JP2008214715A - Method for manufacturing nonfired agglomerated ore for iron manufacture - Google Patents
Method for manufacturing nonfired agglomerated ore for iron manufacture Download PDFInfo
- Publication number
- JP2008214715A JP2008214715A JP2007056156A JP2007056156A JP2008214715A JP 2008214715 A JP2008214715 A JP 2008214715A JP 2007056156 A JP2007056156 A JP 2007056156A JP 2007056156 A JP2007056156 A JP 2007056156A JP 2008214715 A JP2008214715 A JP 2008214715A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- raw material
- ore
- mass
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、高炉などの製鉄炉で鉄原料として用いられる製鉄用非焼成塊成鉱の製造方法に関する。 The present invention relates to a method for producing an unfired agglomerated ore for iron making used as an iron raw material in an iron making furnace such as a blast furnace.
高炉などの堅型製鉄炉(以下、高炉を例に説明する)を用いて行われる銑鉄製造プロセスでは、炉内の原料充填層内に還元性ガスを流通させるために、原料充填層内の空隙率を一定値以上に保つことが重要である。このため鉄原料などの炉内装入物は粒度分布が大きいことが望ましく、装入後に粉化するおそれがある装入物は、その強度を高めて粉化を抑制する必要がある。このため、特に大型高炉においては、粉鉱石を炭材の燃焼熱により焼き固めた焼結鉱や、粉鉱石をペレタイザーなどで球状に成形した後、1000℃以上で高温加熱硬化させた焼成ペレットなどが広く用いられている。 In a pig iron manufacturing process performed using a solid iron furnace such as a blast furnace (hereinafter described as an example of a blast furnace), a void in the raw material packed bed is used to distribute reducing gas in the raw material packed bed in the furnace. It is important to keep the rate above a certain value. For this reason, it is desirable that the furnace interior inclusions such as iron raw materials have a large particle size distribution, and it is necessary to increase the strength of the charges that may be pulverized after charging to suppress pulverization. For this reason, especially in large blast furnaces, sintered ore obtained by baking powdered ore with the heat of combustion of carbonaceous materials, or fired pellets obtained by forming powdered ore into a spherical shape with a pelletizer and then heat-hardening at 1000 ° C or higher Is widely used.
一方において、特に省エネルギーを目的として、高温加熱処理しない非焼成塊成鉱に関する検討も進められてきた。この非焼成塊成鉱は、鉄鉱石粉や製鉄ダストなどをセメントなどの水硬性結合材をバインダーとして、常温または廃熱などを利用した数百℃以下の比較的低温の条件で一定期間養生して製造される。このような非焼成塊成鉱についても、粉化防止のためにできるだけ高強度にすることが望まれる。したがって、造粒する際には可能な限り組織を緻密化(充填密度を大きく)することが望ましい。しかし、一方において、造粒物の組織を緻密化すると還元性ガスが造粒物内部に浸透しにくくなり、造粒物内部の還元が遅れることになる。未還元の酸化鉄が高炉など堅型炉の下部に供給されると、固体炭素と酸化鉄の直接還元(吸熱反応)の比率が増大するため、還元材比の増大や生産性の低下などを引き起こすので好ましくない。 On the other hand, studies on non-fired agglomerated minerals that are not heat-treated at high temperatures have been promoted, particularly for the purpose of energy saving. This non-calcined agglomerated mineral is cured for a certain period of time at a relatively low temperature of several hundred degrees C or less using normal or waste heat with iron ore powder or ironmaking dust as a binder and a hydraulic binder such as cement. Manufactured. Such unfired agglomerated ore is also desired to be as strong as possible to prevent pulverization. Therefore, it is desirable to make the structure as dense as possible (increase the packing density) when granulating. However, on the other hand, if the structure of the granulated product is densified, the reducing gas will not easily penetrate into the granulated product, and the reduction inside the granulated product will be delayed. When unreduced iron oxide is supplied to the lower part of a solid furnace such as a blast furnace, the ratio of direct reduction (endothermic reaction) between solid carbon and iron oxide increases, resulting in an increase in the ratio of reducing materials and a decrease in productivity. Because it causes, it is not preferable.
特許文献1には、核粒子に粒径5mm以下の細粒焼結鉱を用いた非焼成塊成鉱が開示されており、このような非焼成塊成鉱では、比較的多孔質である焼結鉱組織が造粒物中心部への還元性ガスの浸透を助けるため、非焼成塊成鉱中心部の還元性が向上するとしている。
特許文献1は、非焼成塊成鉱の中心部分の還元性を改善する技術ではあるが、核部分の細粒焼結鉱がいかに多孔質で通気性が良くても、強度を高めるために外周部分の造粒物組織を緻密化すると、還元性ガスがブロックされて中心部分に到達することはできない。一方、通気性を高めるために外周部分の充填率を低下させると造粒物の強度が低下し、高炉内で粉化してしまうことになる。したがって、従来の技術は非焼成塊成鉱の中心部分の還元性向上に対して、抜本的な対策にはならない。 Patent Document 1 is a technique for improving the reducibility of the central part of the non-fired agglomerated mineral, but no matter how porous the fine sintered ore of the core part is porous and has good air permeability, When the granulated structure of the part is densified, the reducing gas is blocked and cannot reach the central part. On the other hand, if the filling rate of the outer peripheral portion is lowered in order to improve the air permeability, the strength of the granulated product is lowered and pulverized in the blast furnace. Therefore, the conventional technique is not a drastic measure for improving the reduction of the central portion of the unfired agglomerated ore.
したがって本発明の目的は、以上のような従来技術の課題を解決し、炉内で粉化しにくい高い強度を有するとともに、高い被還元性を有する製鉄用非焼成塊成鉱の製造方法を提供することにある。 Accordingly, an object of the present invention is to solve the above-described problems of the prior art and to provide a method for producing a non-fired agglomerate for iron making that has high strength that is difficult to be pulverized in a furnace and has high reducibility. There is.
本発明者らは、非焼成塊成鉱の中心部分のみを事前に予備還元しておけば、強度確保のために外周部分を緻密化することにより還元性ガスの浸透性が低下したとしても、塊成鉱全体として必要な被還元性は確保でき、これにより高強度と高被還元性を両立できると考え、その具体的な方策について検討を行った。その結果、非焼成塊成鉱となる造粒物を核部分とその外側の被覆層とから構成するとともに、核部分にのみ炭材を配合した形態とした上で、この造粒物をマイクロ波加熱することにより、上記課題を解決できる高強度、高被還元性の非焼成塊成鉱が得られることを見出した。すなわち、炭材(炭素)はマイクロ波を良く吸収して加熱されやすい材料であるとともに、酸化鉄の還元材として機能する。したがって、非焼成塊成鉱となる造粒物の核部分に炭材を配合しておけば、マイクロ波加熱において核部分が優先的に加熱され、且つ核部分に含まれる酸化鉄が炭材により還元されることになるので、非焼成塊成鉱の中心部分の還元性を高めることができる。これに対して造粒物外側の被覆層(造粒物の外周部分)については、その酸化鉄は炉内の還元性ガスで容易に還元されるので、核部分のような予備還元は必要でなく、逆に、核部分と同様に炭材を含有させると、還元に要するエネルギーや材料コストを増大させるだけでなく、事前のマイクロ波加熱と炉内での還元性ガスとの接触によって被覆層が強還元され、その結果、被覆層内に金属鉄の層が生成し、これが非焼成塊成鉱の中心部分の還元を妨げることになる。以上のことから、非焼成塊成鉱となる造粒物を核部分とその外側の被覆層とから構成するとともに、核部分にのみ炭材を配合した形態とし、この造粒物をマイクロ波加熱して非焼成塊成鉱を製造すれば、被覆層を緻密化して造粒物を高強度化しても、非焼成塊成鉱の中心部分の還元性を高めることにより、塊成鉱全体として必要な被還元性を確保することができ、この結果、高強度、高被還元性の非焼成塊成鉱を得ることができる。 If the inventors preliminarily reduce only the central part of the unfired agglomerated ore in advance, even if the permeability of the reducing gas is reduced by densifying the outer peripheral part to ensure strength, The necessary reducibility of the agglomerate as a whole could be ensured, and it was thought that this could achieve both high strength and high reducibility, and the specific measures were examined. As a result, the granulated product to be a non-fired agglomerated mineral is composed of a core portion and a coating layer on the outer side of the granulated material. It has been found that by heating, a high-strength, highly reducible non-fired agglomerated mineral that can solve the above-mentioned problems can be obtained. That is, the carbonaceous material (carbon) is a material that absorbs microwaves well and is easily heated, and also functions as a reducing material for iron oxide. Therefore, if carbonaceous material is blended in the core part of the granulated product that will be unfired agglomerated ore, the core part is preferentially heated in microwave heating, and the iron oxide contained in the core part is Since it will be reduced, the reducibility of the central part of the unfired agglomerated ore can be enhanced. On the other hand, since the iron oxide is easily reduced by the reducing gas in the furnace, the pre-reduction like the core part is necessary for the outer layer of the granulated product (the outer peripheral part of the granulated product). On the contrary, if carbon material is contained in the same manner as the core part, not only the energy and material cost required for reduction are increased, but also the coating layer is brought about by contact with reducing gas in the furnace in advance and microwave heating. Is strongly reduced, resulting in the formation of a layer of metallic iron in the coating layer, which prevents the reduction of the central part of the unfired agglomerate. Based on the above, the granulated product to be a non-fired agglomerated mineral is composed of a core portion and a coating layer on the outer side of the granulated material. If the non-fired agglomerated mineral is produced, the entire agglomerated ore is necessary by increasing the reducibility of the central part of the non-fired agglomerated mineral, even if the coating layer is densified to increase the strength of the granulated product. As a result, it is possible to obtain a non-fired agglomerated mineral with high strength and high reducibility.
本発明は、以上のような知見に基づきなされたもので、その特徴は以下のとおりである。
[1]酸化鉄を含有する鉄原料(A)を用いて製鉄用非焼成塊成鉱を製造する方法において、鉄原料(A)に炭材(B)と結合材(C)を配合した混合物を造粒して核部分となる一次造粒物(X1)とした後、該一次造粒物(X1)の外側に、鉄原料(A)に結合材(C)を配合した混合物を被覆することにより二次造粒物(X2)とし、次いで、結合材(C)をバインダーとして固化した二次造粒物(X2)をマイクロ波加熱することを特徴とする製鉄用非焼成塊成鉱の製造方法。
The present invention has been made based on the above findings, and the features thereof are as follows.
[1] In a method for producing an unfired agglomerated ore for iron making using an iron raw material (A) containing iron oxide, a mixture in which a carbonaceous material (B) and a binder (C) are blended with the iron raw material (A) Is made into a primary granulated product (X 1 ) that becomes a core part, and then a mixture in which the binder (C) is blended with the iron raw material (A) outside the primary granulated product (X 1 ). The secondary granulated product (X 2 ) is coated to be coated, and then the secondary granulated product (X 2 ) solidified with the binder (C) as a binder is heated by microwaves. A method for producing agglomerates.
[2]上記[1]の製造方法において、鉄原料(A)が、細粒焼結鉱、細粒鉄鉱石、鉄鋼製造プロセスで発生するダストの中から選ばれる1種以上からなることを特徴とする製鉄用非焼成塊成鉱の製造方法。
[3]上記[1]又は[2]の製造方法において、塊成鉱の半径Rと一次造粒物(X1)で形成された核部分の半径R1とが下式を満足することを特徴とする製鉄用非焼成塊成鉱の製造方法。
0.4≦R1/R≦0.5
[4]上記[1]〜[3]のいずれかの製造方法において、一次造粒物(X1)の炭素含有率が2〜30mass%であることを特徴とする製鉄用非焼成塊成鉱の製造方法。
[2] In the production method of [1], the iron raw material (A) is composed of at least one selected from fine-grained sintered ore, fine-grained iron ore, and dust generated in the steel production process. A method for producing an unfired agglomerated ore for iron making.
[3] In the production method of the above-mentioned [1] or [2], that radius R and primary granules of KatamariNaruko (X 1) and the radius R 1 of the formed nuclei part satisfies the formula The manufacturing method of the non-baking agglomerate for iron making characterized.
0.4 ≦ R 1 /R≦0.5
[4] In the production method according to any one of [1] to [3], the carbon content of the primary granulated product (X 1 ) is 2 to 30 mass%, and the unfired agglomerated ore for iron making Manufacturing method.
本発明によれば、非焼成塊成鉱となる造粒物を核部分とその外側の被覆層とから構成するとともに、核部分にのみ炭材を配合した形態とし、この造粒物をマイクロ波加熱することにより、被覆層を緻密化して造粒物を高強度化しても、非焼成塊成鉱の中心部分の還元性を高めることにより、塊成鉱全体として必要な被還元性を確保することができる。このため高い強度と被還元性を有する非焼成塊成鉱を製造することができる。また、核部分にのみ炭材を配合するので還元材比を低減することもできる。 According to the present invention, a granulated product that forms a non-fired agglomerated mineral is composed of a core portion and a coating layer on the outer side thereof, and a form in which carbonaceous materials are blended only in the core portion. Even if the coating layer is densified by heating to increase the strength of the granulated product, the reducibility required for the entire agglomerated ore is ensured by increasing the reducibility of the central part of the unfired agglomerated ore. be able to. For this reason, the non-baking agglomerate which has high intensity | strength and reducibility can be manufactured. Moreover, since a carbon material is mix | blended only in the nucleus part, a reducing material ratio can also be reduced.
本発明は、酸化鉄を含有する鉄原料(A)を用いて製鉄用非焼成塊成鉱を製造する方法であり、鉄原料(A)としては細粒焼結鉱、細粒鉄鉱石、鉄鋼製造プロセスで発生するダストなどが挙げられ、これらの1種以上を用いることができる。但し、鉄原料(A)はそれらに限定されるものではなく、製鉄炉用の鉄原料となり得るものであって、そのままでは高炉に装入できない細粒状のものであればよい。なお、鉄用鉄原料(A)の粒径は、一般には5mm未満である。 The present invention is a method for producing an unfired agglomerated ore for iron making using an iron raw material (A) containing iron oxide, and the iron raw material (A) is a fine-grain sintered ore, fine-grain iron ore, steel Examples thereof include dust generated in the manufacturing process, and one or more of these can be used. However, the iron raw material (A) is not limited thereto, and may be a fine granular material that can serve as an iron raw material for an iron making furnace and cannot be charged into a blast furnace as it is. The particle size of the iron raw material (A) for iron is generally less than 5 mm.
前記細粒焼結鉱の代表例は、鉄鉱石の焼結プロセスで返鉱と呼ばれる焼結鉱粉であり、従来の一般的な焼結プロセスでは、この焼結鉱粉は焼結工程に送り返され、焼結原料として使用されている。この焼結鉱粉の大部分は、成品焼結鉱を得る際の粒度選別工程で発生するが、高炉への輸送工程や高炉周辺で発生するものもある。従来の焼結プロセスでは、成品歩留まりは70〜80mass%程度であり、残りの20〜30mass%程度が返鉱(焼結鉱粉)として焼結工程に返送されている(すなわち、成品焼結鉱になることなくプロセス内で循環している)。したがって、本発明の非焼成塊成鉱の鉄原料(A)として、そのような焼結鉱粉を利用できることにより、焼結鉱を含めた塊成鉱のトータル歩留まりを大きく向上させることができる。 A typical example of the fine-grained sintered ore is a sintered ore powder called return ore in the iron ore sintering process. In the conventional general sintering process, this sintered ore powder is sent back to the sintering process. It is used as a sintering raw material. Most of the sintered ore powder is generated in the particle size selection process when obtaining the product sintered ore, but there are also those generated in the transport process to the blast furnace and around the blast furnace. In the conventional sintering process, the product yield is about 70 to 80 mass%, and the remaining 20 to 30 mass% is returned to the sintering process as return mineral (sintered ore powder) (that is, the product sintered ore). Circulates within the process without becoming). Therefore, by using such sintered ore powder as the iron raw material (A) of the non-fired agglomerated mineral of the present invention, the total yield of agglomerated minerals including the sintered ore can be greatly improved.
前記細粒鉄鉱石には鉄鉱石粉も含まれる。また、元々粒度の小さい鉄鉱石、整粒工程で生じた粒度の小さい鉄鉱石などのいずれを用いてもよい。
前記鉄鋼製造プロセスで発生するダストとしては、高炉ダスト、精錬ダストなどが挙げられ、これらダストも相当量の酸化鉄を含んでいる。
高炉ダストとは、高炉ガスから集塵によって回収されたダストである。また、精錬ダストとは、精錬工程で発生した排ガスから集塵によって回収されたダストであり、例えば、溶銑予備処理工程で生じる精錬ダスト、転炉脱炭工程で生じる精錬ダスト(転炉OGダスト)などがある。
The fine-grained iron ore includes iron ore powder. Moreover, any of iron ore having a small particle size and iron ore having a small particle size generated in the sizing process may be used.
Examples of the dust generated in the steel manufacturing process include blast furnace dust, refining dust, and the like, and these dusts also contain a considerable amount of iron oxide.
Blast furnace dust is dust recovered from blast furnace gas by dust collection. Further, the refining dust is dust collected by collecting dust from the exhaust gas generated in the refining process. For example, refining dust generated in the hot metal pretreatment process, refining dust generated in the converter decarburization process (converter OG dust). and so on.
図1は、本発明の製造方法の概略を示したものである。
本発明の製造方法では、まず、図1(a)に示すように鉄原料(A)に炭材(B)と結合材(C)を配合した混合物を造粒し、塊成鉱の核部分となる一次造粒物(X1)を形成する。造粒は混合物を加湿した状態で行われ、通常、混合物(鉄原料(A)+炭材(B)+結合材(C)+さらに必要に応じて他の成分。以下同様)と水を混合・撹拌(混練)した後、造粒を行い、一次造粒物(X1)を得る。
FIG. 1 shows an outline of the production method of the present invention.
In the production method of the present invention, first, as shown in FIG. 1 (a), a mixture in which a carbon material (B) and a binder (C) are blended with an iron raw material (A) is granulated, and the core portion of the agglomerated ore. A primary granulated product (X 1 ) is formed. Granulation is performed with the mixture in a humidified state. Usually, the mixture (iron raw material (A) + carbonaceous material (B) + binding material (C) + other components as necessary. The same applies hereinafter) and water are mixed. and stirring (mixing), and then subjected to granulation, to obtain primary granules of (X 1).
本発明において、一次造粒物(X1)の原料として炭材(B)を配合するのは、後述するように二次造粒物とした後にマイクロ波加熱を行うことで、一次造粒物(X1)で構成される核部分を優先的に加熱し、且つそこに含まれる酸化鉄で炭材(B)を還元材として予備還元するためである。炭材(B)としては、粉コークス、粉炭などが挙げられ、これらの1種以上を用いることができる。なお、粉炭を用いる場合には、揮発分の少ないいわゆる無煙炭の使用が望ましい。揮発分が多い石炭を用いると、加熱時に揮発分がガス化してそのガス圧によって造粒物組織が破壊され、造粒物の脆弱化を招くおそれがある。
一次造粒物(X1)中での炭素含有(配合)率に特別な制限はないが、2〜30mass%程度、より好ましくは10〜15mass%程度とするのが適当である。炭素含有率が2mass%未満では予備還元の程度が小さく、一方、30mass%を超えると非焼成塊成鉱の強度に問題を生じる可能性がある。
In the present invention, the carbonaceous material (B) is blended as a raw material for the primary granulated product (X 1 ), as described later. This is because the core portion composed of (X 1 ) is preferentially heated, and the carbon material (B) is preliminarily reduced with the iron oxide contained therein as the reducing material. Examples of the carbon material (B) include pulverized coke and pulverized coal, and one or more of them can be used. In addition, when using pulverized coal, it is desirable to use so-called anthracite with little volatile content. When coal with a large amount of volatile matter is used, the volatile matter is gasified during heating, and the granulated structure is destroyed by the gas pressure, which may cause weakening of the granulated matter.
Primary granules (X 1) is no particular restriction on the carbon-containing (blending) ratio in but about 2~30Mass%, more preferably it is appropriate to be about 10~15mass%. If the carbon content is less than 2 mass%, the degree of preliminary reduction is small, while if it exceeds 30 mass%, there is a possibility of causing a problem in the strength of the unfired agglomerated ore.
また、前記結合材(C)は、冷間で十分な強度を発現しうるものであれば特に制限はないが、製造コストの面で水硬性結合材が特に好ましい。この水硬性結合材としては、水和硬化によって冷間で十分な強度を発現し得るものであれば特に制限はなく、例えば、高炉セメント、ポルトランドセメント、フライアッシュセメント、アルミナセメントなどの各種セメント、高炉水砕スラグ微粉末などが挙げられ、これらの1種以上を用いることができる。
結合材(C)は冷間での十分な強度が得られる必要最小限の配合量とすればよく、通常は2〜10mass%程度が適当である。
造粒方法は任意であるが、代表的な方法としては、ディスクペレタイザーやドラム型造粒機を用いる転動造粒法、ブリケット成形機を用いる圧縮造粒法などがあり、いずれを用いてもよいが、生産性や製造コストなどの面からは転動造粒法の方が好ましい。
The binding material (C) is not particularly limited as long as it can exhibit sufficient strength in the cold, but a hydraulic binding material is particularly preferable in terms of manufacturing cost. The hydraulic binder is not particularly limited as long as it can express sufficient strength in the cold by hydration hardening, for example, various cements such as blast furnace cement, Portland cement, fly ash cement, alumina cement, Examples include blast furnace granulated slag fine powder, and one or more of these can be used.
The binding material (C) may be a minimum necessary amount for obtaining a sufficient cold strength, and usually about 2 to 10 mass% is appropriate.
The granulation method is arbitrary, but as a typical method, there are a rolling granulation method using a disk pelletizer or a drum type granulator, a compression granulation method using a briquette molding machine, etc. However, the rolling granulation method is preferred from the standpoints of productivity and manufacturing cost.
次いで、図1(b)に示すように、一次造粒物(X1)の外側に鉄原料(A)に結合材(C)を配合した混合物を被覆して被覆層(y)を形成した二次造粒物(X2)を得る。
前記被覆層(y)を形成するための原料には、有意には炭材を配合しない。被覆層(y)の酸化鉄は炉内の還元性ガスで容易に還元されるので、核部分のような予備還元は必要でなく、逆に、核部分と同様に炭材を含有させると、還元に要するエネルギーや材料コストを増大させるだけでなく、マイクロ波加熱と炉内での還元性ガスとの接触によって被覆層が強還元され、その結果、被覆層内に金属鉄の層が生成し、非焼成塊成鉱の中心部分の還元を妨げることになる。したがって、この被覆層(y)でも鉄原料(A)として鉄鋼製造プロセスで発生するダストを使用することはできるが、粉コークスや炭素を比較的多く含有するダストの使用は避けることが好ましい。
被覆層(y)に用いる結合材(C)の種類は、さきに述べた一次造粒物(X1)の場合と同様であるが、その配合量については、高強度化のためにより多く配合してもよい。ただし、鉄源ではない結合材を増加させることは、製鉄炉にとって望ましくないことから、結合材の配合量の上限は20mass%程度とすることが好ましい。
Next, as shown in FIG. 1B, a coating layer (y) was formed by coating a mixture of the iron raw material (A) and the binder (C) on the outside of the primary granulated product (X 1 ). A secondary granulated product (X 2 ) is obtained.
Carbonaceous materials are not significantly added to the raw material for forming the coating layer (y). Since the iron oxide of the coating layer (y) is easily reduced by the reducing gas in the furnace, pre-reduction such as the core portion is not necessary. In addition to increasing the energy and material costs required for the reduction, the coating layer is strongly reduced by the contact between the microwave heating and the reducing gas in the furnace, resulting in the formation of a metallic iron layer in the coating layer. This will hinder the reduction of the central part of the unfired agglomerate. Therefore, although this coating layer (y) can also use the dust generated in the steel production process as the iron raw material (A), it is preferable to avoid the use of dust containing a relatively large amount of powdered coke and carbon.
The type of the binder (C) used for the coating layer (y) is the same as that of the primary granulated product (X 1 ) described above, but the blending amount is more blended for higher strength. May be. However, since it is not desirable for the iron making furnace to increase the binder that is not an iron source, the upper limit of the amount of the binder is preferably about 20 mass%.
被覆層(y)の形成は任意の方法で行うことができるが、通常は転動造粒法によって行われる。すなわち、上記混合物(鉄原料(A)+結合材(C)+さらに必要に応じて他の成分。以下同様)を一次造粒物(X1)に添加し、ディスクペレタイザーやドラム型造粒機を用いる転動造粒法によって加湿状態で混合造粒する。これにより一次造粒物(X1)の表層に混合物を付着させ、その混合物の被覆層(y)が形成された二次造粒物(X2)を得るものである。
したがって、本発明法では、転動造粒法による一次造粒で一次造粒物(X1)を形成し、次いで、転動造粒法による二次造粒で一次造粒物(X1)の外側に被覆層(y)を形成して二次造粒物(X2)を得る方法が最も好ましい。
Although formation of a coating layer (y) can be performed by arbitrary methods, it is normally performed by the rolling granulation method. That is, the above mixture (iron raw material (A) + binding material (C) + and other components as necessary, the same applies hereinafter) is added to the primary granulated product (X 1 ), and a disk pelletizer or drum type granulator Mix granulation in a humidified state by the rolling granulation method using Thus deposited mixture on the surface layer of the primary granules (X 1), is intended to obtain the coating layer (y) secondary granules formed of mixture (X 2).
Therefore, in the method of the present invention, the primary granulated product (X 1 ) is formed by primary granulation by the rolling granulation method, and then the primary granulated product (X 1 ) by secondary granulation by the rolling granulation method. The method of forming the coating layer (y) on the outer side of the slag to obtain the secondary granulated product (X 2 ) is most preferable.
ここで、本発明では、二次造粒物(X2)の核部分を炭材(B)の配合と後述するマイクロ波加熱を利用して予備還元することにより塊成鉱の被還元性を高めるものであるため、還元性ガスの浸透性が小さい緻密な被覆層(y)を形成しても、塊成鉱全体として必要な被還元性を確保することができる。このため、転動造粒法などによって緻密な被覆層(y)を形成し、粉化を生じにくい高強度の非焼成塊成鉱を得ることができる。緻密な被覆層(y)を形成するには、例えば、下記の方法が有効である。
(1)結合材(C)の配合量を多くすることにより高強度化し、クラックの生成を抑制する。
(2)被覆層を構成する原料の粒度分布を調整し、充填密度を増大させる。
(3)ディスクペレタイザーなどの転動造粒機においては、造粒機内での滞留時間を長くとり、充填密度を増大させる。ブリケット成形機などの圧縮造粒機においては、圧縮力を大きくして充填密度を増大させる。
このようにして得られた二次造粒物(X2)は、通常、適当な期間養生することにより結合材(C)をバインダーとして固化させる。なお、一次造粒物(X1)の養生は、被覆層(y)の形成前に行ってもよい。
Here, in the present invention, the core portion of the secondary granulated product (X 2 ) is preliminarily reduced using the mixing of the carbonaceous material (B) and the microwave heating described later, thereby reducing the reducibility of the agglomerate. Therefore, even if a dense coating layer (y) having a low permeability of reducing gas is formed, the reducibility required for the entire agglomerate can be ensured. For this reason, a dense coating layer (y) can be formed by a tumbling granulation method or the like to obtain a high-strength non-fired agglomerated mineral that hardly causes pulverization. In order to form a dense coating layer (y), for example, the following method is effective.
(1) By increasing the blending amount of the binder (C), the strength is increased and the generation of cracks is suppressed.
(2) Adjust the particle size distribution of the raw materials constituting the coating layer and increase the packing density.
(3) In rolling granulators such as disk pelletizers, increase the residence time in the granulator and increase the packing density. In a compression granulator such as a briquette molding machine, the packing force is increased by increasing the compression force.
The secondary granulated product (X 2 ) thus obtained is usually solidified with the binder (C) as a binder by curing for an appropriate period. The primary granulated product (X 1 ) may be cured before forming the coating layer (y).
次いで、図1(c)に示すように、固化した二次造粒物(X2)にマイクロ波を照射してマイクロ波加熱する。ここで、二次造粒物(X2)の核部分(一次造粒物(X1)で形成される部分)に配合された炭材(B)はマイクロ波を良く吸収して加熱されやすい材料であるとともに、酸化鉄の還元材として機能する。したがって、二次造粒物(X2)の核部分にのみ炭材(B)を配合することにより、マイクロ波加熱によって核部分が優先的に加熱され、且つ核部分に含まれる酸化鉄が炭材(B)を還元材として効率的に還元(予備還元)され、これにより、主として核部分に含まれる酸化鉄が予備還元された製鉄用非焼成塊成鉱が得られる。
マイクロ波加熱工程では、通常、図1(c)示すようにマイクロ波発生装置1で発生したマイクロ波を導波管2で導いて、二次造粒物(X2)に照射する。
なお、照射されたマイクロ波は二次造粒物(X2)に吸収されて減衰するため、例えば、積み上げられた二次造粒物(X2)に対して上方からマイクロ波を照射する場合、下層側の二次造粒物(X2)については十分な加熱効果が得られないことがある。したがって、その場合には、二次造粒物(X2)の積み上げ高さは2メートル以下、より好ましくは1m以下とすることが望ましい。
Next, as shown in FIG. 1C, the solidified secondary granulated product (X 2 ) is irradiated with microwaves and heated by microwaves. Here, the carbonaceous material (B) blended in the core portion of the secondary granulated product (X 2 ) (portion formed by the primary granulated product (X 1 )) absorbs microwaves well and is easily heated. It is a material and functions as a reducing material for iron oxide. Therefore, by blending the carbonaceous material (B) only in the core part of the secondary granulated product (X 2 ), the core part is preferentially heated by microwave heating, and the iron oxide contained in the core part is converted into carbon. The material (B) is efficiently reduced (preliminary reduction) using the reducing material, whereby an unfired agglomerate for iron production in which iron oxide contained mainly in the core portion is preliminarily reduced is obtained.
In the microwave heating step, the microwave generated by the microwave generator 1 is usually guided by the waveguide 2 as shown in FIG. 1 (c) and irradiated to the secondary granulated product (X 2 ).
In addition, since the irradiated microwave is absorbed and attenuated by the secondary granulated product (X 2 ), for example, when the stacked secondary granulated product (X 2 ) is irradiated with microwaves from above A sufficient heating effect may not be obtained for the secondary granulated product (X 2 ) on the lower layer side. Therefore, in that case, it is desirable that the stacked height of the secondary granulated product (X 2 ) is 2 meters or less, more preferably 1 m or less.
また、二次造粒物(X2)は、鉄原料(A)、炭材(B)及び結合材(C)を主たる構成成分とするものであるが、必要に応じて、一次造粒物(X1)及び/又は被覆層(y)中に他の成分、例えば、各種分散剤、硬化促進剤、石灰石微粉、フライアッシュ、シリカ微粉などの1種以上を、本発明の効果を損なわない限度で適量配合することもできる。これらその他成分の一次造粒物(X1)及び/又は被覆層(y)中での合計配合量は10mass%程度、特に望ましくは5mass%程度を上限とすることが好ましい。
本発明により製造される非焼成塊成鉱の粒径(常温雰囲気下での球換算粒径)は8〜30mm程度が好ましい。非焼成塊成鉱の粒径が8mm未満では、炉に装入した際の原料充填層の通気性が低下するおそれがあり、一方、粒径が30mmを超えると還元性が低下するおそれがある。
The secondary granulated product (X 2 ) is mainly composed of the iron raw material (A), the carbonaceous material (B), and the binder (C). (X 1 ) and / or other components in the coating layer (y), for example, one or more of various dispersants, curing accelerators, limestone fine powder, fly ash, silica fine powder, etc., do not impair the effects of the present invention. An appropriate amount can be blended at the limit. The total amount of these other components in the primary granulated product (X 1 ) and / or the coating layer (y) is preferably about 10 mass%, particularly preferably about 5 mass%.
The particle size of the unfired agglomerated mineral produced according to the present invention (sphere-converted particle size in a normal temperature atmosphere) is preferably about 8 to 30 mm. If the particle size of the unfired agglomerated mineral is less than 8 mm, the air permeability of the raw material packed layer when charged in the furnace may be reduced. On the other hand, if the particle size exceeds 30 mm, the reducibility may be reduced. .
本発明により製造される非焼成塊成鉱は、塊成鉱の半径Rと一次造粒物(X1)で形成された核部分の半径R1とが下式を満足することが好ましい。ここで、塊成鉱の半径R、核部分の半径R1とは常温雰囲気下での球換算半径である。
0.4≦R1/R≦0.5
図2は、本発明法で製造された非焼成塊成鉱の竪型炉内での還元挙動を模式的に表したもので、堅型炉(以下、高炉を例に説明する)内で還元性ガスにより還元され、溶融直前の塊成鉱の状態が示されている。非焼成塊成鉱の任意の半径位置をrとした場合、予備還元により非焼成塊成鉱(二次造粒物)は0≦r/R≦R1の範囲が還元される。一方、高炉内では外周部分が還元されるが、内部に炭材を含まない非焼成塊成鉱を準備し、高炉内の還元雰囲気、昇温パターンにて還元試験を実施した結果、おおむね0.5≦r/R≦1の範囲でガス還元が認められた。したがって、核部分の半径R1の範囲はR1/R≦0.5とすることが好ましい。核部分がこれよりも大きくなると、ガス還元される領域まで予備還元を行うことになるため、予備還元に要するエネルギーをロスすることになる。また、炭材を含有した組織は強度が弱く、R1/R>0.5ではそれだけ被覆層の厚さが薄くなるため、冷間強度が低下する傾向にある。一方、核部分の半径R1が小さくなるとR1≦r/R≦0.5の範囲において予備還元でも高炉内のガス還元でも還元されない層(図2の斜線部分)が生成する。この層が厚くなると還元材比が増大し、操業が不安定化するが、おおむね0.4≦R1/Rであれば操業上の問題はほとんどない。
In the non-fired agglomerated mineral produced according to the present invention, it is preferable that the radius R of the agglomerated mineral and the radius R 1 of the core part formed of the primary granulated product (X 1 ) satisfy the following formula. Here, the radius R of the agglomerated mineral and the radius R 1 of the core part are the sphere equivalent radius in a normal temperature atmosphere.
0.4 ≦ R 1 /R≦0.5
FIG. 2 schematically shows the reduction behavior of a non-fired agglomerated ore produced by the method of the present invention in a vertical furnace, and is reduced in a solid furnace (hereinafter, a blast furnace will be described as an example). The state of the agglomerated mineral just before melting after being reduced by the property gas is shown. If any radial position of the non-calcined mass Naruko was r, uncalcined masses Naruko by prereduction (secondary granules) in the range of 0 ≦ r / R ≦ R 1 is reduced. On the other hand, although the outer peripheral portion is reduced in the blast furnace, a non-fired agglomerate containing no carbonaceous material is prepared, and a reduction test is performed in a reducing atmosphere and a temperature rising pattern in the blast furnace. Gas reduction was observed in the range of 5 ≦ r / R ≦ 1. Therefore, the range of the radius R 1 of the core portion is preferably R 1 /R≦0.5. If the core portion is larger than this, the preliminary reduction is performed up to the region where the gas is reduced, so that the energy required for the preliminary reduction is lost. Also, tissue containing a carbonaceous material strength is weak, the thickness of the In R 1 /R>0.5 much coating layer is thin, there is a tendency that the cold strength decreases. On the other hand, when the radius R 1 of the core portion decreases, a layer (shaded portion in FIG. 2) that is not reduced by either preliminary reduction or gas reduction in the blast furnace is generated in the range of R 1 ≦ r / R ≦ 0.5. When this layer becomes thick, the ratio of reducing material increases and the operation becomes unstable. However, if 0.4 ≦ R 1 / R, there is almost no operational problem.
マイクロ波加熱には電力を消費するため、マイクロ波の照射は十分な還元効果が得られる必要最小限度の照射量とすることが望ましい。図3は、R1/R=0.5の非焼成塊成鉱を製造する際に、二次造粒物(X2)をマイクロ波加熱した場合のマイクロ波電力量と非焼成塊成鉱の予備還元率との関係を示したものである。ここで、予備還元率は予備還元前の酸化鉄に含まれる被還元酸素量が予備還元によってどれだけ取り去られたかを指数化したものであり、以下のように定義される。
γ={(0.43F−0.112Fo)−(0.43F′−0.112Fo′)}/(0.43F−0.112Fo)
但し γ:予備還元率(−)
F:予備還元前の試料中の全鉄量(mass%)
Fo:予備還元前の試料中の酸化第一鉄量(mass%)
F′:予備還元後の試料中の全鉄量(mass%)
Fo′:予備還元後の試料中の酸化第一鉄量(mass%)
Since microwave heating consumes electric power, it is desirable that the irradiation with microwaves should be performed with a minimum irradiation amount that can provide a sufficient reduction effect. FIG. 3 shows the amount of microwave power and the non-calcined agglomerated when the secondary granulated product (X 2 ) is microwave-heated when producing the unfired agglomerated R 1 /R=0.5. This shows the relationship with the preliminary reduction rate. Here, the preliminary reduction rate is an index of how much the amount of oxygen to be reduced contained in the iron oxide before the preliminary reduction has been removed by the preliminary reduction, and is defined as follows.
γ = {(0.43F−0.112Fo) − (0.43F′−0.112Fo ′)} / (0.43F−0.112Fo)
Where γ: preliminary reduction rate (-)
F: Total iron content (mass%) in the sample before preliminary reduction
Fo: Ferrous oxide content (mass%) in the sample before preliminary reduction
F ′: Total iron content (mass%) in the sample after preliminary reduction
Fo ′: Ferrous oxide content (mass%) in the sample after preliminary reduction
図3によれば、非焼成塊成鉱1トン当たりのマイクロ波電力量が約150kWh/t−(塊成鉱)で予備還元率はほぼ最大(予備還元率:約0.125)となり、マイクロ波電力量をそれ以上増加させ予備還元率は一定である。
図3で用いた非焼成塊成鉱はR1/R=0.5であるので、炭材を含有する核部分の体積は非焼成塊成鉱粒子全体の約12.5%であるから、予備還元率0.125とは、核部分の還元率がほぼ100%に達したことを示している。以上の結果から、照射すべきマイクロ波の電力量は100〜200kWh/t−(塊成鉱)が望ましく、特に、150kWh/t−(塊成鉱)前後が望ましい。上記範囲を下回る電力量では予備還元が不足し、一方、上記範囲を上回る電力量では還元に寄与しない電力が消費され、結果的にはエネルギーをロスすることになる。
According to FIG. 3, the microwave power per ton of unfired agglomerated ore is about 150 kWh / t- (agglomerated ore), and the preliminary reduction rate is almost the maximum (preliminary reduction rate: about 0.125). The amount of wave power is further increased, and the preliminary reduction rate is constant.
Since the non-fired agglomerated ore used in FIG. 3 is R 1 /R=0.5, the volume of the core portion containing the carbonaceous material is about 12.5% of the entire non-fired agglomerated particles. The preliminary reduction rate of 0.125 indicates that the reduction rate of the core portion has reached almost 100%. From the above results, the amount of electric power of the microwave to be irradiated is preferably 100 to 200 kWh / t- (agglomerated ore), and particularly preferably around 150 kWh / t- (agglomerated ore). When the amount of power is below the above range, preliminary reduction is insufficient, while when the amount of power is above the above range, power that does not contribute to reduction is consumed, resulting in a loss of energy.
図4は、本発明の製造方法の具体的な実施形態の製造フローを示している。
ホッパー群3(原料貯留槽)には核部分用の原料として、鉄原料(A)である細粒鉄鉱石a1、細粒焼結鉱a2及び製鉄所発生ダストa3、炭材(B)である粉コークスb、結合材(C)であるセメントcがそれぞれ貯留されている。また、ホッパー群4(原料貯留槽)には被覆層用の原料として、鉄原料(A)である細粒鉄鉱石a1及び細粒焼結鉱a2、結合材(C)であるセメントcがそれぞれ貯留されている。ここで、前記細粒鉄鉱石a1は複数の銘柄を組み合わせて用いてもよい。また、粉コークスbは粉状の無煙炭に代替可能である。なお、上記各原料は予め混合し、1つのホッパーから切り出すようにしてもよい。また、図示しないが、必要に応じて事前に粒度を調整するための粉砕工程や、異物を取り除く工程などがあってもよい。
FIG. 4 shows a manufacturing flow of a specific embodiment of the manufacturing method of the present invention.
In the hopper group 3 (raw material storage tank), as the raw material for the core portion, fine iron ore a 1 , fine sinter ore 2 which is an iron raw material (A), ironworks generated dust a 3 , carbon material (B ), Powder coke b, and cement c, which is a binder (C), are stored. Further, in the hopper group 4 (raw material storage tank), as the raw material for the coating layer, fine iron ore a 1 and fine sintered ore a 2 that are iron raw materials (A), and cement c that is a binder (C). Are stored respectively. Here, the fine particle iron ore a 1 may be used in combination of a plurality of brands. The powder coke b can be replaced with powdered anthracite. Note that the above raw materials may be mixed in advance and cut out from one hopper. Although not shown, there may be a pulverization step for adjusting the particle size in advance, a step for removing foreign matter, and the like as necessary.
ホッパー群3に貯留された上記核部分用の原料を定量切り出し装置により切り出し、原料搬送装置5により搬送して加湿混合機6(例えば、ドラムミキサー、アイリッヒミキサーなど)に導入する。この加湿混合機6では原料に水が添加され、混合・撹拌される。加湿混合機6の機能などに特別な制限はないが、混合撹拌能力の高いものが望ましい。混合撹拌能力の低いものを採用した場合は、混合時間を長く取る必要が生じ、生産性が低下する。
加湿混合された原料(混合物)は原料搬送装置7により一次造粒機8に搬送され、この一次造粒機8で造粒されて一次造粒物(X1)とする。なお、本実施形態では、一次造粒機8として皿型転動造粒機(ディスクペレタイザー)を用いているが、ドラム型造粒機などのような他の形式の造粒機を用いてもよい。
The raw material for the core part stored in the hopper group 3 is cut out by a quantitative cutting device, transported by the raw material transport device 5, and introduced into the humidification mixer 6 (for example, a drum mixer, an Eirich mixer, etc.). In the humidifying mixer 6, water is added to the raw material, and mixed and stirred. Although there is no special restriction | limiting in the function of the humidification mixer 6, etc., a thing with high mixing stirring ability is desirable. When a thing with low mixing stirring ability is employ | adopted, it will be necessary to take long mixing time, and productivity will fall.
The humidified and mixed raw material (mixture) is conveyed to the primary granulator 8 by the raw material conveying device 7, and is granulated by the primary granulator 8 to obtain a primary granulated product (X 1 ). In the present embodiment, a dish type rolling granulator (disk pelletizer) is used as the primary granulator 8, but other types of granulators such as a drum granulator may be used. Good.
一次造粒物(X1)は原料搬送装置9により二次造粒機10に搬送される。一方、ホッパー群4に貯留された上記被覆層用の原料を定量切り出し装置により切り出し、原料搬送装置11により搬送して二次造粒機10に導入する。なお、これら原料は予め混合し、1つのホッパーから切り出すようにしてもよい。
二次造粒機10において一次造粒物(X1)と被覆層用の原料が混合造粒され、一次造粒物(X1)の外側に被覆層用の原料(混合物)からなる被覆層(y)が形成され、二次造粒物(X2)となる。この二次造粒物(X2)は養生場所12で所定期間養生した後、図1(c)に示すようなマイクロ波加熱工程で予備還元され、非焼成塊成鉱が得られる。
以上のようにして製造された非焼成塊成鉱は、高炉に代表される竪型製鉄炉において鉄原料として用いられる。
The primary granulated product (X 1 ) is transported to the
In the
The non-fired agglomerated ore produced as described above is used as an iron raw material in a vertical ironmaking furnace represented by a blast furnace.
図4に示すような製造フローに図1(c)に示すマイクロ波加熱工程を適用して製鉄用非焼成塊成鉱を製造した。使用した原料の成分組成を表1に示す。鉄原料(A1)は細粒の鉄鉱石、鉄原料(A2)は焼結鉱の篩下粉、鉄原料(A3)は高炉ダストであり、いずれも酸化鉄を豊富に含んでおり製鉄用の鉄原料として好適なものである。また、炭材(B)としては粉コークスを、結合材(C)としてはポルトランドセメントをそれぞれ用いた。
製造された非焼成塊成鉱を鉄原料の一部として高炉(内容積3223m3)に装入し、操業を行った。その結果を、非焼成塊成鉱の原料配合割合、冷間強度、高炉操業条件・操業成績とともに表2に示す。
各実施例では、高炉への鉄原料の配合割合を非焼成塊成鉱:20mass%、焼結鉱:70mass%、塊鉱石:10mass%とした。
各実施例においては、300kwのマイクロ波発生装置を用いて非焼成塊成鉱1トン毎に30分間マイクロ波加熱することにより予備還元を行った。
The microwave heating process shown in FIG.1 (c) was applied to the manufacturing flow as shown in FIG. 4, and the unbaking agglomerate for iron manufacture was manufactured. Table 1 shows the component composition of the raw materials used. The iron raw material (A1) is fine-grained iron ore, the iron raw material (A2) is a sinter ore powder and the iron raw material (A3) is blast furnace dust. It is suitable as an iron raw material. Moreover, powder coke was used as the carbonaceous material (B), and Portland cement was used as the binder (C).
The produced uncalcined agglomerated ore was charged into a blast furnace (internal volume 3223 m 3 ) as a part of the iron raw material and operated. The results are shown in Table 2 together with the raw material blending ratio, cold strength, blast furnace operating conditions and operating results of the unfired agglomerated ore.
In each Example, the mixing ratio of the iron raw material to the blast furnace was set to non-fired agglomerated ore: 20 mass%, sintered ore: 70 mass%, and ore: 10 mass%.
In each Example, the preliminary reduction was performed by microwave heating for 30 minutes for each ton of uncalcined agglomerate using a 300 kW microwave generator.
発明例及び比較例の各非焼成塊成鉱の冷間強度を調査するため、ヤードにおける粉率と高炉炉頂における粉率を測定し、その差をもって輸送時粉化量を求めた。塊成鉱が5mm以上の粒径であれば高炉の原料として使用可能であるため、−5mm(=粒径5mm未満)の粒子を粉と定義し、その質量割合を−5mmの粉率とした。塊成鉱の冷間強度が大きい方が輸送時粉化量を低減できる。非焼成塊成鉱は、12mm〜25mmの篩に通して整粒したものを用いた。これは、非焼成塊成鉱の粒度分布が狭い方が、炉内の原料充填層中を通過する気体の圧力損失が小さくなるためである。 In order to investigate the cold strength of each unfired agglomerated ore of the inventive example and the comparative example, the powder rate at the yard and the powder rate at the top of the blast furnace were measured, and the powdered amount at the time of transportation was determined from the difference. If the agglomerate has a particle size of 5 mm or more, it can be used as a raw material for a blast furnace. Therefore, particles of −5 mm (= particle size less than 5 mm) are defined as powder, and the mass ratio is set to a powder rate of −5 mm. . The larger the cold strength of the agglomerate, the lower the amount of powder during transportation. The non-fired agglomerated mineral was sized through a sieve of 12 to 25 mm. This is because the pressure loss of the gas passing through the raw material packed bed in the furnace is smaller when the particle size distribution of the unfired agglomerated mineral is narrow.
また、表2中に示した吹き抜け回数の「吹き抜け現象」とは、高炉内の圧力損失が増大することで還元性ガスの流れが止められ、炉内の圧力が上昇し、一定の圧力に達したとき、爆発的に還元性ガスの上昇が再開される現象を指す。この場合、ガス流れの再開と同時に炉内の装入物がガスに同伴されて移動するため、層状に堆積された装入物の分布が乱れることになる。装入物の分布が乱れると、通気性がさらに悪化したり、酸化鉄の還元不良等の問題を生じるため、還元材比が上昇するなど高炉操業に極めて悪い影響を与えるのみならず、圧力の上昇により炉体への機械的ダメージを与えたり、急激に高温ガスが噴出することによる諸設備への熱的悪影響も懸念される。 Also, the “blow-out phenomenon” of the number of blow-throughs shown in Table 2 means that the flow of reducing gas is stopped by increasing the pressure loss in the blast furnace, the pressure in the furnace rises, and reaches a certain pressure. When this happens, it means a phenomenon in which the rising of the reducing gas explosively resumes. In this case, since the charge in the furnace moves with the gas simultaneously with the resumption of the gas flow, the distribution of the charge deposited in layers is disturbed. If the distribution of the charge is disturbed, the air permeability is further deteriorated, and problems such as poor reduction of iron oxide are caused. There is also concern about thermal adverse effects on various facilities due to mechanical damage to the furnace body due to the rise and rapid hot gas ejection.
発明例1は、造粒物の原料配合割合を、核部分(一次造粒物(X1)で構成される核部分)については鉄原料(A1):78mass%、炭材(B):15mass%、結合材(C):7mass%とし、被覆層については鉄原料(A1):93mass%、結合材(C):7mass%としたものである。この実施例で得られた非焼成塊成鉱は、結合材(C)による結合で冷間における強度は十分(輸送時粉化量は0.6mass%と小さい)である。また、高炉の操業を見ると、出銑量が多く還元材比も低く、吹き抜け現象も起きていない。これは、炭材を含む核部分の予備還元が十分に行われ、且つ被覆層が高炉内の還元性ガスにより適切に還元されることで、非焼成塊成鉱の還元が良好に行われたためであると考えられる。 Invention Example 1 is the raw material blending ratio of the granulated product, and the iron part (A1): 78 mass%, the carbonaceous material (B): 15 mass for the core part (core part composed of the primary granulated product (X 1 )). %, Binder (C): 7 mass%, and the coating layer is made of iron raw material (A1): 93 mass% and binder (C): 7 mass%. The unfired agglomerated ore obtained in this example is bonded by the binder (C) and has sufficient cold strength (the amount of powder during transportation is as small as 0.6 mass%). Also, when looking at the operation of the blast furnace, there is a large amount of tapping, the ratio of reducing material is low, and no blow-through phenomenon has occurred. This is because the preliminary reduction of the core part including the carbonaceous material was sufficiently performed, and the coating layer was appropriately reduced by the reducing gas in the blast furnace, so that the reduction of the unfired agglomerated ore was performed well. It is thought that.
発明例2は、造粒物の原料配合割合を、核部分(一次造粒物(X1)で構成される核部分)については鉄原料(A1):37mass%、鉄原料(A2):40mass%、炭材(B):16mass%、結合材(C):7mass%とし、被覆層については鉄原料(A1):43mass%、鉄原料(A2):50mass%、結合材(C):7mass%としたものである。この実施例で得られた非焼成塊成鉱は、結合材(C)による結合で冷間における強度は十分(輸送時粉化量は0.5mass%と小さい)である。また、高炉の操業を見ると、出銑量が多く還元材比も低く、吹き抜け現象も起きていない。これは、炭材を含む核部分の予備還元が十分に行われ、且つ被覆層が高炉内の還元性ガスにより適切に還元されることで、非焼成塊成鉱の還元が良好に行われたためであると考えられる。また、篩下として焼結機に戻されていた細粒の焼結鉱を原料化したことで、焼結プロセスの歩留まりが向上する副次的効果も得られている。 Invention Example 2 is the raw material blending ratio of the granulated product, and the iron material (A1): 37 mass%, the iron material (A2): 40 mass for the core part (the core part composed of the primary granulated product (X 1 )). %, Carbon material (B): 16 mass%, binder (C): 7 mass%, and the coating layer is iron raw material (A1): 43 mass%, iron raw material (A2): 50 mass%, binder (C): 7 mass %. The unfired agglomerated ore obtained in this example is bonded by the binder (C) and has sufficient cold strength (the amount of powder during transport is as small as 0.5 mass%). Also, when looking at the operation of the blast furnace, there is a large amount of tapping, the ratio of reducing material is low, and no blow-through phenomenon has occurred. This is because the preliminary reduction of the core part including the carbonaceous material was sufficiently performed, and the coating layer was appropriately reduced by the reducing gas in the blast furnace, so that the reduction of the unfired agglomerated ore was performed well. It is thought that. Moreover, the secondary effect which improves the yield of a sintering process is also acquired by using as a raw material the fine grain sintered ore returned to the sintering machine as a sieve.
発明例3は、造粒物の原料配合割合を、核部分(一次造粒物(X1)で構成される核部分)については鉄原料(A1):77mass%、炭材(B):16mass%、結合材(C):7mass%とし、被覆層については鉄原料(A1):93mass%、結合材(C):7mass%としたものである。この実施例で得られた非焼成塊成鉱は、結合材(C)による結合で冷間における強度は十分(輸送時粉化量は0.6mass%と小さい)である。また、高炉の操業を見ると、出銑量が多く還元材比も低く、吹き抜け現象も起きていない。これは、炭材を含む核部分の予備還元が十分に行われ、且つ被覆層が高炉内の還元性ガスにより適切に還元されることで、非焼成塊成鉱の還元が良好に行われたためであると考えられる。また、篩下として焼結機に戻されていた細粒の焼結鉱を原料化したことで、焼結プロセスの歩留まりが向上する副次的効果も得られている。 Invention example 3 is the raw material compounding ratio of the granulated material, and the iron material (A1): 77 mass%, the carbonaceous material (B): 16 mass for the core part (the core part composed of the primary granulated product (X 1 )). %, Binder (C): 7 mass%, and the coating layer is made of iron raw material (A1): 93 mass% and binder (C): 7 mass%. The unfired agglomerated ore obtained in this example is bonded by the binder (C) and has sufficient cold strength (the amount of powder during transportation is as small as 0.6 mass%). Also, when looking at the operation of the blast furnace, there is a large amount of tapping, the ratio of reducing material is low, and no blow-through phenomenon has occurred. This is because the preliminary reduction of the core part including the carbonaceous material was sufficiently performed, and the coating layer was appropriately reduced by the reducing gas in the blast furnace, so that the reduction of the unfired agglomerated ore was performed well. It is thought that. Moreover, the secondary effect which improves the yield of a sintering process is also acquired by using as a raw material the fine grain sintered ore returned to the sintering machine as a sieve.
発明例4は、造粒物の原料配合割合を、核部分(一次造粒物(X1)で構成される核部分)については鉄原料(A1):23mass%、鉄原料(A2):45mass%、鉄原料(A3):10mass%、炭材(B):15mass%、結合材(C):7mass%とし、被覆層については鉄原料(A1):58mass%、鉄原料(A2):35mass%、結合材(C):7mass%としたものである。この実施例で得られた非焼成塊成鉱は、結合材(C)による結合で冷間における強度は十分(輸送時粉化量は0.7mass%と小さい)である。また、高炉の操業を見ると、出銑量が多く還元材比も低く、吹き抜け現象も起きていない。これは、炭材を含む核部分の予備還元が十分に行われ、且つ被覆層が高炉内の還元性ガスにより適切に還元されることで、非焼成塊成鉱の還元が良好に行われたためであると考えられる。また、一般に高炉ダストは焼結原料として焼結機に投入され、粉コークスの燃焼熱などのエネルギーをかけて焼結鉱とされているが、本プロセスでは直接高炉原料として使用できるため、省エネルギーとなる副次的効果も得られている。 Invention example 4 is the raw material compounding ratio of the granulated product, and the iron material (A1): 23 mass% and the iron material (A2): 45 mass for the core part (the core part composed of the primary granulated product (X 1 )). %, Iron material (A3): 10 mass%, Charcoal material (B): 15 mass%, Binder (C): 7 mass%, and the coating layer is iron material (A1): 58 mass%, Iron material (A2): 35 mass %, Binder (C): 7 mass%. The uncalcined agglomerated mineral obtained in this example is bonded by the binder (C) and has sufficient cold strength (the amount of powder during transportation is as small as 0.7 mass%). Also, when looking at the operation of the blast furnace, there is a large amount of tapping, the ratio of reducing material is low, and no blow-through phenomenon has occurred. This is because the preliminary reduction of the core part including the carbonaceous material was sufficiently performed, and the coating layer was appropriately reduced by the reducing gas in the blast furnace, so that the reduction of the unfired agglomerated ore was performed well. It is thought that. In addition, blast furnace dust is generally put into a sintering machine as a sintering raw material, and is made into a sintered ore by applying energy such as combustion heat of powdered coke. A secondary effect is also obtained.
発明例5は、造粒物の原料配合割合を、核部分(一次造粒物(X1)で構成される核部分)については鉄原料(A1):78mass%、炭材(B):15mass%、結合材(C):7mass%とし、被覆層については鉄原料(A1):93mass%、結合材(C):7mass%としたものである。この実施例で得られた非焼成塊成鉱は、核部分の領域がやや小さく、R1/R=0.35である。この非焼成塊成鉱は、結合材(C)による結合で冷間における強度は十分(輸送時粉化量は0.6mass%と小さい)である。一方、高炉の操業を見ると、発明例1〜4に較べて出銑量がやや低下し、還元材比は高くなった。高炉の操業は安定していたが、吹き抜け現象が1日に1回生じるなどやや悪化する傾向も確認された。これは、炭材を含む核部分の予備還元が十分に行われ、被覆層が高炉内の還元性ガスにより還元されて、非焼成塊成鉱の還元が行われてはいるが、0.35<R1/R≦0.5の層に生じる未還元部分が高炉の下部まで到達し、大きな吸熱反応である直接還元反応を生じ、高炉の操業をやや悪化させたものと考えられる。 Invention example 5 is the raw material compounding ratio of the granulated product, and the iron part (A1): 78 mass%, the carbonaceous material (B): 15 mass for the core part (core part composed of the primary granulated product (X 1 )). %, Binder (C): 7 mass%, and the coating layer is made of iron raw material (A1): 93 mass% and binder (C): 7 mass%. The non-fired agglomerated mineral obtained in this example has a slightly small core region, R 1 /R=0.35. This unfired agglomerated mineral is sufficiently bonded with the binding material (C) and has sufficient cold strength (the amount of powdered powder during transportation is as small as 0.6 mass%). On the other hand, when looking at the operation of the blast furnace, the amount of slag decreased slightly compared to Invention Examples 1 to 4, and the reducing material ratio increased. Although the operation of the blast furnace was stable, it was confirmed that the blow-through phenomenon slightly worsened, such as once a day. This is because the preliminary reduction of the core portion including the carbonaceous material is sufficiently performed, and the coating layer is reduced by the reducing gas in the blast furnace, and the reduction of the unfired agglomerated ore is performed. It is considered that the unreduced portion generated in the layer of <R 1 /R≦0.5 reaches the lower part of the blast furnace, causing a direct reduction reaction that is a large endothermic reaction, which slightly deteriorates the operation of the blast furnace.
発明例6は、造粒物の原料配合割合を、核部分(一次造粒物(X1)で構成される核部分)については鉄原料(A1):78mass%、炭材(B):15mass%、結合材(C):7mass%とし、被覆層については鉄原料(A1):93mass%、結合材(C):7mass%としたものである。この実施例で得られた非焼成塊成鉱は、核部分の領域がやや大きく、R1/R=0.7である。この非焼成塊成鉱は、冷間における強度がやや低下する傾向があり(輸送時粉化量は2.0mass%とやや高い)、高炉の操業を見ると、出銑量がやや低下し、還元材比は高くなった。高炉の操業は安定していたが、吹き抜け現象が1日に1回生じるなどやや悪化する傾向も確認された。これは、核部分が厚くなり被覆層が薄くなったために冷間強度がやや低下し、高炉内に粉がもたらされ、通気抵抗がやや悪化したことによるものと考えられる。 Invention example 6 is the raw material compounding ratio of the granulated product, and iron material (A1): 78 mass%, carbonaceous material (B): 15 mass for the core part (core part composed of primary granulated product (X 1 )). %, Binder (C): 7 mass%, and the coating layer is made of iron raw material (A1): 93 mass% and binder (C): 7 mass%. The non-fired agglomerated ore obtained in this example has a slightly large core region and R 1 /R=0.7. This unfired agglomerated ore tends to have a slight decrease in cold strength (the amount of powdering during transport is a little high at 2.0 mass%). The reducing material ratio was high. Although the operation of the blast furnace was stable, it was confirmed that the blow-through phenomenon slightly worsened, such as once a day. This is presumably because the core portion was thick and the coating layer was thin, so that the cold strength was slightly reduced, powder was brought into the blast furnace, and the airflow resistance was slightly deteriorated.
発明例7は、造粒物の原料配合割合を、核部分(一次造粒物(X1)で構成される核部分)については鉄原料(A1):57mass%、鉄原料(A2):35mass%、炭材(B):1mass%、結合材(C):7mass%とし、被覆層については鉄原料(A1):45mass%、鉄原料(A2):48mass%、結合材(C):7mass%としたものである。この実施例では核部分を構成する一次造粒物(X1)の炭素含有率が0.9mass%である。この実施例で得られた非焼成塊成鉱は、結合材(C)による結合で冷間における強度は十分(輸送時粉化量は0.6mass%と小さい)である。一方、高炉の操業を見ると、出銑量がやや低下し、還元材比は高くなった。高炉の操業は安定していたが、吹き抜け現象が1日に2回生じるなどやや悪化する傾向も確認された。これは、予備還元のために必要な炭素が不足したため、核部分に未還元の酸化鉄が残留したことにより、この未還元部分が高炉の下部まで到達し、大きな吸熱反応である直接還元反応を生じ、高炉の操業をやや悪化させたものと考えられる。 Invention example 7 is the raw material compounding ratio of the granulated product, and the iron material (A1): 57 mass% and the iron material (A2): 35 mass for the core part (the core part composed of the primary granulated product (X 1 )). %, Carbon material (B): 1 mass%, binder (C): 7 mass%, and about covering layer, iron raw material (A1): 45 mass%, iron raw material (A2): 48 mass%, binder (C): 7 mass %. In this example, the carbon content of the primary granulated product (X 1 ) constituting the core portion is 0.9 mass%. The unfired agglomerated ore obtained in this example is bonded by the binder (C) and has sufficient cold strength (the amount of powder during transportation is as small as 0.6 mass%). On the other hand, when we looked at the operation of the blast furnace, the output amount decreased slightly and the ratio of reducing materials increased. Although the operation of the blast furnace was stable, it was confirmed that the blow-through phenomenon slightly worsened, such as twice a day. This is because the carbon necessary for the preliminary reduction is insufficient, and unreduced iron oxide remains in the core part, so that this unreduced part reaches the lower part of the blast furnace and performs a direct endothermic reaction that is a large endothermic reaction. It is thought that the operation of the blast furnace was slightly deteriorated.
発明例8は、造粒物の原料配合割合を、核部分(一次造粒物(X1)で構成される核部分)については鉄原料(A1):23mass%、鉄原料(A2):25mass%、炭材(B):45mass%、結合材(C):7mass%とし、被覆層については鉄原料(A1):93mass%、結合材(C):7mass%としたものである。この実施例では核部分を構成する一次造粒物(X1)の炭素含有率が38.9mass%である。この実施例で得られた非焼成塊成鉱は、冷間における強度がやや低下する傾向があり(輸送時粉化量は2.8mass%とやや高い)、高炉の操業を見ると、出銑量がやや低下し、還元材比は高くなった。高炉の操業は安定していたが、吹き抜け現象が1日に3回生じるなどやや悪化する傾向も確認された。これは、核部分の炭素含有率が38.9mass%と多くなったために、非焼成塊成鉱の強度が低下し、このため高炉内に粉がもたらされ、通気抵抗がやや悪化したことによるものと考えられる。 Invention example 8 is the raw material compounding ratio of the granulated product, and the iron material (A1): 23 mass% and the iron material (A2): 25 mass for the core part (core part composed of the primary granulated product (X 1 )). %, Carbon material (B): 45 mass%, binder (C): 7 mass%, and the coating layer is made of iron raw material (A1): 93 mass%, binder (C): 7 mass%. In this example, the carbon content of the primary granulated material (X 1 ) constituting the core portion is 38.9 mass%. The non-fired agglomerated mineral obtained in this example has a tendency to slightly decrease the cold strength (the amount of powdering during transportation is slightly high at 2.8 mass%). The amount decreased slightly and the reducing material ratio increased. Although the operation of the blast furnace was stable, it was confirmed that the blow-through phenomenon slightly worsened, such as three times a day. This is because the carbon content of the core portion was increased to 38.9 mass%, which reduced the strength of the unfired agglomerated minerals, which resulted in powder in the blast furnace and a slight deterioration in ventilation resistance. It is considered a thing.
比較例1は、造粒物の原料配合割合を、核部分(一次造粒物(X1)で構成される核部分)については鉄原料(A1):93mass%、結合材(C):7mass%とし、被覆層についても鉄原料(A1):93mass%、結合材(C):7mass%としたものである。この実施例の造粒物は核部分と被覆層の組成が同一であり、核部分は予備還元に必要な炭素を含まないため、マイクロ波加熱を行っても予備還元は生じないものと考えられる。但し、この実施例で得られた非焼成塊成鉱は、冷間における強度は強く(輸送時粉化量は0.6mass%)、酸化鉄原料として高炉で使用がすることが可能と思われた。しかし、高炉の操業を見ると、出銑量が低下し、還元材比は高くなり、吹き抜け現象が1日に12回生じるなどかなり悪化する傾向も確認された。これは、高炉内の還元性ガスにより非焼成塊成鉱の被覆層のみが還元され、核部分が未還元のまま炉下部に到達するため大きな吸熱反応である直接還元反応を生じ、高炉の操業を悪化させたものと考えられる。 In Comparative Example 1, the raw material blending ratio of the granulated product was determined. Regarding the core part (the core part composed of the primary granulated product (X 1 )), the iron raw material (A1): 93 mass%, the binder (C): 7 mass. The coating layer is also made of iron raw material (A1): 93 mass% and binder (C): 7 mass%. In the granulated product of this example, the composition of the core portion and the coating layer is the same, and the core portion does not contain carbon necessary for the prereduction, so it is considered that prereduction does not occur even if microwave heating is performed. . However, the unfired agglomerated ore obtained in this example has strong cold strength (the amount of powdered powder during transportation is 0.6 mass%), and can be used in a blast furnace as an iron oxide raw material. It was. However, when looking at the operation of the blast furnace, it was confirmed that the amount of brewing decreased, the ratio of the reducing material increased, and the phenomenon that the blow-through phenomenon occurred 12 times a day was considerably worsened. This is because the reducing gas in the blast furnace reduces only the non-calcined agglomerated coating layer, and the core part reaches the lower part of the furnace without reduction, causing a direct reduction reaction that is a large endothermic reaction. It is thought that deteriorated.
1 マイクロ波発生装置
2 導波管
3,4 ホッパー群
5,7,9,11 原料搬送装置
6 加湿混合機
8 一次造粒機
10 二次造粒機
12 養生場所
X1 一次造粒物
X2 二次造粒物
a1 細粒鉄鉱石
a2 細粒焼結鉱
a3 製鉄所発生ダスト3
b 粉コークス
c セメント
DESCRIPTION OF SYMBOLS 1 Microwave generator 2 Waveguide 3, 4 Hopper group 5, 7, 9, 11 Raw material conveyance apparatus 6 Humidification mixer 8
b Powder coke c Cement
Claims (4)
鉄原料(A)に炭材(B)と結合材(C)を配合した混合物を造粒して核部分となる一次造粒物(X1)とした後、該一次造粒物(X1)の外側に、鉄原料(A)に結合材(C)を配合した混合物を被覆することにより二次造粒物(X2)とし、次いで、結合材(C)をバインダーとして固化した二次造粒物(X2)をマイクロ波加熱することを特徴とする製鉄用非焼成塊成鉱の製造方法。 In a method for producing an unfired agglomerated ore for iron making using an iron raw material (A) containing iron oxide,
After the carbonaceous material (B) and a binder (C) The mixture was granulated primary granules comprising a core portion containing a combination (X 1) in the iron raw material (A), said primary granules (X 1 ) Is coated with a mixture of the iron raw material (A) and the binder (C) to form a secondary granulated product (X 2 ), and then the secondary solidified using the binder (C) as a binder. A method for producing a non-fired agglomerated ore for iron making, wherein the granulated product (X 2 ) is heated by microwaves.
0.4≦R1/R≦0.5 Uncalcined masses for steel according to claim 1 or 2 radius R and primary granules of KatamariNaruko (X 1) and the radius R 1 of the core portion formed in is characterized by satisfying the following formula Method for producing ore.
0.4 ≦ R 1 /R≦0.5
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007056156A JP2008214715A (en) | 2007-03-06 | 2007-03-06 | Method for manufacturing nonfired agglomerated ore for iron manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007056156A JP2008214715A (en) | 2007-03-06 | 2007-03-06 | Method for manufacturing nonfired agglomerated ore for iron manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008214715A true JP2008214715A (en) | 2008-09-18 |
Family
ID=39835119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007056156A Pending JP2008214715A (en) | 2007-03-06 | 2007-03-06 | Method for manufacturing nonfired agglomerated ore for iron manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008214715A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011105975A (en) * | 2009-11-13 | 2011-06-02 | Kashima Senko Kk | Method for agglomerating iron raw material and agglomerating equipment therefor |
JP2011202263A (en) * | 2010-03-26 | 2011-10-13 | Nippon Steel Corp | Non-calcined carbon-containing pellet, method for producing the same and production equipment therefor |
JP2011225926A (en) * | 2010-04-19 | 2011-11-10 | Jfe Steel Corp | Agglomerated ore including carbonaceous material for iron-making, and producing method therefor |
JP2012082495A (en) * | 2010-10-14 | 2012-04-26 | Nippon Steel Corp | Method for heating agglomerates |
KR101281764B1 (en) | 2011-05-16 | 2013-07-02 | 주식회사 포스코 | Method and device for treating fine ore for sintering |
KR101309639B1 (en) * | 2009-11-26 | 2013-09-17 | 신닛테츠스미킨 카부시키카이샤 | A cold bonnded pellet and method for preparing thereof |
WO2015114546A1 (en) * | 2014-01-31 | 2015-08-06 | Saudi Basic Industries Corporation | Composite iron pellets |
KR101584778B1 (en) * | 2013-12-26 | 2016-01-13 | 재단법인 포항산업과학연구원 | Method for manufacturing alloy iron |
CN105555973A (en) * | 2013-09-25 | 2016-05-04 | 株式会社神户制钢所 | Method for manufacturing granular iron |
US10550445B2 (en) | 2015-07-07 | 2020-02-04 | Sabic Global Technologies B.V. | Coated iron ore pellets and a process of making and reducing the same to form reduced iron pellets |
CN112111645A (en) * | 2020-08-23 | 2020-12-22 | 江苏省沙钢钢铁研究院有限公司 | Pelletizing method of iron-containing dust mud capable of reducing bentonite consumption |
CN115058551A (en) * | 2022-07-06 | 2022-09-16 | 马鞍山乌力平冶金技术工作室 | Blast furnace gas enrichment method |
US11530464B2 (en) * | 2015-04-24 | 2022-12-20 | Sabic Global Technologies B.V. | Composite iron pellets and methods of making same |
-
2007
- 2007-03-06 JP JP2007056156A patent/JP2008214715A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011105975A (en) * | 2009-11-13 | 2011-06-02 | Kashima Senko Kk | Method for agglomerating iron raw material and agglomerating equipment therefor |
KR101309639B1 (en) * | 2009-11-26 | 2013-09-17 | 신닛테츠스미킨 카부시키카이샤 | A cold bonnded pellet and method for preparing thereof |
JP2011202263A (en) * | 2010-03-26 | 2011-10-13 | Nippon Steel Corp | Non-calcined carbon-containing pellet, method for producing the same and production equipment therefor |
JP2011225926A (en) * | 2010-04-19 | 2011-11-10 | Jfe Steel Corp | Agglomerated ore including carbonaceous material for iron-making, and producing method therefor |
JP2012082495A (en) * | 2010-10-14 | 2012-04-26 | Nippon Steel Corp | Method for heating agglomerates |
KR101281764B1 (en) | 2011-05-16 | 2013-07-02 | 주식회사 포스코 | Method and device for treating fine ore for sintering |
CN105555973A (en) * | 2013-09-25 | 2016-05-04 | 株式会社神户制钢所 | Method for manufacturing granular iron |
KR101584778B1 (en) * | 2013-12-26 | 2016-01-13 | 재단법인 포항산업과학연구원 | Method for manufacturing alloy iron |
WO2015114546A1 (en) * | 2014-01-31 | 2015-08-06 | Saudi Basic Industries Corporation | Composite iron pellets |
CN105934526A (en) * | 2014-01-31 | 2016-09-07 | 沙特基础工业公司 | Composite iron pellets |
US20160340751A1 (en) * | 2014-01-31 | 2016-11-24 | Saudi Basic Industries Corporation | Composite iron pellets |
US10214788B2 (en) | 2014-01-31 | 2019-02-26 | Saudi Basic Industries Corporation | Composite iron pellets |
US11530464B2 (en) * | 2015-04-24 | 2022-12-20 | Sabic Global Technologies B.V. | Composite iron pellets and methods of making same |
US10550445B2 (en) | 2015-07-07 | 2020-02-04 | Sabic Global Technologies B.V. | Coated iron ore pellets and a process of making and reducing the same to form reduced iron pellets |
CN112111645A (en) * | 2020-08-23 | 2020-12-22 | 江苏省沙钢钢铁研究院有限公司 | Pelletizing method of iron-containing dust mud capable of reducing bentonite consumption |
CN115058551A (en) * | 2022-07-06 | 2022-09-16 | 马鞍山乌力平冶金技术工作室 | Blast furnace gas enrichment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008214715A (en) | Method for manufacturing nonfired agglomerated ore for iron manufacture | |
CN105308194A (en) | Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore | |
CN102177256B (en) | Blast furnace operating method using carbon-containing unfired pellets | |
JP6460293B2 (en) | Method for producing sintered ore | |
JP6288462B2 (en) | Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore | |
JP2009030115A (en) | Method for producing ore raw material for blast furnace | |
JP2009030114A (en) | Method for producing ore raw material for blast furnace | |
JP2009030112A (en) | Method for producing ore raw material for blast furnace | |
JP2002241853A (en) | Unfired agglomerate for blast furnace | |
JP4867394B2 (en) | Non-calcined agglomerate for iron making | |
JP2007277683A (en) | Nonfired agglomerated ore for iron manufacture | |
JP5825180B2 (en) | Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char | |
JP5517501B2 (en) | Method for producing sintered ore | |
JP5454505B2 (en) | Method for producing unfired carbon-containing agglomerated blast furnace | |
JP6264517B1 (en) | Method for producing carbonaceous interior sinter | |
JP5463571B2 (en) | Method of agglomerating iron raw material and its agglomeration equipment | |
JP6887717B2 (en) | Charcoal interior granulated particles for sinter production and sinter production method using them | |
JP2009030116A (en) | Method for producing ore raw material for blast furnace | |
JP2007277684A (en) | Nonfired agglomerated ore for iron manufacture | |
JP2014025135A (en) | Method for producing non-fired carbon-containing agglomerated iron ore for blast furnace | |
JP5516311B2 (en) | Method for producing carbon-containing unfired pellets for blast furnace | |
JP2007302956A (en) | Nonfired agglomerated ore for iron manufacture | |
JP2019116684A (en) | Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore | |
JP2009019241A (en) | Method for operating blast furnace using non-fired agglomerated ore | |
JPH02294418A (en) | Method for manufacturing blast furnace charge |