JP6264517B1 - Method for producing carbonaceous interior sinter - Google Patents

Method for producing carbonaceous interior sinter Download PDF

Info

Publication number
JP6264517B1
JP6264517B1 JP2017541885A JP2017541885A JP6264517B1 JP 6264517 B1 JP6264517 B1 JP 6264517B1 JP 2017541885 A JP2017541885 A JP 2017541885A JP 2017541885 A JP2017541885 A JP 2017541885A JP 6264517 B1 JP6264517 B1 JP 6264517B1
Authority
JP
Japan
Prior art keywords
carbonaceous material
particles
mass
sintered ore
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017541885A
Other languages
Japanese (ja)
Other versions
JPWO2017221774A1 (en
Inventor
友司 岩見
友司 岩見
一洋 岩瀬
一洋 岩瀬
山本 哲也
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6264517B1 publication Critical patent/JP6264517B1/en
Publication of JPWO2017221774A1 publication Critical patent/JPWO2017221774A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing

Abstract

還元効率を向上できる炭材内装焼結鉱を、高い生産性で製造できる炭材内装焼結鉱の製造方法を提供する。炭材核の周囲に、鉄鉱石粉と、CaOと、を含有する原料からなる外層が形成された炭材内装粒子を、通常の造粒粒子に配合してなる焼結原料を下方吸引式焼結機のパレットに装入して焼結鉱を製造する炭材内装焼結鉱の製造方法であって、焼結原料に対する炭材内装粒子の配合率は、10質量%以上30質量%以下の範囲内である。Provided is a method for producing a carbonaceous material-containing sintered ore that can produce a carbonaceous material-containing sintered ore that can improve the reduction efficiency with high productivity. Downward suction-type sintering of a sintering raw material formed by blending carbonaceous material interior particles in which an outer layer made of a raw material containing iron ore powder and CaO is formed around the carbonaceous material core into normal granulated particles A method for producing a carbonaceous material-containing sintered ore that is charged into a pallet of a machine to produce a sintered ore, wherein the blending ratio of the carbonaceous material-containing particles with respect to the sintering raw material is in the range of 10% by mass to 30% by mass. Is within.

Description

本発明は、高炉などで製鉄原料として使用される焼結鉱の製造技術に関するものであり、具体的には、炭材を内装した造粒粒子(以下、炭材内装粒子という)を焼結原料の一部とした炭材内装焼結鉱の製造方法に関するものである。   The present invention relates to a technique for producing sintered ore used as a steelmaking raw material in a blast furnace or the like, and specifically, granulated particles containing carbonaceous materials (hereinafter referred to as carbonaceous material interior particles) as sintered raw materials. It is related with the manufacturing method of the carbonaceous material interior sintered ore made into a part of.

高炉製鉄法では、現在、鉄源として、鉄鉱石や焼結鉱などの鉄含有原料を主に用いている。焼結鉱は、以下の手順にて製造される。粒径が10mm以下の鉄鉱石と、珪石や蛇紋岩、精錬ニッケルスラグなどからなるSiO含有原料や石灰石、生石灰などのCaO含有原料などからなる副原料と、粉コークスや無煙炭などからなる凝結材と、から構成される焼結原料に適量の水を添加し、ドラムミキサーなどを用いて混合・造粒して擬似粒子とする。擬似粒子とされた焼結原料は、焼結機の循環移動するパレットに装入される。焼結機では、焼結原料に含まれる炭材が燃焼、焼結され、擬似粒子とされた焼結原料は、焼結ケーキとなる。焼結ケーキは、破砕、冷却、整粒されて、一定の粒径以上のものが成品焼結鉱として回収される。焼結鉱は、このようにして製造される塊成鉱の一種である。In the blast furnace iron manufacturing method, iron-containing raw materials such as iron ore and sintered ore are mainly used as iron sources. The sintered ore is manufactured by the following procedure. Iron ore with a particle size of 10mm or less, SiO 2 containing raw materials made of silica, serpentine, refined nickel slag, etc., auxiliary materials made of CaO containing raw materials such as limestone and quicklime, and coagulant made of powdered coke or anthracite Then, an appropriate amount of water is added to the sintering raw material composed of and mixed and granulated using a drum mixer or the like to obtain pseudo particles. The sintering raw material made into the pseudo particles is charged into a pallet that circulates and moves in the sintering machine. In the sintering machine, the carbonaceous material contained in the sintered raw material is burned and sintered, and the sintered raw material made into pseudo particles becomes a sintered cake. The sintered cake is crushed, cooled, and sized, and a product having a certain particle size or more is recovered as a product sintered ore. Sintered ore is a kind of agglomerated ore thus produced.

近年、上記塊成鉱として、鉄鉱石やダスト等の鉄源と、コークス等の炭材とが近接配置された炭材内装塊成鉱が注目を浴びている。その理由は、鉄鉱石等の鉄源と炭材とを一つの塊成鉱の中で近接配置することで、還元効率を向上させることができ、さらに、高炉上部の温度を低下させることができるからである。   In recent years, a carbonaceous material agglomerated ore in which an iron source such as iron ore and dust and a carbonaceous material such as coke are placed in close proximity has attracted attention as the agglomerated mineral. The reason is that by placing the iron source such as iron ore and the carbonaceous material close together in one agglomerated ore, the reduction efficiency can be improved and the temperature of the upper part of the blast furnace can be lowered. Because.

このような塊成鉱として、特許文献1には、高炉・転炉ダスト、圧延スケール、スラッジ、鉄鉱石粉等の製鉄工程で発生する鉄含有粉をそれぞれ単独あるいは混合した原料に、石炭、コークス等の炭材、澱粉を加えて混合、混練し、さらに造粒機で澱粉溶液を供給して造粒された製鉄原料用ペレットが開示されている。しかしながら、上記特許文献1に開示の製鉄原料用ペレットは、焼結鉱製造時にペレット中の炭材が焼失してしまうので、実際には鉄鉱石等の鉄含有原料と炭材とが近接配置されたものとはなっていない。また、近接配置を目的として、鉄鉱石や炭材の粒径を単に小さくしただけでは、熱を伝搬するガスの移動抵抗が大きくなり過ぎ、却って、反応速度の低下を招いて、還元効率を低下させてしまう。   As such agglomerated minerals, Patent Document 1 discloses, as raw materials in which iron-containing powders generated in the iron making process such as blast furnace / converter dust, rolling scale, sludge, iron ore powder, etc. are used alone or in combination, coal, coke, etc. The pellets for iron-making raw materials are disclosed, which are granulated by adding a carbonaceous material and starch, mixing and kneading, and further supplying a starch solution with a granulator. However, since the pellets for iron-making raw materials disclosed in Patent Document 1 burn out the carbonaceous material in the pellets during the production of sintered ore, the iron-containing raw material such as iron ore and the carbonaceous material are actually arranged close to each other. It is not a thing. Also, simply reducing the particle size of iron ore or carbon for the purpose of close placement increases the resistance of gas to propagate heat too much, leading to a decrease in reaction rate and a reduction in reduction efficiency. I will let you.

鉄鉱石と炭材との近接配置を目的とした技術は、特許文献2〜5にも開示されている。これらに開示の技術は、鉄鉱石等の鉄含有原料とコークス等の炭材とを混合したのち、熱間成形して塊成化したもの、あるいは焼成せずに生粒子のまま、高炉等において製鉄用原料として使用するものである。しかしながら、これらの塊成物は、均一混合物もしくは多層化造粒物からなる非焼成のものであるので強度が不足し、粉化が激しくなる。このため、これを高炉等に装入すると、脱水粉化や還元粉化を招いて、高炉の通気性を阻害するため、使用量が制限されてしまうという問題点がある。   Techniques aimed at the close arrangement of the iron ore and the carbon material are also disclosed in Patent Documents 2 to 5. The technology disclosed in these is a mixture of iron-containing raw materials such as iron ore and carbonaceous materials such as coke, and then agglomerated by hot forming, or in a blast furnace or the like as raw particles without firing. Used as a raw material for iron making. However, these agglomerates are non-fired ones composed of a uniform mixture or multi-layered granulated material, so that the strength is insufficient and pulverization becomes intense. For this reason, when this is inserted into a blast furnace or the like, dehydration or reduction powdering is caused and the air permeability of the blast furnace is hindered, so that the amount used is limited.

このような問題点を解決する技術として、炭材内装塊成鉱の技術が提案されている。特許文献6には、小塊コークスからなる炭材核のまわりに、造粒機を使って、製鉄ダストやミルスケール等の金属鉄含有酸化鉄粉を被覆して低酸化度の酸化鉄殻を被覆形成した後、大気中で200℃以上300℃未満の温度で0.5〜5時間加熱して酸化処理することにより、該酸化鉄殻表面にのみ高酸化度の酸化鉄からなる硬質薄層を形成することで炭材内装塊成鉱を得る技術が開示されている。   As a technique for solving such a problem, a technique of carbon material interior agglomeration has been proposed. In Patent Document 6, a low-oxidation iron oxide shell is formed by coating iron oxide powder containing metal iron such as iron dust and mill scale around a carbon material core made of small coke using a granulator. After the coating is formed, a hard thin layer made of iron oxide having a high degree of oxidation only on the surface of the iron oxide shell by heating in the atmosphere at a temperature of 200 ° C. or higher and lower than 300 ° C. for 0.5 to 5 hours for oxidation treatment. A technique for obtaining an agglomerated carbonaceous material agglomerated mineral by forming a steel is disclosed.

特許文献7には、製鉄ダストやミルスケール等の酸化鉄粉もしくは鉄鉱石粉と炭材とを、造粒機を使って混合造粒し、次いで、その造粒物の外表面に金属鉄含有酸化鉄粉を被覆して低酸化度の酸化鉄殻を被覆形成することで、酸化鉄粉もしくは鉄鉱石粉の中に、3mm以下の大きさのコークス粉を分散状態で含む塊成鉱を得る技術が開示されている。さらに、特許文献8には、炭材を鉄鉱石粉とCaO含有原料で被覆した炭材内装粒子を作製し、これを焼結原料に混合後、下方吸引型焼結機において焼結する方法が開示されている。   In Patent Document 7, iron oxide powder such as iron-making dust or mill scale or iron ore powder and carbonaceous material are mixed and granulated using a granulator, and then metal iron-containing oxide is formed on the outer surface of the granulated product. The technology to obtain agglomerates containing coke powder with a size of 3 mm or less in a dispersed state in iron oxide powder or iron ore powder by coating iron powder and forming a low oxidation iron oxide shell. It is disclosed. Further, Patent Document 8 discloses a method of producing carbonaceous material interior particles in which a carbonaceous material is coated with iron ore powder and a CaO-containing raw material, mixing this with a sintering raw material, and then sintering in a downward suction type sintering machine. Has been.

特開2001−348625号公報JP 2001-348625 A 特許第3502008号公報Japanese Patent No. 3502008 特許第3502011号公報Japanese Patent No. 3502011 特開2005−344181号公報JP 2005-344181 A 特開2002−241853号公報JP 2002-241853 A 特開2011−195943号公報JP 2011-195943 A 特開2011−225926号公報JP 2011-225926 A 特許第5790966号公報Japanese Patent No. 5790966

佐藤 駿、吉永 真弓、一伊達 稔、川口 尊三、焼結原料の造粒および通気現象のモデル化の検討、鉄と鋼、1982年、Vol.68、No.15、2174−2181Sato, Satoshi, Yoshinaga, Mayumi Ichidate, Satoshi Kawaguchi, Shinzo Kawaguchi, Study of granulation of sintering raw materials and modeling of aeration phenomenon, Iron and Steel, 1982, Vol. 68, no. 15, 2174-2181

特許文献6および7に開示の技術によれば、製鉄原料として適当な大きさと十分な強度を有し、しかも、鉄含有原料と炭材とが近接配置されるので、還元反応を起こし易く、低温還元が可能な炭材内装焼結鉱を得ることができる。しかしながら、これらの技術を実施するためには、大気中で200℃以上300℃未満の温度で0.5〜5時間加熱して酸化処理をする設備が必要であり、生産量に制限があるという問題がある。   According to the techniques disclosed in Patent Documents 6 and 7, the iron-containing raw material has a suitable size and sufficient strength, and since the iron-containing raw material and the carbonaceous material are arranged close to each other, a reduction reaction is easily caused and the temperature is low. A carbonaceous material-containing sintered ore that can be reduced can be obtained. However, in order to carry out these technologies, it is necessary to have equipment for heating treatment in the atmosphere at a temperature of 200 ° C. or more and less than 300 ° C. for 0.5 to 5 hours, and there is a limit to the production amount. There's a problem.

特許文献8に開示の技術では、焼結機で炭材内装焼結鉱を製造することで生産量の制限を解決しているが、炭材内装粒子の焼結原料への配合率については何ら考慮されていない。炭材内装粒子の焼結原料への配合率が高すぎる場合は、炭材内装焼結鉱の強度低下による生産性の低下を招き、炭材内装粒子の焼結原料への配合率が低すぎる場合は、還元効率の向上効果を享受できない可能性がある。   The technique disclosed in Patent Document 8 solves the production limit by producing a carbonaceous material-containing sintered ore with a sintering machine, but what is the mixing ratio of carbonaceous material-containing particles into the sintering raw material? Not considered. If the blending ratio of carbonaceous material interior particles in the sintered raw material is too high, it will lead to a decrease in productivity due to a decrease in strength of the carbonaceous material interior sintered ore, and the blending ratio of carbonaceous material interior particles in the sintering raw material is too low. In this case, there is a possibility that the effect of improving the reduction efficiency cannot be enjoyed.

本発明は、上記課題を鑑みてなされたものであり、その目的は、還元効率を向上できる炭材内装焼結鉱を、高い生産性で製造できる炭材内装焼結鉱の製造方法を提供することにある。   This invention is made | formed in view of the said subject, The objective provides the manufacturing method of the carbonaceous material interior sintered ore which can manufacture the carbonaceous material interior sintered ore which can improve reduction efficiency with high productivity. There is.

このような課題を解決するための本発明の特徴は以下の通りである。   The features of the present invention for solving such problems are as follows.

(1)炭材核の周囲に、鉄鉱石粉と、CaOと、を含有する原料からなる外層が形成された炭材内装粒子を、通常の造粒粒子に配合してなる焼結原料を下方吸引式焼結機のパレットに装入して焼結鉱を製造する炭材内装焼結鉱の製造方法であって、前記焼結原料に対する前記炭材内装粒子の配合率は、10質量%以上30質量%以下の範囲内である、炭材内装焼結鉱の製造方法。   (1) Suction raw material is drawn downward by mixing carbonaceous material interior particles, in which an outer layer made of a raw material containing iron ore powder and CaO, is formed into normal granulated particles around the carbonaceous material core. It is a manufacturing method of a carbonaceous material-containing sintered ore that is charged into a pallet of a ceramic sintering machine to produce a sintered ore, and the blending ratio of the carbonaceous material-containing particles with respect to the sintering raw material is 10% by mass or more and 30%. The manufacturing method of a carbonaceous material interior sintered ore which is in the range of the mass% or less.

(2)前記焼結原料に対する前記炭材内装粒子の配合率は、15質量%以上25質量%以下の範囲内である、(1)に記載の炭材内装焼結鉱の製造方法。   (2) The method for producing a carbonaceous material-containing sintered ore according to (1), wherein a blending ratio of the carbonaceous material-containing particles with respect to the sintered raw material is in a range of 15% by mass to 25% by mass.

本発明の炭材内装焼結鉱の製造方法を実施することにより、炭材内装粒子を含む焼結原料によって形成される装入層の通気性を向上させることができる。このように通気性が向上された装入層は短時間で焼結できるので、本発明の炭材内装焼結鉱の製造方法の実施により、還元効率を向上できる炭材内装焼結鉱を高い生産性で製造できる。   By carrying out the method for producing a carbonaceous material-containing sintered ore of the present invention, it is possible to improve the air permeability of the charging layer formed by the sintered raw material containing the carbonaceous material-containing particles. Since the charging layer with improved air permeability can be sintered in a short time, the carbonaceous material-containing sintered ore that can improve the reduction efficiency is high by implementing the method for producing the carbonized material-containing sintered ore of the present invention. Can be manufactured with productivity.

図1は、本実施形態に係る炭材内装焼結鉱の製造方法の一例を説明する模式図である。Drawing 1 is a mimetic diagram explaining an example of the manufacturing method of the carbonaceous material interior sintered ore concerning this embodiment. 図2は、炭材内装粒子配合率と、装入密度および通気性との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the carbonaceous material interior particle blending ratio, the charging density, and the air permeability. 図3は、炭材内装粒子配合率と、冷間強度および被還元性との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the carbonaceous material interior particle content ratio, the cold strength, and the reducibility. 図4は、炭材核内装率が97質量%、90質量%および80質量%である炭材内装粒子の配合率と、焼結鉱生産率との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the blending ratio of carbonaceous material interior particles having a carbonaceous material core interior ratio of 97 mass%, 90 mass%, and 80 mass% and the sintered ore production rate.

以下、発明の実施形態を通じて、本発明を説明するが、以下の実施形態は、特許請求の範囲に係る発明を限定するものではない。図1は、本実施形態に係る炭材内装焼結鉱の製造方法の一例を説明する模式図である。図1を用いて、炭材内装粒子および炭材内装焼結鉱の製造方法を説明する。   Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. Drawing 1 is a mimetic diagram explaining an example of the manufacturing method of the carbonaceous material interior sintered ore concerning this embodiment. The manufacturing method of carbonaceous material interior particle | grains and a carbonaceous material interior sintered ore is demonstrated using FIG.

図1に示すように、まず、混練機を用いて鉄鉱石粉と生石灰(CaO)とを含有する原料を均一に混合して混合物とする。当該混合物と、炭材核となる粒径3mm以上のコークス粒子とを造粒機へ供給し、所定量の水を添加する。造粒機では、水の架橋力によってコークス粒子の周囲に鉄鉱石粉と生石灰とが均一化された混合粉からなる外層が形成され、粒径5mm以上の大きさを有する炭材内装粒子が造粒される。このような造粒工程で炭材内装粒子は造粒されるが、造粒された炭材内装粒子の全てに炭材核が内装されているのではなく、一部の炭材核が内装されていない造粒粒子を含む。本実施形態において炭材内装粒子とは、上記造粒工程で造粒された、炭材核を内装する造粒粒子と一部の炭材核を内装しない造粒粒子とを含む造粒粒子を意味する。なお、本実施形態における粒径とは、JIS(日本工業規格) Z 8801−1に準拠した公称目開きの篩を用いて篩分けされた粒径であり、例えば、粒径3mm以上とは、JIS Z 8801−1に準拠した公称目開き3mmの篩を用いて篩上に篩分けされる粒径をいう。   As shown in FIG. 1, first, a raw material containing iron ore powder and quicklime (CaO) is uniformly mixed using a kneader to obtain a mixture. The mixture and coke particles having a particle diameter of 3 mm or more serving as a carbon material core are supplied to a granulator, and a predetermined amount of water is added. In the granulator, an outer layer made of a mixed powder in which iron ore powder and quicklime are homogenized is formed around the coke particles by the bridging power of water, and the carbonaceous material-containing particles having a particle size of 5 mm or more are granulated. Is done. In such a granulation process, the carbonaceous material interior particles are granulated, but not all of the granulated carbonaceous material interior particles are equipped with the carbonaceous material core, but some of the carbonaceous material cores are interiorized. Not containing granulated particles. In the present embodiment, the carbonaceous material-incorporated particles are granulated particles that are granulated in the granulation step, and include granulated particles that have carbonaceous material cores and granulated particles that do not have some carbonaceous material cores. means. In addition, the particle size in this embodiment is a particle size screened using a sieve with a nominal opening based on JIS (Japanese Industrial Standards) Z8801-1. For example, a particle size of 3 mm or more is It refers to the particle size that is sieved on the sieve using a sieve with a nominal aperture of 3 mm in accordance with JIS Z8801-1.

次いで、従来の原料をドラムミキサー等で撹拌、造粒された通常の造粒粒子である擬似粒子に、炭材内装粒子を配合して焼結原料とする。このとき、焼結原料に対する配合率が10質量%以上30質量%以下の範囲内となるように炭材内装粒子を配合する。なお、本実施形態において、炭材内装粒子の焼結原料に対する配合率とは、炭材内装粒子の質量を、焼結原料の質量で除して算出される値である。
炭材内装粒子が配合された焼結原料は、下方吸引式焼結機のサージホッパーに搬入される。焼結原料は、サージホッパーから無端移動式のパレットに装入され、装入層が形成される。本実施形態では、炭材内装粒子を、焼結原料に対する配合率が10質量%以上30質量%以下の範囲内となるように配合している。このような配合率にすることで、パレットに装入された装入層の通気性を向上させることができる。装入層の通気性をさらに高めるためには、焼結原料に対する炭材内装粒子の配合率を10質量%以上30質量%未満の範囲内とすることが好ましく、当該配合率を15質量%以上25質量%以下の範囲内とすることがより好ましく、当該配合率を20質量%とすることがさらに好ましい。
Next, carbonaceous material interior particles are blended with pseudo particles which are normal granulated particles stirred and granulated with a drum mixer or the like to obtain a sintered raw material. At this time, carbonaceous material interior particles are mix | blended so that the mixture ratio with respect to a sintering raw material may become in the range of 10 mass% or more and 30 mass% or less. In addition, in this embodiment, the compounding rate with respect to the sintering raw material of carbonaceous material interior particle | grains is a value calculated by remove | dividing the mass of carbonaceous material interior particle | grains by the mass of a sintering raw material.
The sintering raw material in which the carbonaceous material interior particles are blended is carried into a surge hopper of a downward suction type sintering machine. The sintering raw material is charged into an endless moving pallet from the surge hopper, and a charging layer is formed. In the present embodiment, the carbonaceous material interior particles are blended so that the blending ratio with respect to the sintered raw material is within the range of 10% by mass or more and 30% by mass or less. By setting it as such a mixture ratio, the air permeability of the charging layer charged into the pallet can be improved. In order to further enhance the air permeability of the charging layer, the blending ratio of the carbonaceous material interior particles with respect to the sintered raw material is preferably in the range of 10% by weight to less than 30% by weight, and the blending ratio is 15% by weight or more. More preferably, the content is within the range of 25% by mass or less, and the blending ratio is more preferably 20% by mass.

装入層は、上方に設置された点火炉によって点火され、下方に設置されたウインドボックスから上方のガスを下方に吸引することで装入層を順次燃焼される。装入層は、当該燃焼により発生する燃焼熱で焼結されて焼結ケーキとなる。このようにして得られた焼結ケーキは、排鉱部で破砕および整粒され、約5mm以上の塊成物が成品の炭材内装焼結鉱として回収される。このようにして、炭材内装焼結鉱が製造され、当該炭材内装焼結鉱が高炉の製鉄原料として使用される。   The charging layer is ignited by an ignition furnace installed on the upper side, and the charging layer is sequentially burned by sucking the upper gas downward from a window box installed on the lower side. The charge layer is sintered with combustion heat generated by the combustion to form a sintered cake. The sintered cake obtained in this manner is crushed and sized in the discharge portion, and agglomerates of about 5 mm or more are recovered as a product carbonaceous material-containing sintered ore. In this way, the carbonaceous material-containing sintered ore is produced, and the carbonaceous material-containing sintered ore is used as an ironmaking raw material for the blast furnace.

上述したように、配合率が10質量%以上30質量%以下の範囲内になるように炭材内装粒子が配合されることでパレットに装入された装入層の通気性は向上する。通気性が向上された装入層は、通気性が向上されていない装入層と比較してより短時間で焼結されるので、上述した配合率の範囲内になるように炭材内装粒子を配合することで、炭材内装焼結鉱の生産性を向上させることができる。また、本実施形態に係る炭材内装焼結鉱の製造方法は、既存の焼結機を用いて実施できるので、新たな焼結設備を用意するための設備コストが発生することもない。   As described above, the air permeability of the charging layer charged in the pallet is improved by mixing the carbonaceous material-containing particles so that the mixing ratio is within the range of 10% by mass to 30% by mass. Since the charging layer with improved air permeability is sintered in a shorter time compared with the charging layer with no improved air permeability, the carbonaceous material interior particles are adjusted so as to be within the range of the blending ratio described above. By blending, the productivity of the carbonaceous material-containing sintered ore can be improved. Moreover, since the manufacturing method of the carbonaceous material-containing sintered ore according to the present embodiment can be carried out using an existing sintering machine, no equipment cost for preparing a new sintering equipment is generated.

また、炭材内装粒子の造粒工程においても、炭材内装粒子の全質量に対する炭材核となるコークス粒子の配合率を1質量%以上10質量%以下の範囲内とすれば、例えば、ディスクペレタイザーといった従来から用いられている造粒機をそのまま用いることができる。   Also, in the granulation step of the carbonaceous material interior particles, if the mixing ratio of the coke particles serving as the carbonaceous material core with respect to the total mass of the carbonaceous material interior particles is within the range of 1% by mass to 10% by mass, for example, a disk Conventional granulators such as pelletizers can be used as they are.

次に、炭材内装焼結鉱について説明する。本実施形態に係る炭材内装焼結鉱の製造方法で製造される炭材内装焼結鉱は、炭材と鉄鉱石等の鉄源とが塊成鉱内で近接配置されている。炭材と鉄源とを塊成鉱の中で近接配置すると、炭材側のガス化反応(吸熱反応)で発生したCOが、鉄源側の還元反応(発熱反応)に使用され、還元反応で発生したCOが、ガス化反応で使用される、といったように、これらの反応が、塊成鉱内部で連鎖的に速い速度で繰り返して起こるので還元効率が向上する。さらに、炭材と鉄源とを近接配置するとガス化反応に必要となる熱が、鉄源の還元反応によって供給されるので熱効率も向上し、還元効率を低下させることなく高炉上部の温度を低下させることもできる。このように、炭材内装焼結鉱を高炉用の製鉄原料として用いることで、還元効率を向上させることができ、さらに、高炉上部の温度を低下させることができる。Next, the carbonaceous material-containing sintered ore will be described. In the carbon material-containing sintered ore manufactured by the method for manufacturing a carbon material-containing sintered ore according to the present embodiment, the carbon material and an iron source such as iron ore are arranged close to each other in the agglomerate. When the carbon material and the iron source are placed close together in the agglomerate, CO generated by the gasification reaction (endothermic reaction) on the carbon material side is used for the reduction reaction (exothermic reaction) on the iron source side, and the reduction reaction These reactions are repeated in a chain at a high rate inside the agglomerate, such that the CO 2 generated in is used in the gasification reaction, so that the reduction efficiency is improved. Furthermore, if the carbonaceous material and the iron source are placed close to each other, the heat required for the gasification reaction is supplied by the reduction reaction of the iron source, improving the thermal efficiency and reducing the temperature at the top of the blast furnace without reducing the reduction efficiency. It can also be made. Thus, reduction efficiency can be improved and the temperature of a blast furnace upper part can be lowered | hung by using a carbonaceous material interior sintered ore as an iron-making raw material for blast furnaces.

内径が300mmφ×高さが400mmの円筒状の焼結実験装置(以下、焼結鍋と記載する)を使用して焼結実験を行なった。焼結鍋に擬似粒子を400mmの厚さまで装入して装入層を形成させ、その上表面を、プロパンを燃料としたバーナーを用いて60秒間加熱して点火し、焼結鍋の下部から700mmAqで吸引して、焼結ケーキを作製した。   Sintering experiments were performed using a cylindrical sintering experiment apparatus (hereinafter referred to as a sintering pot) having an inner diameter of 300 mmφ × height of 400 mm. Pseudo particles are charged to a thickness of 400 mm in a sintering pot to form a charging layer, and the upper surface thereof is ignited by heating for 60 seconds using a burner using propane as a fuel. Suction was made at 700 mmAq to prepare a sintered cake.

上記焼結実験においては、焼結鍋の下部から排出される燃焼排ガスの温度を測定し、点火からこの温度がピークに達した時点までの時間を焼結時間とした。また、焼結実験終了後、焼結ケーキを2mの高さから1回落下させ、目開き10mmの篩の上に残った焼結鉱を成品焼結鉱として定義した。成品歩留は、10mm以上の成品焼結鉱の質量を焼結ケーキの質量で除して算出した。また、焼結鍋の断面積(m)と、成品焼結鉱の質量(t)と、焼結時間(h)と、から単位炉床面積(m)および単位時間(h)当たりの焼結鉱生産量(t)である焼結鉱の生産率(t/(h×m))を算出した。In the sintering experiment, the temperature of the combustion exhaust gas discharged from the lower part of the sintering pan was measured, and the time from ignition to the time when this temperature reached the peak was taken as the sintering time. Moreover, after the sintering experiment was completed, the sintered cake was dropped once from a height of 2 m, and the sintered ore remaining on the sieve having an opening of 10 mm was defined as the product sintered ore. The product yield was calculated by dividing the mass of the product sintered ore of 10 mm or more by the mass of the sintered cake. Further, from the sectional area of the sintering pan (m 2 ), the mass of the product sintered ore (t), and the sintering time (h), the unit hearth area (m 2 ) and the unit time (h) The production rate (t / (h * m < 2 >)) of the sintered ore which is a sintered ore production amount (t) was computed.

炭材内装粒子の炭材核となるコークス粒子は、JIS Z 8801−1に準拠した篩を用いて篩分けした粒径2.8mm以上4.75mm以下の範囲内のコークス粒子を使用した。このコークス粒子の周囲に、鉄鉱石粉(150μm以下)と生石灰とが混合された混合粉層の厚さが5mmになるようにディスクペレタイザーで造粒して、炭材核の内装率が97質量%である炭材内装粒子を作製した。   Coke particles having a particle diameter of 2.8 mm or more and 4.75 mm or less obtained by sieving using a sieve conforming to JIS Z8801-1 were used as the coke particles serving as the carbon material core of the carbon material interior particles. Around this coke particle, granulated with a disk pelletizer so that the thickness of the mixed powder layer in which iron ore powder (150 μm or less) and quick lime are mixed is 5 mm, and the interior ratio of the carbonaceous material core is 97 mass% The carbonaceous material interior particle | grains which are are produced.

一方、通常の造粒粒子は、通常の粉鉱石と石灰石等の副原料、さらに粒径2.8mm以下の粉コークスに水を加えて混合し、ドラムミキサーで算術平均の粒径が3〜4mm程度となるように造粒した原料を使用した。なお、算術平均の粒径は、複数の粒度範囲に篩分けした造粒粒子の重量を測定し、それぞれの粒度範囲の代表粒径を用いて加重平均することで算出した。   On the other hand, ordinary granulated particles are mixed with ordinary powdered ore and auxiliary materials such as limestone, and powder coke having a particle size of 2.8 mm or less with water, and the arithmetic average particle size is 3 to 4 mm with a drum mixer. The raw material granulated to the extent was used. The arithmetic average particle size was calculated by measuring the weight of the granulated particles sieved into a plurality of particle size ranges and performing weighted averaging using the representative particle sizes in the respective particle size ranges.

当該通常の造粒粒子に、作製した炭材内装粒子を配合して焼結原料とした。焼結原料に対する炭材内装粒子の配合率を変えた焼結原料を調整し、当該焼結原料を用いて焼結実験を行った。表1に、焼結実験の条件を示す。   The normal agglomerated particles were mixed with the produced carbonaceous material interior particles to obtain a sintered raw material. The sintering raw material which changed the compounding ratio of the carbonaceous material interior particle | grains with respect to a sintering raw material was adjusted, and the sintering experiment was done using the said sintering raw material. Table 1 shows the conditions of the sintering experiment.

各条件において、焼結鍋に装入した炭材内装粒子および擬似粒子に含まれるCaOと、SiOと、塩基度と、が一定となるように石灰石や硅石で調整した。その他の成分は成り行きとした。また粉コークスは炭材内装粒子と焼結原料の質量和に対して、5質量%となるように擬似粒子中に配合した。In each condition, and CaO contained in the carbonaceous material interior particles and pseudo particles were charged into the sintering pot, and SiO 2, and basicity, was adjusted with limestone and Keiseki to be constant. The other ingredients were considered as a consequence. Moreover, the powder coke was blended in the pseudo particles so as to be 5% by mass with respect to the mass sum of the carbonaceous material interior particles and the sintered raw material.

図2は、炭材内装粒子配合率と、装入密度および通気性との関係を示すグラフである。図2に示したグラフにおいて、横軸は炭材内装粒子配合率(質量%)であり、一方の縦軸は装入密度(dry−t/m)であり、他方の縦軸は通気性(J・P・U指数(−))である。図2における装入密度(dry−t/m)は、水分が除かれた焼結原料であって装入鍋に装入された質量(t)を焼結鍋の内容積(m)で除した値である。また、J・P・U指数(−)とは、通気性の評価に用いられる指数であって、非特許文献1に記載の方法に従って算出される指数である。FIG. 2 is a graph showing the relationship between the carbonaceous material interior particle blending ratio, the charging density, and the air permeability. In the graph shown in FIG. 2, the horizontal axis represents the carbonaceous material interior particle content ratio (mass%), one vertical axis represents the charging density (dry-t / m 3 ), and the other vertical axis represents air permeability. (J · P · U index (−)). The charging density (dry-t / m 3 ) in FIG. 2 is the mass (t) of the sintering raw material from which moisture has been removed and charged into the charging pot, and the inner volume (m 3 ) of the sintering pot. The value divided by. The J · P · U index (−) is an index used for the evaluation of air permeability, and is an index calculated according to the method described in Non-Patent Document 1.

図2に示すように、炭材内装粒子の配合率の増加に伴い、装入層の装入密度は高くなった。一方、装入層の通気性を示すJ・P・U指数は、炭材内装粒子の配合率の増加に伴い20質量%付近までは向上したものの、それ以上炭材内装粒子の配合率を増やすと、J・P・U指数は減少に転じた。これは、炭材内装粒子は通常の造粒粒子よりも粒径が大きいので、装入した炭材内装粒子が空気の通り道となり、配合率20質量%付近までは通気性が向上したと考えられる。一方、配合率20質量%を超えると通気性は低下した。これは、炭材内装粒子同士を結び付ける溶融した通常の造粒粒子が減少したことで装入層内に分散した炭材内装粒子が層内の荷重に耐えきれずに一部が崩壊し、これにより、空気の通り道が塞がれたり、装入密度の増加により増加した粉コークスの燃焼熱により炭材内装粒子が溶融したためと考えられる。さらに、炭材内装粒子の配合率が30質量%を上回ると、装入層の通気性は著しく低下した。   As shown in FIG. 2, the charging density of the charging layer increased with the increase in the blending ratio of the carbonaceous material interior particles. On the other hand, the J · P · U index, which indicates the air permeability of the charging layer, improved to around 20% by mass with the increase in the mixing ratio of the carbonaceous interior particles, but further increased the mixing ratio of the carbonaceous interior particles. J / P / U index started to decrease. This is because the carbonaceous material-incorporated particles have a larger particle size than normal granulated particles, and the charged carbonaceous material-incorporated particles become air passages, and it is considered that the air permeability is improved up to a mixing ratio of about 20% by mass. . On the other hand, when the blending ratio exceeded 20% by mass, the air permeability decreased. This is because the carbon granulated particles dispersed in the charging layer cannot withstand the load in the layer due to a decrease in the melted normal granulated particles linking the carbonaceous material interior particles, and part of this collapses. This is considered to be because the carbon material interior particles were melted by the heat of combustion of the powdered coke which was blocked by the passage of air or increased by increasing the charging density. Furthermore, when the mixing ratio of the carbonaceous material interior particles exceeded 30% by mass, the air permeability of the charging layer was remarkably lowered.

図3は、炭材内装粒子配合率と、冷間強度および被還元性との関係を示すグラフである。
図3に示したグラフにおいて、横軸は炭材内装粒子配合率(質量%)であり、一方の縦軸は炭材内装焼結鉱の冷間強度:TI(%)であり、他方の縦軸は炭材内装焼結鉱の被還元性:RI(%)である。なお、図3における冷間強度は、JIS M 8712に準拠して測定を行ない、被還元性は、JIS M 8713に準拠して測定を行なった。
FIG. 3 is a graph showing the relationship between the carbonaceous material interior particle content ratio, the cold strength, and the reducibility.
In the graph shown in FIG. 3, the horizontal axis represents the carbonaceous material interior particle blending ratio (mass%), one vertical axis represents the cold strength of the carbonaceous material-containing sintered ore: TI (%), and the other vertical axis. The axis is the reducibility of the carbonaceous material-containing sintered ore: RI (%). In addition, the cold intensity | strength in FIG. 3 was measured based on JISM8712, and the reducibility was measured based on JISM8713.

図3に示すように、炭材内装粒子の配合率の増加に伴い、炭材内装焼結鉱の強度を示す冷間強度はわずかに低下した。これは、通気性の改善に起因するものと考えられるが、本実験における炭材内装粒子の配合率の範囲内では、それほど大きな冷間強度の低下は見られなかった。一方、被還元性は、炭材内装粒子の配合率の増加に伴い高くなった。このことから、炭材内装粒子の配合率を増加させることで、鉄源である炭材内装焼結鉱の被還元性を高めることができることが確認された。   As shown in FIG. 3, the cold strength indicating the strength of the carbonaceous material-containing sintered ore slightly decreased with an increase in the blending ratio of the carbonaceous material-containing particles. This is considered to be due to the improvement of the air permeability, but no significant reduction in cold strength was observed within the range of the mixing ratio of the carbonaceous material interior particles in this experiment. On the other hand, the reducibility increased with an increase in the blending ratio of the carbonaceous material interior particles. From this, it was confirmed that the reducibility of the carbonaceous material-containing sintered ore, which is an iron source, can be increased by increasing the blending ratio of the carbonaceous material-containing particles.

図4は、炭材核内装率が97質量%、90質量%および80質量%である炭材内装粒子の配合率と、焼結鉱生産率との関係を示すグラフである。図4に示したグラフにおいて、横軸は炭材内装粒子配合率(質量%)であり、縦軸は炭材内装焼結鉱の生産率(t/(h×m))である。また、丸プロットは、炭材核内装率が97質量%の炭材内装粒子の結果であり、三角プロットは、炭材核内装率が90質量%の炭材内装粒子の結果であり、四角プロットは、炭材核内装率が90質量%の炭材内装粒子の結果を示す。FIG. 4 is a graph showing the relationship between the blending ratio of carbonaceous material interior particles having a carbonaceous material core interior ratio of 97 mass%, 90 mass%, and 80 mass% and the sintered ore production rate. In the graph shown in FIG. 4, the horizontal axis represents the carbonaceous material interior particle blending ratio (mass%), and the vertical axis represents the carbonaceous material interior sintered ore production rate (t / (h × m 2 )). In addition, the round plot is the result of the carbonaceous material interior particles having a carbonaceous material core interior rate of 97% by mass, and the triangular plot is the result of the carbonaceous material interior particle having the carbonaceous material nuclear interior rate of 90% by mass, and the square plot. These show the result of the carbonaceous material interior particle | grains whose carbon material core interior rate is 90 mass%.

図4に示すように、炭材核の内装率に関わらず、炭材内装焼結鉱の生産率は、炭材内装粒子の配合率の増加に伴い、20質量%付近までは向上した。一方、炭材内装粒子の配合率が20質量%を上回ると炭材内装焼結鉱の生産率は減少に転じた。これらの傾向は、装入層の通気性と同じである。   As shown in FIG. 4, regardless of the interior rate of the carbon material core, the production rate of the carbon material interior sintered ore was improved up to about 20% by mass with the increase in the blending rate of the carbon material interior particles. On the other hand, when the mixing ratio of the carbonaceous material interior particles exceeded 20% by mass, the production rate of the carbonaceous material interior sintered ore started to decrease. These tendencies are the same as the air permeability of the charging layer.

炭材核の有無に関わらず、炭材内装粒子は通常の造粒粒子よりも粒径が大きい。このため、炭材核の有無に関わらず、上述した配合率の範囲内になるように炭材内装粒子を配合することで、装入された炭材内装粒子が空気の通り道となって装入層の通気性が向上し、これにより、炭材内装焼結鉱の生産性を向上できたと考えられる。これらの結果から、炭材核の内装率に関わらず、炭材内装粒子の配合率を10質量%以上30質量%以下の範囲内とすることで、炭材内装焼結鉱の生産率、すなわち、炭材内装焼結鉱の生産性を高められることが確認された。   Regardless of the presence or absence of carbonaceous material cores, the carbonaceous material interior particles have a larger particle size than ordinary granulated particles. For this reason, regardless of the presence or absence of the carbon material core, by mixing the carbon material interior particles so as to be within the range of the blending ratio described above, the charged carbon material interior particles become the air passageway and charged. It is thought that the air permeability of the layer was improved, and this could improve the productivity of the carbonaceous material-containing sintered ore. From these results, regardless of the interior rate of the carbon material core, by making the blending rate of the carbon material interior particles within the range of 10% by mass to 30% by mass, As a result, it was confirmed that the productivity of the carbonaceous interior sintered ore could be improved.

また、図4に示すように、炭材内装焼結鉱の生産率を示すプロファイルは、炭材内装粒子の配合率20質量%付近を頂点とした上凸形のプロファイルとなっている。このため、炭材内装焼結鉱の生産性を高めるためには、炭材内装粒子の配合率を10質量%以上30質量%未満の範囲内とすることが好ましく、当該配合率を15質量%以上25質量%以下の範囲内とすることがより好ましく、当該配合率を20質量%とすることがさらに好ましいことがわかる。   Further, as shown in FIG. 4, the profile indicating the production rate of the carbonaceous material-containing sintered ore is an upwardly convex profile with the blending rate of the carbonaceous material-containing particles being around 20% by mass. For this reason, in order to increase the productivity of the carbonaceous material-containing sintered ore, it is preferable that the mixing rate of the carbonaceous material-containing particles is within a range of 10% by mass or more and less than 30% by mass, and the mixing rate is 15% by mass. It can be seen that the content is more preferably in the range of 25% by mass or less, and the blending ratio is more preferably 20% by mass.

このように、焼結原料に対する配合率が10質量%以上30質量%以下の範囲内になるように炭材内装粒子を配合した焼結原料を用いる本実施形態に係る炭材内装焼結鉱の製造方法を実施することで、還元効率を向上できる被還元性の高い炭材内装焼結鉱を、高い生産性で製造できることが焼結実験により確認された。   Thus, the carbonaceous material-containing sintered ore according to the present embodiment using the sintered raw material in which the carbonaceous material-containing particles are blended so that the blending ratio with respect to the sintered raw material is in the range of 10% by mass to 30% by mass. Sintering experiments confirmed that by implementing the manufacturing method, a highly reducible carbonaceous material-containing sintered ore that can improve the reduction efficiency can be manufactured with high productivity.

Claims (2)

炭材核の周囲に、鉄鉱石粉と、CaOと、を含有する原料からなる外層が形成された炭材内装粒子を、鉄鉱石やダスト等の鉄源と、副原料と、粉コークスや無煙炭などからなる凝結材と、を混合して造粒した造粒粒子に配合してなる焼結原料を下方吸引式焼結機のパレットに装入して焼結鉱を製造する炭材内装焼結鉱の製造方法であって、
前記焼結原料に対する前記炭材内装粒子の配合率は、10質量%以上30質量%以下の範囲内であ
前記炭材内装粒子の粒径は5mm以上であって、前記造粒粒子より粒径が大きい、炭材内装焼結鉱の製造方法。
Carbonaceous material interior particles in which an outer layer made of a raw material containing iron ore powder and CaO is formed around the carbonaceous material core, iron sources such as iron ore and dust, auxiliary materials, powdered coke, anthracite, etc. A carbonaceous material-containing sintered ore that produces sintered ore by charging a sintered raw material mixed with granulated particles that are mixed and granulated into a pallet of a downward suction type sintering machine A manufacturing method of
The blending ratio of the carbonaceous material decorated particles to sintering raw material state, and are within the range of 10% by weight to 30% by weight,
A method for producing a carbonaceous material-containing sintered ore , wherein the carbonaceous material-containing particles have a particle size of 5 mm or more and are larger than the granulated particles .
前記焼結原料に対する前記炭材内装粒子の配合率は、15質量%以上25質量%以下の範囲内である、請求項1に記載の炭材内装焼結鉱の製造方法。   2. The method for producing a carbon material-containing sintered ore according to claim 1, wherein a blending ratio of the carbon material-containing particles with respect to the sintered raw material is in a range of 15% by mass or more and 25% by mass or less.
JP2017541885A 2016-06-22 2017-06-14 Method for producing carbonaceous interior sinter Active JP6264517B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016123145 2016-06-22
JP2016123145 2016-06-22
PCT/JP2017/021889 WO2017221774A1 (en) 2016-06-22 2017-06-14 Method for manufacturing carbon-material-incorporated sintered ore

Publications (2)

Publication Number Publication Date
JP6264517B1 true JP6264517B1 (en) 2018-01-24
JPWO2017221774A1 JPWO2017221774A1 (en) 2018-06-21

Family

ID=60783431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017541885A Active JP6264517B1 (en) 2016-06-22 2017-06-14 Method for producing carbonaceous interior sinter

Country Status (6)

Country Link
JP (1) JP6264517B1 (en)
KR (1) KR102233326B1 (en)
CN (1) CN109328238A (en)
PH (1) PH12018502450A1 (en)
TW (1) TWI632241B (en)
WO (1) WO2017221774A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6954236B2 (en) * 2018-07-03 2021-10-27 Jfeスチール株式会社 Manufacturing method and manufacturing equipment for coal interior sintered ore

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005190A1 (en) * 2013-07-10 2015-01-15 Jfeスチール株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR204404A1 (en) 1973-01-12 1976-02-06 Pilkington Brothers Ltd METHOD TO PRODUCE GLASS IN A GLASS MELTING TANK AND TANK FOR ITS REALIZATION
JPS5140888B2 (en) 1973-05-09 1976-11-06
JP2001348625A (en) 2000-06-08 2001-12-18 Nippon Steel Corp Method for producing pellet for iron-marking raw material
JP2002241853A (en) 2001-02-13 2002-08-28 Nippon Steel Corp Non-burning agglomerate for blast furnace
JP4599736B2 (en) * 2001-03-23 2010-12-15 Jfeスチール株式会社 Granulation method of sintering raw material
KR100794954B1 (en) * 2003-10-09 2008-01-15 제이에프이 스틸 가부시키가이샤 Method for producing sintered ore, method for producing material for sintering, granulated particle, and sintered ore
JP4490735B2 (en) 2004-06-04 2010-06-30 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
JP4604849B2 (en) * 2005-06-01 2011-01-05 住友金属工業株式会社 Granulation method of sintering raw material
JP4887728B2 (en) * 2005-10-21 2012-02-29 日新製鋼株式会社 Granulation method of sintering raw material
JP5540806B2 (en) 2010-03-24 2014-07-02 Jfeスチール株式会社 Carbon steel interior agglomerate for iron making and method for producing the same
JP5540859B2 (en) 2010-04-19 2014-07-02 Jfeスチール株式会社 Carbon steel interior agglomerate for iron making and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005190A1 (en) * 2013-07-10 2015-01-15 Jfeスチール株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore

Also Published As

Publication number Publication date
CN109328238A (en) 2019-02-12
KR20190006006A (en) 2019-01-16
PH12018502450A1 (en) 2019-09-30
KR102233326B1 (en) 2021-03-26
JPWO2017221774A1 (en) 2018-06-21
TWI632241B (en) 2018-08-11
TW201802250A (en) 2018-01-16
WO2017221774A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6620850B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP2011084734A (en) Method for producing ferro coke
JP2015014015A (en) Production method of sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
JP6288462B2 (en) Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore
JP2013209748A (en) Method of manufacturing reduced iron agglomerate
JP6294152B2 (en) Manufacturing method of granular metallic iron
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JP2007246786A (en) Ferrocoke and method for producing sintered ore
JP6460293B2 (en) Method for producing sintered ore
JP2011063835A (en) Method for improving strength of agglomerated raw material for blast furnace
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP6477167B2 (en) Method for producing sintered ore
WO2005111248A1 (en) Semi-reduced sintered ore and method for production thereof
JP2008057028A (en) Method for manufacturing sintered ore
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
KR101923287B1 (en) Method for exploiting dusts generated in a ferronickel process and sintered pellets produced by the method
JP6436317B2 (en) Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same
JP6816709B2 (en) Manufacturing method of coal material interior sinter
JP5910542B2 (en) Hot metal manufacturing method using vertical melting furnace
JP2021025112A (en) Method for manufacturing sintered ore
JP2017071828A (en) Manufacturing method of raw material for manufacturing sintered ore

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20171019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6264517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250