2007183134A JP 2007183134 A JP2007183134 A JP 2007183134A JP 2009019241 A JP2009019241 A JP 2009019241A
- Authority
- JP
- Japan
- Prior art keywords
- blast furnace
- raw material
- iron
- ore
- agglomerated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
Abstract
Description
本発明は非焼成塊成鉱を製鉄用原料として使用する際の、高炉の操業方法に関するものである。 The present invention relates to a method for operating a blast furnace when an unfired agglomerated ore is used as a raw material for iron making.
高炉による銑鉄製造プロセスでは、高炉内に装入された装入物で形成される充填層内に還元ガスを流通させるため、充填層内の空間率を一定値以上に保つことが重要となり、また充填層を形成する装入物の粒度が大なることが望ましい。そのために装入物の強度を高め、その粉化を抑制する必要があり、特に大型高炉においては、粉鉱石を炭材の燃焼熱により焼き固めた焼結鉱や、粉鉱石をペレタイザー等で球状に成形した後、1000℃以上で高温加熱硬化させる焼成ペレット等の焼成塊成鉱が広く用いられている。 In the pig iron manufacturing process using a blast furnace, it is important to maintain the space ratio in the packed bed above a certain value in order to allow the reducing gas to flow through the packed bed formed by the charge charged in the blast furnace. It is desirable that the particle size of the charge forming the packed bed is large. Therefore, it is necessary to increase the strength of the charge and suppress its pulverization. Especially in large blast furnaces, sintered ore obtained by baking powdered ore with the combustion heat of carbonaceous materials, or powdered ore with a pelletizer, etc. A sintered agglomerate such as a baked pellet that is heat-cured at a high temperature of 1000 ° C. or higher after being formed into a wide shape is widely used.
一方で、特に省エネルギーを目的に高温加熱処理しない非焼成塊成鉱に関する検討も進められてきた。非焼成塊成鉱は粉状の鉄鉱石や、製鉄ダストなどをセメント等の水硬性結合材をバインダーとして、常温または廃熱等を利用した数百度以下の比較的低温の条件で一定期間養生して製造される。 On the other hand, studies on non-fired agglomerated minerals that are not subjected to high-temperature heat treatment have been made especially for the purpose of energy saving. Non-calcined agglomerated minerals are cured for a certain period of time at a relatively low temperature of several hundred degrees or less using room temperature or waste heat, etc. using powdered iron ore or iron-making dust as a binder with a hydraulic binder such as cement. Manufactured.
非焼成塊成鉱を製造する際にセメント系のバインダーを用いると、冷間強度は十分に得ることができ、したがって製造場所から高炉への移動が容易に行え、高炉内上部の数100℃までの領域においては、その形状を保持させることができる。しかし、それ以上の高温の領域ではセメントが熱分解するために、強度が著しく低下し、高炉内中部および下部では強度が低下し、それに伴い通気性が悪化することが以前から指摘されている。 When cement-based binders are used in the production of non-fired agglomerated minerals, sufficient cold strength can be obtained, and therefore the transfer from the production site to the blast furnace can be easily performed, up to several hundred degrees Celsius in the upper part of the blast furnace. In this area, the shape can be maintained. However, it has been pointed out for a long time that the cement is thermally decomposed in a higher temperature range, so that the strength is remarkably reduced, and the strength is lowered in the middle and lower parts of the blast furnace, and the air permeability is deteriorated accordingly.
一方で、アスファルトやピッチ等の粘着性炭化水素混合物をバインダーとして非焼成塊成鉱を製造すれば、200℃程度からバインダー中の揮発分が蒸発し、バインダーの粘度が大きくなるため強度が増大し、800℃程度で揮発分の蒸発がほぼ終了し、ガラス状の炭素が鉄鉱石粒子を結合するため強度がさらに増加するとして、高温強度を改善した非焼成塊成鉱も知られている(例えば、特許文献1参照。)。
特許文献1は、非焼成塊成鉱の高温強度を改善する技術ではあるが、揮発分が200℃から蒸発を始めると、還元ガスに随伴して高炉上部から排出される。高炉から排出されるガスは一般にCOガスなど可燃分を含むため回収されて利用されているが、この回収工程へ揮発分が随伴されると、凝集点以下の温度に冷却されたときタール分として固着する。したがって高炉からの排出ガス回収ができなくなるため、実操業上は高炉では使用できないという問題がある。
Although
本発明は、このような従来技術の課題を解決することを目的とし、非焼成塊成鉱を高炉で使用する際に、通気性の悪化を防止して、高炉の安定操業を実現できる非焼成塊成鉱を用いた高炉の操業方法を提供するためになされたものである。 The present invention aims to solve such problems of the prior art, and when using unfired agglomerated ore in a blast furnace, it prevents non-fired deterioration and realizes stable operation of the blast furnace. It was made to provide a method for operating a blast furnace using agglomerates.
このような課題を解決するために本発明では、ベルレス高炉において、酸化鉄原料を無機系バインダーとともに塊成化した非焼成塊成鉱を製鉄用原料として使用する際に、非焼成塊成鉱を無次元半径で0.7〜1.0の炉周辺部に装入する高炉の操業方法を用いる。 In order to solve such problems, in the present invention, in a bell-less blast furnace, when an unfired agglomerated material agglomerated with an inorganic binder is used as a raw material for iron production, The operation method of the blast furnace which is charged in the periphery of the furnace having a dimensionless radius of 0.7 to 1.0 is used.
本発明によれば、高炉の通気性を悪化させることなく、非焼成の塊成鉱を高炉原料として用いることができる。これにより銑鉄の製造コストを削減できる。また、高炉操業の効率を向上させ、還元材比の低下や高い生産性を得ることができる。 According to the present invention, an unfired agglomerated ore can be used as a blast furnace raw material without deteriorating the air permeability of the blast furnace. Thereby, the manufacturing cost of pig iron can be reduced. Further, the efficiency of blast furnace operation can be improved, and the reduction of the reducing material ratio and high productivity can be obtained.
本発明は、ベルレス高炉において非焼成塊成鉱を製鉄用原料として使用する際に、無次元半径で0.7〜1.0の炉周辺部に非焼成塊成鉱を装入することを特徴とするものである。本発明で用いる非焼成塊成鉱は、酸化鉄原料をバインダーとともに塊成化したものであり、低温での強度をセメントなど無機系のバインダーにより担保するものである。無機系バインダーを用いることで、高炉内で加熱されてもバインダーから揮発分が発生することがなく、回収ガスにタール分が含まれることもない。 The present invention is characterized in that when a non-calcined agglomerated ore is used as a raw material for iron making in a bell-less blast furnace, the non-calcined agglomerated ore is charged in the periphery of the furnace having a dimensionless radius of 0.7 to 1.0. It is what. The non-fired agglomerated ore used in the present invention is obtained by agglomerating an iron oxide raw material together with a binder, and guarantees the strength at a low temperature with an inorganic binder such as cement. By using an inorganic binder, no volatile matter is generated from the binder even when heated in a blast furnace, and no tar content is contained in the recovered gas.
無機バインダーの強度が低下する高温では、原料の酸化鉄が炉内で還元されるに従って純鉄層を生成する。これは、高炉内を原料が下降すると、還元力の強いCOガス濃度が増加するとともに、温度が上昇するためである。本発明者らは、この純鉄層の生成による接合効果によって塊成鉱強度の低下を補うことができると考えて、その方法を検討した。その結果、非焼成塊成鉱を、高炉内の外周部分、炉内の無次元半径で0.7〜1.0の範囲内に装入することにより、原料酸化鉄の還元を速やかに行い、純鉄層の接合効果によって塊成鉱強度の低下が抑えられ、非焼成塊成鉱の高炉での使用が可能となることを見出し、本発明を完成した。 At a high temperature at which the strength of the inorganic binder is reduced, a pure iron layer is generated as the raw iron oxide is reduced in the furnace. This is because when the raw material descends in the blast furnace, the concentration of CO gas having a strong reducing power increases and the temperature rises. The present inventors considered that the reduction in agglomerate strength could be compensated by the joining effect due to the formation of the pure iron layer, and studied the method. As a result, the raw iron oxide is rapidly reduced by charging the non-fired agglomerated ore into the outer peripheral portion in the blast furnace, the dimensionless radius in the furnace within a range of 0.7 to 1.0, It was found that the strength of the agglomerate was suppressed by the joining effect of the pure iron layer, and that the unfired agglomerate could be used in a blast furnace, and the present invention was completed.
非焼成塊成鉱を高炉内の外周部分に装入する理由を、以下に詳しく説明する。 The reason why the unfired agglomerated ore is charged into the outer peripheral portion in the blast furnace will be described in detail below.
高炉内での原料の還元はCOガスとの気固反応であり、その反応速度は気相と原料表面との間のCOおよび還元で生成したCO2ガスの移動速度、原料表面での還元反応、原料粒子内部でのCOおよびCO2ガスの拡散速度で決定される。 The reduction of the raw material in the blast furnace is a gas-solid reaction with CO gas, and the reaction rate is the movement rate of CO between the gas phase and the raw material surface and the CO 2 gas generated by the reduction, the reduction reaction on the raw material surface. It is determined by the diffusion rate of CO and CO 2 gas inside the raw material particles.
反応中の粒子内部に外殻の生成物相と中心部の未反応物相があり、両者の境界に厚さのない界面があって、上記の過程が逐次進行すると仮定すると、反応界面の移動速度はガスの移動速度に比べて充分小さいために擬定常状態とみなせて、その反応速度は下記の(1)式で与えられる(「冶金反応工学」、養賢堂、東京、p.50参照。)。 Assuming that there is a product phase of the outer shell and an unreacted phase in the center inside the particles during the reaction, and there is a non-thickness interface at the boundary between them, the above process proceeds sequentially. Since the velocity is sufficiently smaller than the gas moving velocity, it can be regarded as a quasi-steady state, and the reaction velocity is given by the following equation (1) (see “Metallurgy Reaction Engineering”, Yokendo, Tokyo, p. 50). .)
(1)式において、RA:総括反応速度、CA0:COガス濃度、CAe:COガス平衡濃度、r0:粒子半径、ri:粒子内反応界面の半径、kfA:COガスの境膜内移動係数、Ds:粒子内拡散係数、k:速度定数、K:平衡定数である。 In the formula (1), R A : overall reaction rate, C A0 : CO gas concentration, C Ae : CO gas equilibrium concentration, r 0 : particle radius, r i : radius of intraparticle reaction interface, k fA : CO gas Transfer coefficient in the film, D s : diffusion coefficient in particles, k: rate constant, K: equilibrium constant.
境膜内移動係数 kfA は下記(2)式(Ranz-Marshall式)から求められる。 The intramembrane transfer coefficient k fA is obtained from the following equation (2) (Ranz-Marshall equation).
(2)式において、Dp:粒子径、DA:混合ガス中のCO成分の分子拡散係数、yA:COガスのモル分立、Re:レイノルズ数 = Dpuρ/μ、Sc:シュミット数 = μ/ρDAである。 In the equation (2), D p : particle diameter, D A : molecular diffusion coefficient of CO component in mixed gas, y A : mole fraction of CO gas, Re: Reynolds number = D p ρρ / μ, Sc: Schmitt number = μ / ρD A.
上記(1)、(2)式から、原料の還元を速やかに進行させ、純鉄層の生成による接合効果を早めるためには、原料と接するCOガス速度を大きくすることが有効であることがわかる。 From the above formulas (1) and (2), it is effective to increase the rate of CO gas in contact with the raw material in order to accelerate the reduction of the raw material and accelerate the joining effect due to the formation of the pure iron layer. Recognize.
ベルレス高炉の操業においては、原料やコークスの円滑な荷下がりを維持しながら、所定の送風量を確保することが重要である。また、炉内からのダスト排出や熱損失の制御も重要である。そのために、炉内半径方向の原料とコークスとの比率を適宜制御しながら炉内に装入することが行われている。 In the operation of a bell-less blast furnace, it is important to secure a predetermined air flow while maintaining a smooth unloading of raw materials and coke. It is also important to control dust discharge and heat loss from the furnace. For this purpose, charging into the furnace is performed while appropriately controlling the ratio of the raw material and coke in the radial direction of the furnace.
その際に、通常、炉中心、あるいは炉壁近傍にかけての範囲においては、降下する原料とコークスの熱流束と上昇するガスの熱流束との比(熱流比)を低下させて、中間部に比べてガス量を比較的大きくする操業を行なっている。すなわち、炉内外周部の炉壁近傍領域においてはガス流速が大きくなるため、この領域に高被還元性の原料を装入することで、高炉操業の効率を高めることが可能である。 At that time, in the range from the center of the furnace or near the furnace wall, the ratio (heat flow ratio) of the falling material, the heat flux of the coke and the heat flux of the rising gas is reduced, compared with the middle part. Therefore, the operation to increase the amount of gas is relatively large. That is, since the gas flow rate is increased in the vicinity of the furnace wall on the outer periphery of the furnace, it is possible to increase the efficiency of blast furnace operation by charging a highly reducible raw material in this area.
本発明者らは、酸化鉄原料にバインダーを加え、非焼成で塊成化した製鉄用原料が被還元性に優れることを見出した。ここでの酸化鉄原料とは、鉄鉱石、鉄鉱石粉、焙焼酸化鉄粉、ペレット原料粉、高炉ダスト、製鋼ダスト、焼結ダストなどを含む酸化鉄原料であり、バインダーとは高温加熱処理することなく粉状の鉄鉱石や、製鉄ダストなどを成形して塊成鉱を製造できるものであり、各種セメント、高炉スラグ等の、水硬性結合材などを含む無機バインダーである。 The present inventors have found that a raw material for iron making obtained by adding a binder to an iron oxide raw material and agglomerating it without firing is excellent in reducibility. The iron oxide raw material here is an iron oxide raw material containing iron ore, iron ore powder, roasted iron oxide powder, pellet raw material powder, blast furnace dust, steelmaking dust, sintered dust, etc., and the binder is heat treated at high temperature It is an inorganic binder containing hydraulic binders such as various cements, blast furnace slag, etc., which can produce agglomerates by molding powdered iron ore, ironmaking dust and the like without any problems.
以上のように、非焼成塊成鉱を高炉内の外周部に装入することで、粉化を防止すると同時に、高炉操業の効率を高めることができる。本発明の効果を示す一例として、鉄鉱石の粉砕品76mass%、10μm以下で、かつFe2O3を90mass%以上含む酸化鉄粉6mass%、普通セメント2mass%、高炉スラグ微粉末6mass%を混練、造粒後、蒸気中で24hr養生した非焼成塊成鉱の被還元性を測定した。被還元性の測定は、JIS M 8713に則って行った。粒径12mm±1mmの試料500gを乾燥した後反応管に装入し、900℃に昇温した後に30mass%CO−70mass%N2ガス中で3時間反応させた。反応前後の質量と鉄成分値から所定の還元率を算出した。その結果、通常の焼結鉱等での被還元性は65%程度であるのに対し、非焼成塊成鉱の被還元性は74%となり、被還元性に優れることが判明した。このような被還元性に優れる塊成鉱を高炉で使用する際に、炉内の外周部に装入することで、高炉操業の効率が向上する。 As described above, by introducing the non-fired agglomerated ore into the outer periphery of the blast furnace, it is possible to prevent pulverization and at the same time increase the efficiency of blast furnace operation. As an example showing the effect of the present invention, iron ore pulverized product 76 mass%, 10 μm or less and iron oxide powder 6 mass% containing Fe 2 O 3 of 90 mass% or more, ordinary cement 2 mass%, blast furnace slag fine powder 6 mass% are kneaded. After the granulation, the reducibility of the uncalcined agglomerated mineral cured in steam for 24 hours was measured. The reducibility was measured according to JIS M8713. A sample having a particle size of 12 mm ± 1 mm was dried, charged into a reaction tube, heated to 900 ° C., and reacted in 30 mass% CO-70 mass% N 2 gas for 3 hours. A predetermined reduction rate was calculated from the mass before and after the reaction and the iron component value. As a result, the reducibility of ordinary sintered ore and the like was about 65%, while the reducibility of the unfired agglomerated mineral was 74%, which proved to be excellent in reducibility. When using such agglomerated minerals with excellent reducibility in a blast furnace, the efficiency of blast furnace operation is improved by charging the outer periphery of the agglomerate.
非焼成塊成鉱の高炉内での装入位置が無次元半径で0.7未満であると、純鉄層による接合効果が充分でなく、非焼成塊成鉱が粉化して、通気性が悪化する場合がある。無次元半径で0.7〜1.0の範囲内であれば、通気性は良好に維持できるが、無次元半径1.0の外周部分に近い位置に装入するほど効果が高い。非焼成塊成鉱の高炉内での装入位置が上記の範囲内であれば、無次元半径で0.7〜1.0の範囲内に、非焼成塊成鉱以外の原料が装入されても差し支えない。 When the charging position of the unfired agglomerated ore in the blast furnace is less than 0.7 in dimensionless radius, the joining effect by the pure iron layer is not sufficient, the unfired agglomerated ore is pulverized, and the air permeability is It may get worse. If the dimensionless radius is in the range of 0.7 to 1.0, the air permeability can be maintained well, but the effect is higher as the charging is performed at a position closer to the outer peripheral portion of the dimensionless radius 1.0. If the charging position of the non-fired agglomerated mineral in the blast furnace is within the above range, the raw material other than the non-fired agglomerated mineral is charged within the range of 0.7 to 1.0 in dimensionless radius. There is no problem.
以下、本発明で用いる非焼成塊成鉱の製造方法の一実施形態を図面に基づき説明する。図1は本発明で用いる非焼成塊成鉱1の製造方法を示す概略図である。定量切り出し装置2付きのホッパー(原料貯留槽)3内に装入した、セメント4、鉄鉱石5およびヘマタイト粉6を所定量切り出し原料搬送装置7により加湿混合機8へ導入する。ここで、セメント4、鉄鉱石5およびヘマタイト粉6については、おのおのホッパーを1つづつ図示しているが、必ずしも1つである必要は無く、また、複数種類のものをホッパー内で混合して用いても良い。また図示しないが、必要に応じ、事前に粒度を調整するための粉砕工程や、異物を取り除く工程等があっても良い。加湿混合機8については大きさの制約は特に無いが、混合攪拌能力の高いものが望ましい。混合攪拌能力の低いものを採用した場合は、混合時間が長くなるため、生産性が低下するというデメリットがある。
Hereinafter, an embodiment of a method for producing an unfired agglomerated mineral used in the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a method for producing a non-fired agglomerated
加湿混合された原料は原料搬送装置9により造粒機10へ運搬され造粒される。図1の例では皿型転動造粒機を示したが、造粒機の種類に大きな制約はない。
The humidified and mixed raw material is transported to the
主な造粒方法には、ディスクペレタイザーやドラム型造粒機を用いる転動造粒法と、ブリケット成形機を用いた圧縮造粒法を用いるものなどがある。ブリケット成形機は粒子群を機械的に圧縮するため、成形物の充填率が高まりグリーン強度(成形直後の強度。これに対し、冷間強度とは、成形後一定の養生期間を経過してバインダーの固化した後の粒子の強度を言う。)は増大する傾向にあるが、養生後の冷間強度はバインダーの質や量に依存するところが大きく、転動造粒法と圧縮造粒法で大きな違いがない。また、圧縮造粒法は転動造粒法に比較して粒度や性状の均一なものができやすい一方で、設備費や、補修費用が高いという特徴がある。さらに、皿型転動造粒機を用いた場合には、球径に近い塊成鉱が製造される。一方、圧縮造粒機によれば、アーモンド形、豆炭型、など使用する型枠によりさまざまな形状のものが製造可能である。したがって、造粒方法についてはこのような事情に鑑みて、適宜、好ましい方法を選択すれば良い。 The main granulation methods include a rolling granulation method using a disk pelletizer or a drum type granulator, and a compression granulation method using a briquetting machine. Since the briquetting machine mechanically compresses the particle group, the filling rate of the molded product is increased and the green strength (strength immediately after molding. On the other hand, the cold strength is a binder after a certain curing period after molding. Is a tendency to increase, but the cold strength after curing depends largely on the quality and quantity of the binder, and is large in the rolling granulation method and the compression granulation method. There is no difference. In addition, the compression granulation method is characterized in that it is easy to produce a uniform particle size and properties as compared with the rolling granulation method, but has high equipment costs and repair costs. Furthermore, when a dish type rolling granulator is used, an agglomerate close to a spherical diameter is produced. On the other hand, according to the compression granulator, various shapes such as almond type and bean charcoal mold can be manufactured. Therefore, a preferable method may be selected as appropriate for the granulation method in view of such circumstances.
造粒後の塊成化物は原料搬送装置11により静置ヤード12へ搬送される。静置ヤードで所定時間養生されたのち、塊成化物は高炉で使用可能な非焼成塊成鉱1となり、高炉に装入され製鉄原料として使用されることになる。
The agglomerated product after granulation is conveyed to the
なお、常温雰囲気下での非焼成塊成鉱1の粒径は概ね8mm乃至30mm程度であることが望ましい。これより小さい場合には充填層としての通気性が悪化するし、これを超える大きさでは還元性が悪化するからである。
The particle size of the unfired agglomerated
バインダーについては冷間で十分な強度を発現しうるものであれば、特に制限はなく、高炉セメントや、ポルトランドセメントなど適宜、入手の容易さや、市場価格を考慮して最善のものを用いればよい。 The binder is not particularly limited as long as it can exhibit sufficient strength in the cold, and the best one may be used in consideration of easy availability and market price, such as blast furnace cement and Portland cement. .
また、塊成鉱の原料として微粉かつ高純度のヘマタイト粉を使用することもできる。たとえば、鉄鋼製造プロセスの冷間圧延工程において、圧延前に表面の酸化鉄層を塩酸で除去しているが、この塩酸中に鉄は塩化鉄として溶出する。この塩化鉄を焙焼することにより高純度かつ微粉のヘマタイト粉(酸洗ライン回収粉)が回収されている。このヘマタイト粉は本発明で用いる非焼成塊成鉱の原料として利用可能である。 In addition, fine and high-purity hematite powder can also be used as a raw material for the agglomerate. For example, in the cold rolling step of the steel manufacturing process, the iron oxide layer on the surface is removed with hydrochloric acid before rolling, and iron is eluted as iron chloride in this hydrochloric acid. By roasting this iron chloride, high-purity and fine-grained hematite powder (pickling line recovered powder) is recovered. This hematite powder can be used as a raw material for the unfired agglomerated ore used in the present invention.
次に、高炉での上記非焼成塊成鉱の使用方法について説明する。 Next, the usage method of the said unbaking agglomerated mineral in a blast furnace is demonstrated.
まず、本発明で使用する高炉は、図2に示すようなベルレス型の高炉である。これは、旋回シュート20の傾動角(鉛直方向との角度)を連続的に変化させながら回転させて原料を炉頂部に装入するタイプの高炉であり、装入物分布の制御性に優れる。図2では例として3つの炉頂バンカー21が並列した構造としているが、2乃至4以上でもよく、また上方に直列に配置した構造でもよい。
First, the blast furnace used in the present invention is a bell-less blast furnace as shown in FIG. This is a type of blast furnace in which the raw material is charged into the top of the furnace by continuously rotating the tilt angle (angle with respect to the vertical direction) of the turning
まず、原料を炉頂バンカー21に装入する。原料はコークス及び、非焼成塊成鉱を含む鉄含有原料で、焼結鉱、ペレット、鉄鉱石、還元鉄などである。これらは高炉下の貯鉱槽で配合、混合される。原料は旋回シュート20を通して炉頂部に装入し、炉内に原料層22を形成する。
First, the raw material is charged into the
非焼成塊成鉱を高炉炉内半径の0.7から1.0までの範囲内に装入するためには、炉頂バンカー21への装入方法と旋回シュート20の傾動パターンを適切に選択する。例えば、鉄含有原料を2つのバッチの装入に分割(ここでは質量比55:45で分割)して、後で装入する鉄含有原料に非焼成塊成鉱を混合する。コークス、1バッチ目の鉄含有原料、2バッチ目の鉄含有原料について、下記のような傾動パターンで旋回シュート20を外周側から内周側に傾動させながら装入する。
In order to charge non-fired agglomerated ore within a range of 0.7 to 1.0 of the radius of the blast furnace furnace, the charging method to the
コークス:54°×2旋回、53.5°×2旋回、53°×2旋回、52°×2旋回、51.5°×2旋回、51°×2旋回、50°×3旋回、49°×1旋回、48°×1旋回、45°×1旋回、42°×1旋回、25°×2旋回、20°×1旋回
鉄含有原料(1バッチ目):50°×1旋回、49°×1旋回、48°×2旋回、46.5°×2旋回、45.5°×1旋回、44.5°×1旋回、43.5°×1旋回、42.5°×1旋回、41°×1旋回
鉄含有原料(2バッチ目):51°×1旋回、50°×1旋回、50°×2旋回、49°×2旋回、48°×1旋回
上記のような方法で装入すると、1バッチ目の鉄含有原料を装入したあとに、無次元半径で0.7から炉壁にかけて平坦な部分が形成する堆積形状となる。2バッチ目はその平坦部に原料が落下するようなパターンとなっているため、中心に流れ込むことなく、非焼成塊成鉱を安定した堆積形状を形成して外周側に装入することができる。
Coke: 54 ° × 2 turns, 53.5 ° × 2 turns, 53 ° × 2 turns, 52 ° × 2 turns, 51.5 ° × 2 turns, 51 ° × 2 turns, 50 ° × 3 turns, 49 ° × 1 turn, 48 ° × 1 turn, 45 ° × 1 turn, 42 ° × 1 turn, 25 ° × 2 turn, 20 ° × 1 turn Iron-containing material (first batch): 50 ° × 1 turn, 49 ° × 1 turn, 48 ° × 2 turns, 46.5 ° × 2 turns, 45.5 ° × 1 turn, 44.5 ° × 1 turn, 43.5 ° × 1 turn, 42.5 ° × 1 turn, 41 ° × 1 turn Iron-containing material (2nd batch): 51 ° × 1 turn, 50 ° × 1 turn, 50 ° × 2 turns, 49 ° × 2 turns, 48 ° × 1 turn Then, after the first batch of iron-containing material is charged, it becomes a deposited shape in which a flat portion is formed from 0.7 to a furnace wall with a dimensionless radius. The second batch has a pattern in which the raw material falls on the flat part, so that the non-fired agglomerated ore can be formed on the outer peripheral side without forming a stable deposit shape without flowing into the center. .
本発明の効果を確認するため、実高炉での非焼成塊成鉱使用試験を実施した。用いた非焼成塊成鉱は、表1に示す成分を有する鉄鉱石Aを73mass%、鉄鉱石Bを13mass%、ヘマタイト粉を6mass%、セメントを8mass%配合し、図1に示す製造方法と同様の造粒工程により製造した。 In order to confirm the effect of the present invention, a non-fired agglomerated use test was conducted in an actual blast furnace. The uncalcined agglomerated ore used is composed of 73 mass% of iron ore A having the components shown in Table 1, 13 mass% of iron ore B, 6 mass% of hematite powder, and 8 mass% of cement, and the production method shown in FIG. It was produced by the same granulation process.
試験を行った高炉は内容積が5153m3、炉口直径11.4m、炉床直径15.0mで、40本の羽口を備えた、図2と同様のベルレス高炉である。この高炉に装入量と、装入位置とを変化させて、非焼成塊成鉱を装入して操業を行ない、出銑量と還元材比とを測定した。非焼成塊成鉱の装入量は、全鉄含有原料(焼結鉱、ペレット、塊鉄鉱石、非焼成塊成鉱の合計量)に対する割合で示した。非焼成塊成鉱の装入位置は、高炉の無次元半径で0〜0.5(無次元半径0.5未満の炉中心部)、0.5〜0.7(0.5以上、0.7未満の中間位置)、0.7〜1.0(無次元半径0.7以上の炉の外周部)の3種類となるように、旋回シュートの回転と傾動のパターンを調整した。 The tested blast furnace is a bellless blast furnace similar to that shown in FIG. 2 having an inner volume of 5153 m 3 , a furnace port diameter of 11.4 m, a hearth diameter of 15.0 m, and 40 tuyere. The blast furnace was charged with the charging amount and the charging position, charged with unfired agglomerated ore, and operated, and the amount of tapping and reducing material ratio were measured. The amount of unfired agglomerated charge was shown as a ratio to the total iron-containing raw material (total amount of sintered ore, pellets, massive iron ore, and unfired agglomerated ore). The charging position of the unfired agglomerated ore is 0 to 0.5 (the center of the furnace with a dimensionless radius of less than 0.5), 0.5 to 0.7 (0.5 or more, 0). The rotation and tilt patterns of the swivel chute were adjusted so that there were three types, an intermediate position of less than 0.7) and 0.7 to 1.0 (outer peripheral portion of the furnace having a dimensionless radius of 0.7 or more).
試験結果を表2に示す。非焼成塊成鉱を無次元半径0.7〜1.0の位置に装入した本発明例1、2では、出銑量が非焼成塊成鉱を使用しない場合(比較例1)よりも増加し、還元材比も低下しているが、非焼成塊成鉱を無次元半径で0〜0.5や、0.5〜0.7に装入した比較例2〜5では、出銑量が低下し、還元材比は上昇した。この結果から、本発明によって非焼成塊成鉱を安定的に使用し、高効率な高炉操業の実現が可能になることがわかる。 The test results are shown in Table 2. In the present invention examples 1 and 2 in which the unfired agglomerated ore was charged at a position having a dimensionless radius of 0.7 to 1.0, compared with the case where the unfired agglomerate was not used (comparative example 1). In the comparative examples 2 to 5 in which the non-fired agglomerated ore was charged to 0 to 0.5 or 0.5 to 0.7 with a dimensionless radius, The amount decreased and the reducing agent ratio increased. From this result, it can be seen that the present invention makes it possible to stably use non-fired agglomerated minerals and realize high-efficiency blast furnace operation.
1 非焼成塊成鉱
2 定量切り出し装置
3 ホッパー
4 セメント
5 鉄鉱石
6 ヘマタイト粉
7 原料搬送装置
8 加湿混合機
9 原料搬送装置
10 造粒機
11 原料搬送装置
12 静置ヤード
20 旋回シュート
21 炉頂バンカー
22 原料層
DESCRIPTION OF
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007183134A JP2009019241A (en) | 2007-07-12 | 2007-07-12 | Method for operating blast furnace using non-fired agglomerated ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007183134A JP2009019241A (en) | 2007-07-12 | 2007-07-12 | Method for operating blast furnace using non-fired agglomerated ore |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009019241A true JP2009019241A (en) | 2009-01-29 |
Family
ID=40359140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007183134A Pending JP2009019241A (en) | 2007-07-12 | 2007-07-12 | Method for operating blast furnace using non-fired agglomerated ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009019241A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016113677A (en) * | 2014-12-16 | 2016-06-23 | 新日鐵住金株式会社 | Blast furnace operation method |
-
2007
- 2007-07-12 JP JP2007183134A patent/JP2009019241A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016113677A (en) * | 2014-12-16 | 2016-06-23 | 新日鐵住金株式会社 | Blast furnace operation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6620850B2 (en) | Carbonaceous granulated particles for the production of sintered ore and method for producing the same | |
RU2447164C2 (en) | Method of producing pellets from recovered iron and method of producing cast iron | |
CA2736535C (en) | Process for producing agglomerates of finely particulate iron carriers | |
KR101138074B1 (en) | Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron | |
JP2007523256A (en) | Self-reducing low temperature bonded pellets | |
CN101003851A (en) | Method for producing high titanium type acid pellet vanadium titanium by chain grate - rotary kiln | |
JP2008214715A (en) | Method for manufacturing nonfired agglomerated ore for iron manufacture | |
JP6460293B2 (en) | Method for producing sintered ore | |
JP3732136B2 (en) | Method for producing reduced iron and cooling apparatus for reduced iron | |
JP5512205B2 (en) | Strength improvement method of raw material for agglomerated blast furnace | |
CN106414778A (en) | Production method of granular metallic iron | |
JP2009019241A (en) | Method for operating blast furnace using non-fired agglomerated ore | |
JP6887717B2 (en) | Charcoal interior granulated particles for sinter production and sinter production method using them | |
JP5729256B2 (en) | Non-calcined hot metal dephosphorization method and hot metal dephosphorization method using non-fired hot metal dephosphorization material | |
JP6264517B1 (en) | Method for producing carbonaceous interior sinter | |
JP2009030116A (en) | Method for producing ore raw material for blast furnace | |
JP4867394B2 (en) | Non-calcined agglomerate for iron making | |
CN113462841B (en) | Preparation method of pre-reduced iron ore powder with reduction rate of 30-80% for iron bath smelting reduction ironmaking blowing | |
JP3718604B2 (en) | Blast furnace raw material charging method | |
JP3864506B2 (en) | Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron | |
JPH0422961B2 (en) | ||
JPH1129807A (en) | Production of molten iron | |
JP2000192154A (en) | Production of partially reduced pellet | |
JP2012067332A (en) | Nonfired carbonaceous-material-containing agglomerated ore for iron manufacture | |
JPS6286128A (en) | Method for briquetting manganese ore-based starting material |